Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Review Article

miR-124 in Neuroblastoma: Mechanistic Insights, Biomarker Potential, and Therapeutic Prospects

Author(s): Kandegala Mahesh Monisha, Dhanu Annyaplar Shivakumar, Dasegowda Mutthuraj, Guruswamy Nandini, Sridhar Muthusami and Kanthesh M Basalingappa*

Volume 21, Issue 4, 2024

Published on: 27 August, 2024

Page: [217 - 229] Pages: 13

DOI: 10.2174/0115701646331003240821061517

Abstract

Neuroblastoma, a malignancy predominantly affecting young children, originates from neural crest cells in the sympathetic nervous system. It primarily appears in the adrenal gland but can also affect nerve tissues in regions, such as the chest, neck, abdomen, and pelvis. Despite advancements in treatment, high-risk neuroblastoma patients often face poor prognoses, underscoring the need for ongoing research. This review paper examines the numerous factors responsible for neuroblastoma, emphasizing the importance of approaching the disorder with more strategic therapeutic methods. MicroRNAs, particularly miR-124, play critical roles in gene regulation and cancer pathogenesis. Abundant in the brain, miR-124 functions as a tumor suppressor by inhibiting cell growth, migration, and invasion and is often dysregulated in neuroblastoma. This study investigates the molecular functions of miR-124 in neuroblastoma, its potential as a biomarker, and its application in targeted therapy. MiR-124 regulates key pathways in neuroblastoma, including PI3K/AKT, TGF-β, and p53 signaling, impacting cell proliferation, apoptosis, and metastasis. The study also explores the promise of miR-124 as a biomarker for neuroblastoma through liquid biopsy, enabling non-invasive diagnosis and disease monitoring. Therapeutic strategies targeting miR-124 pathways show potential for overcoming chemotherapy resistance and improving treatment efficacy. The research underscores the significance of miR-124 in neuroblastoma, aiming to enhance early diagnosis, identify specific drug targets, and expand treatment options, ultimately improving patient outcomes.

Keywords: Neuroblastoma, MicroRNA-124, transcription, pathophysiology, metastasis, therapeutic target.

Graphical Abstract
[1]
Brodeur, G.M. Neuroblastoma: biological insights into a clinical enigma. Nat. Rev. Cancer, 2003, 3(3), 203-216.
[http://dx.doi.org/10.1038/nrc1014] [PMID: 12612655]
[2]
Smith, V.; Foster, J. High-Risk Neuroblastoma Treatment Review. Children (Basel), 2018, 5(9), 114.
[http://dx.doi.org/10.3390/children5090114] [PMID: 30154341]
[3]
Huang, S.; Gong, N.; Li, J.; Hong, M.; Li, L.; Zhang, L.; Zhang, H. The role of ncRNAs in neuroblastoma: mechanisms, biomarkers and therapeutic targets. Biomark. Res., 2022, 10(1), 18.
[http://dx.doi.org/10.1186/s40364-022-00368-2] [PMID: 35392988]
[4]
Berthold, F.; Hero, B. Neuroblastoma. Drugs, 2000, 59(6), 1261-1277.
[http://dx.doi.org/10.2165/00003495-200059060-00006] [PMID: 10882162]
[5]
Ackermann, S.; Cartolano, M.; Hero, B.; Welte, A.; Kahlert, Y.; Roderwieser, A.; Bartenhagen, C.; Walter, E.; Gecht, J.; Kerschke, L.; Volland, R.; Menon, R.; Heuckmann, J.M.; Gartlgruber, M.; Hartlieb, S.; Henrich, K.O.; Okonechnikov, K.; Altmüller, J.; Nürnberg, P.; Lefever, S.; de Wilde, B.; Sand, F.; Ikram, F.; Rosswog, C.; Fischer, J.; Theissen, J.; Hertwig, F.; Singhi, A.D.; Simon, T.; Vogel, W.; Perner, S.; Krug, B.; Schmidt, M.; Rahmann, S.; Achter, V.; Lang, U.; Vokuhl, C.; Ortmann, M.; Büttner, R.; Eggert, A.; Speleman, F.; O’Sullivan, R.J.; Thomas, R.K.; Berthold, F.; Vandesompele, J.; Schramm, A.; Westermann, F.; Schulte, J.H.; Peifer, M.; Fischer, M. A mechanistic classification of clinical phenotypes in neuroblastoma. Science, 2018, 362(6419), 1165-1170.
[http://dx.doi.org/10.1126/science.aat6768] [PMID: 30523111]
[6]
Luo, Y.B.; Cui, X.C.; Yang, L.; Zhang, D.; Wang, J.X. Advances in the surgical treatment of neuroblastoma. Chin. Med. J. (Engl.), 2018, 131(19), 2332-2337.
[http://dx.doi.org/10.4103/0366-6999.241803] [PMID: 30246719]
[7]
Zhuo, Z.; Lin, L.; Miao, L.; Li, M.; He, J. Advances in liquid biopsy in neuroblastoma. Fundament. Res., 2022, 2(6), 903-915.
[http://dx.doi.org/10.1016/j.fmre.2022.08.005]
[8]
Øra, I.; Eggert, A. Progress in treatment and risk stratification of neuroblastoma: impact on future clinical and basic research.Semin Cancer Biol., 2011, 21(4), 217-228.
[9]
Lettieri-Barbato, D.; Aquilano, K.; Punziano, C.; Minopoli, G.; Faraonio, R. MicroRNAs, long non-coding RNAs, and circular RNAs in the redox control of cell senescence. Antioxidants, 2022, 11(3), 480.
[http://dx.doi.org/10.3390/antiox11030480] [PMID: 35326131]
[10]
Roldo, C.; Missiaglia, E.; Hagan, J.P.; Falconi, M.; Capelli, P.; Bersani, S.; Calin, G.A.; Volinia, S.; Liu, C.G.; Scarpa, A.; Croce, C.M. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J. Clin. Oncol., 2006, 24(29), 4677-4684.
[http://dx.doi.org/10.1200/JCO.2005.05.5194] [PMID: 16966691]
[11]
Tewari, D.; Patni, P.; Bishayee, A.; Sah, AN.; Bishayee, A. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy. In: Seminars Cancer Biology; Academic Press, 2022.
[12]
Wong, K.Y.; So, C.C.; Loong, F.; Chung, L.P.; Lam, W.W.L.; Liang, R.; Li, G.K.H.; Jin, D.Y.; Chim, C.S. Epigenetic inactivation of the miR-124-1 in haematological malignancies. PLoS One, 2011, 6(4), e19027.
[http://dx.doi.org/10.1371/journal.pone.0019027] [PMID: 21544199]
[13]
Deng, X.; Ma, L.; Wu, M.; Zhang, G.; Jin, C.; Guo, Y.; Liu, R. miR-124 radiosensitizes human glioma cells by targeting CDK4. J. Neurooncol., 2013, 114(3), 263-274.
[http://dx.doi.org/10.1007/s11060-013-1179-2] [PMID: 23761023]
[14]
Sun, Y.; Luo, Z.M.; Guo, X.M.; Su, D.F.; Liu, X. An updated role of microRNA-124 in central nervous system disorders: a review. Front. Cell. Neurosci., 2015, 9, 193.
[http://dx.doi.org/10.3389/fncel.2015.00193] [PMID: 26041995]
[15]
Gonzalo, L.; Tossolini, I.; Gulanicz, T.; Cambiagno, D.A.; Kasprowicz-Maluski, A.; Smolinski, D.J.; Mammarella, M.F.; Ariel, F.D.; Marquardt, S.; Szweykowska-Kulinska, Z.; Jarmolowski, A.; Manavella, P.A. R-loops at microRNA encoding loci promote co-transcriptional processing of pri-miRNAs in plants. Nat. Plants, 2022, 8(4), 402-418.
[http://dx.doi.org/10.1038/s41477-022-01125-x] [PMID: 35449404]
[16]
Cai, X.; Hagedorn, C.H.; Cullen, B.R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 2004, 10(12), 1957-1966.
[http://dx.doi.org/10.1261/rna.7135204] [PMID: 15525708]
[17]
Suster, I.; Feng, Y. Multifaceted Regulation of MicroRNA Biogenesis: Essential Roles and Functional Integration in Neuronal and Glial Development. Int. J. Mol. Sci., 2021, 22(13), 6765.
[http://dx.doi.org/10.3390/ijms22136765] [PMID: 34201807]
[18]
Roden, C.; Gaillard, J.; Kanoria, S.; Rennie, W.; Barish, S.; Cheng, J.; Pan, W.; Liu, J.; Cotsapas, C.; Ding, Y.; Lu, J. Novel determinants of mammalian primary microRNA processing revealed by systematic evaluation of hairpin-containing transcripts and human genetic variation. Genome Res., 2017, 27(3), 374-384.
[http://dx.doi.org/10.1101/gr.208900.116] [PMID: 28087842]
[19]
Auyeung, V.C.; Ulitsky, I.; McGeary, S.E.; Bartel, D.P. Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing. Cell, 2013, 152(4), 844-858.
[http://dx.doi.org/10.1016/j.cell.2013.01.031] [PMID: 23415231]
[20]
Quattrone, A.; Montuori, G. The m6A RNA modification sustains neuroblastoma tumor aggressiveness. Ph.D. Thesis, University of Trento, 2018-2019.
[21]
Donayo, A.O. Processing and Regulation of Polycistronic microRNAs in cancer; McGill University: Canada, 2021.
[22]
White, E.J.F.; Matsangos, A.E.; Wilson, G.M. AUF1 regulation of coding and noncoding RNA. Wiley Interdiscip. Rev. RNA, 2017, 8(2), e1393.
[http://dx.doi.org/10.1002/wrna.1393] [PMID: 27620010]
[23]
Krivdova, G. Elucidating the Function of MicroRNAs and Argonautes in Normal Hematopoiesis and Acute Myeloid Leukemia. Doctoral dissertation, University of Toronto, 2022.
[24]
Loffreda, A.; Rigamonti, A.; Barabino, S.; Lenzken, S. RNA-binding proteins in the regulation of miRNA activity: a focus on neuronal functions. Biomolecules, 2015, 5(4), 2363-2387.
[http://dx.doi.org/10.3390/biom5042363] [PMID: 26437437]
[25]
Sinkovics, J.G.; Sinkovics, J.G. Viral Genomic Insertions in the Host Cell’s Genome; RNA/DNA and Cancer, 2016, pp. 207-246.
[26]
ŞAHİN, B. Proteomics analysis of mitochondrial dysfunction triggered by complex specific electron transport chain inhibitors reveals common pathways involving protein misfolding in an SH-SY5Y in vitro cell model. Turk. J. Biol., 2017, 41(5), 765-784.
[27]
Dexheimer, P.J.; Cochella, L. MicroRNAs: from mechanism to organism. Front. Cell Dev. Biol., 2020, 8, 409.
[http://dx.doi.org/10.3389/fcell.2020.00409] [PMID: 32582699]
[28]
Dargyte, M. Noncanonical Post-Transcriptional Roles for SR Proteins During MicroRNA Biogenesis. PhD thesis, University of California, 2021.
[29]
Lambert, M.P.; Terrone, S.; Giraud, G.; Benoit-Pilven, C.; Cluet, D.; Combaret, V.; Mortreux, F.; Auboeuf, D.; Bourgeois, C.F. The RNA helicase DDX17 controls the transcriptional activity of REST and the expression of proneural microRNAs in neuronal differentiation. Nucleic Acids Res., 2018, 46(15), 7686-7700.
[http://dx.doi.org/10.1093/nar/gky545] [PMID: 29931089]
[30]
Wu, J.; Cang, S.; Liu, C.; Ochiai, W.; Chiao, J.W. Development of human prostate cancer stem cells involves epigenomic alteration and PI3K/AKT pathway activation. Exp. Hematol. Oncol., 2020, 9(1), 12.
[http://dx.doi.org/10.1186/s40164-020-00168-0] [PMID: 32537260]
[31]
Fitriana, M.; Hwang, W.L.; Chan, P.Y.; Hsueh, T.Y.; Liao, T.T. Roles of microRNAs in Regulating Cancer Stemness in Head and Neck Cancers. Cancers 2021, 13. MicroRNA and Cancer., 1742, 2021, 197.
[32]
Mestdagh, P.; Boström, A.K.; Impens, F.; Fredlund, E.; Van Peer, G.; De Antonellis, P.; von Stedingk, K.; Ghesquière, B.; Schulte, S.; Dews, M.; Thomas-Tikhonenko, A.; Schulte, J.H.; Zollo, M.; Schramm, A.; Gevaert, K.; Axelson, H.; Speleman, F.; Vandesompele, J. The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma. Mol. Cell, 2010, 40(5), 762-773.
[http://dx.doi.org/10.1016/j.molcel.2010.11.038] [PMID: 21145484]
[33]
Zammit, V.; Baron, B.; Ayers, D. MiRNA influences in neuroblast modulation: an introspective analysis. Genes (Basel), 2018, 9(1), 26.
[http://dx.doi.org/10.3390/genes9010026] [PMID: 29315268]
[34]
Xu, Z.; Sun, Y.; Wang, D.; Sun, H.; Liu, X. SNHG16 promotes tumorigenesis and cisplatin resistance by regulating miR-338-3p/PLK4 pathway in neuroblastoma cells. Cancer Cell Int., 2020, 20(1), 236.
[http://dx.doi.org/10.1186/s12935-020-01291-y] [PMID: 32536824]
[35]
Ribeiro Franco, P.I.; Rodrigues, A.P.; de Menezes, L.B.; Pacheco Miguel, M. Tumor microenvironment components: Allies of cancer progression. Pathol. Res. Pract., 2020, 216(1), 152729.
[http://dx.doi.org/10.1016/j.prp.2019.152729] [PMID: 31735322]
[36]
Massagué, J. TGFβ in Cancer. Cell, 2008, 134(2), 215-230.
[http://dx.doi.org/10.1016/j.cell.2008.07.001] [PMID: 18662538]
[37]
Perey, A.C. The role of the rho-associated coiled-coil containing kinase (ROCK) in cytokine-induced chemokine responses in intestinal epithelial cells. Doctoral dissertation, State University of New York at Binghamton, 2017.
[38]
Lynch, J.; Stallings, RL. Genetics of Pediatric Tumors. In: Pediatric Surgery: General Pediatric Surgery, Tumors, Trauma and Transplantation; Springer: Berlin, Heidelberg, 2021.
[http://dx.doi.org/10.1007/978-3-662-43559-5_143]
[39]
Budi, H.S.; Younus, L.A.; Lafta, M.H.; Parveen, S.; Mohammad, H.J.; Al-qaim, Z.H.; Jawad, M.A.; Parra, R.M.R.; Mustafa, Y.F.; Alhachami, F.R.; Karampoor, S.; Mirzaei, R. The role of miR-128 in cancer development, prevention, drug resistance, and immunotherapy. Front. Oncol., 2023, 12, 1067974.
[http://dx.doi.org/10.3389/fonc.2022.1067974] [PMID: 36793341]
[40]
Adam, K.; Ning, J.; Reina, J.; Hunter, T. NME/NM23/NDPK and histidine phosphorylation. Int. J. Mol. Sci., 2020, 21(16), 5848.
[http://dx.doi.org/10.3390/ijms21165848] [PMID: 32823988]
[41]
Lynch, J.; Fay, J.; Meehan, M.; Bryan, K.; Watters, K.M.; Murphy, D.M.; Stallings, R.L. MiRNA-335 suppresses neuroblastoma cell invasiveness by direct targeting of multiple genes from the non-canonical TGF-β signalling pathway. Carcinogenesis, 2012, 33(5), 976-985.
[http://dx.doi.org/10.1093/carcin/bgs114] [PMID: 22382496]
[42]
Patil, M.R.; Bihari, A. A comprehensive study of p53 protein. J. Cell. Biochem., 2022, 123(12), 1891-1937.
[http://dx.doi.org/10.1002/jcb.30331] [PMID: 36183376]
[43]
Velculescu, V.E.; El-Deiry, W.S. Biological and clinical importance of the p53 tumor suppressor gene. Clin. Chem., 1996, 42(6), 858-868.
[http://dx.doi.org/10.1093/clinchem/42.6.858] [PMID: 8665676]
[44]
Singh, N. Role of mammalian long non-coding RNAs in normal and neuro oncological disorders. Genomics, 2021, 113(5), 3250-3273.
[http://dx.doi.org/10.1016/j.ygeno.2021.07.015] [PMID: 34302945]
[45]
Inomistova, M.; Klymniuk, H.; Khranovska, N.; Pavlyk, S.; Shaida, E.; Gorbach, A.; Skachkova, O.; Shymon, D. Expression of genes involved in p53 pathway regulation in neuroblastoma: a short review. Exp. Oncol., 2022, 44(4), 266-271.
[PMID: 36811541]
[46]
Morandi, F.; Sabatini, F.; Podestà, M.; Airoldi, I. Immunotherapeutic strategies for neuroblastoma: present, past and future. Vaccines (Basel), 2021, 9(1), 43.
[http://dx.doi.org/10.3390/vaccines9010043] [PMID: 33450862]
[47]
Zahnreich, S.; Schmidberger, H. Childhood cancer: occurrence, treatment and risk of second primary malignancies. Cancers (Basel), 2021, 13(11), 2607.
[http://dx.doi.org/10.3390/cancers13112607] [PMID: 34073340]
[48]
Kosti, A.; Du, L.; Shivram, H.; Qiao, M.; Burns, S.; Garcia, J.G.; Pertsemlidis, A.; Iyer, V.R.; Kokovay, E.; Penalva, L.O.F. ELF4 is a target of miR-124 and promotes neuroblastoma proliferation and undifferentiated state. Mol. Cancer Res., 2020, 18(1), 68-78.
[http://dx.doi.org/10.1158/1541-7786.MCR-19-0187] [PMID: 31624087]
[49]
Matthay, K.K.; Maris, J.M.; Schleiermacher, G.; Nakagawara, A.; Mackall, C.L.; Diller, L.; Weiss, W.A. Neuroblastoma. Nat. Rev. Dis. Primers, 2016, 2(1), 16078.
[http://dx.doi.org/10.1038/nrdp.2016.78] [PMID: 27830764]
[50]
Wang, W.; Du, Y.; Datta, S.; Fowler, J.F.; Sang, H.T.; Albadari, N.G.; Li, W.; Foster, J.; Zhang, R. Targeting the MYCN-MDM2 pathways for cancer therapy: Are they druggable? Genes Dis., 2023, 101156.
[http://dx.doi.org/10.1016/j.gendis.2023.101156]
[51]
Leichter, A.L.; Sullivan, M.J.; Eccles, M.R.; Chatterjee, A. MicroRNA expression patterns and signalling pathways in the development and progression of childhood solid tumours. Mol. Cancer, 2017, 16(1), 15.
[http://dx.doi.org/10.1186/s12943-017-0584-0] [PMID: 28093071]
[52]
Nolan, J.C. MiRNA-124-3p Reduces Cell Viability in Cisplatin Resistant Neuroblastoma Cell Models. Doctoral dissertation, Royal College of Surgeons in Ireland, 2017.
[53]
Weng, R.; Cohen, S.M. Drosophila miR-124 regulates neuroblast proliferation through its target anachronism. Development, 2012, 139(8), 1427-1434.
[http://dx.doi.org/10.1242/dev.075143] [PMID: 22378639]
[54]
Akbar, A.; Malekian, F.; Baghban, N.; Kodam, S.P.; Ullah, M. Methodologies to isolate and purify clinical grade extracellular vesicles for medical applications. Cells, 2022, 11(2), 186.
[http://dx.doi.org/10.3390/cells11020186] [PMID: 35053301]
[55]
Silber, J.; Hashizume, R.; Felix, T.; Hariono, S.; Yu, M.; Berger, M.S.; Huse, J.T.; VandenBerg, S.R.; James, C.D.; Hodgson, J.G.; Gupta, N. Expression of miR-124 inhibits growth of medulloblastoma cells. Neuro-oncol., 2013, 15(1), 83-90.
[http://dx.doi.org/10.1093/neuonc/nos281] [PMID: 23172372]
[56]
Pilotto Heming, C.; Niemeyer Filho, P.; Moura-Neto, V.; Aran, V. Recent advances in the use of liquid biopsy to fight central nervous system tumors. Cancer Treat. Res. Commun., 2023, 35, 100709.
[http://dx.doi.org/10.1016/j.ctarc.2023.100709] [PMID: 37088042]
[57]
Marrugo-Ramírez, J.; Mir, M.; Samitier, J. Blood-based cancer biomarkers in liquid biopsy: a promising non-invasive alternative to tissue biopsy. Int. J. Mol. Sci., 2018, 19(10), 2877.
[http://dx.doi.org/10.3390/ijms19102877] [PMID: 30248975]
[58]
Liu, T.; Zhu, J.; Du, W.; Ning, W.; Zhang, Y.; Zeng, Y.; Liu, Z.; Huang, J.A. AKT2 drives cancer progression and is negatively modulated by miR-124 in human lung adenocarcinoma. Respir. Res., 2020, 21(1), 227.
[http://dx.doi.org/10.1186/s12931-020-01491-0] [PMID: 32873299]
[59]
Nolan, J.C.; Salvucci, M.; Carberry, S.; Barat, A.; Segura, M.F.; Fenn, J.; Prehn, J.H.M.; Stallings, R.L.; Piskareva, O. A context-dependent role for MiR-124-3p on cell phenotype, viability and chemosensitivity in neuroblastoma in vitro. Front. Cell Dev. Biol., 2020, 8, 559553.
[http://dx.doi.org/10.3389/fcell.2020.559553] [PMID: 33330445]
[60]
Galardi, A.; Colletti, M.; Di Paolo, V.; Vitullo, P.; Antonetti, L.; Russo, I.; Di Giannatale, A. Exosomal MiRNAs in pediatric cancers. Int. J. Mol. Sci., 2019, 20(18), 4600.
[http://dx.doi.org/10.3390/ijms20184600] [PMID: 31533332]
[61]
Aravindan, N.; Jain, D.; Somasundaram, D.B.; Herman, S.; Aravindan, S. Cancer stem cells in neuroblastoma therapy resistance. Cancer Drug Resist., 2019, 2(4), 948-967.
[http://dx.doi.org/10.20517/cdr.2019.72] [PMID: 31867574]
[62]
Han, Z.B.; Yang, Z.; Chi, Y.; Zhang, L.; Wang, Y.; Ji, Y.; Wang, J.; Zhao, H.; Han, Z.C. MicroRNA-124 suppresses breast cancer cell growth and motility by targeting CD151. Cell. Physiol. Biochem., 2013, 31(6), 823-832.
[http://dx.doi.org/10.1159/000350100] [PMID: 23816858]
[63]
Kciuk, M.; Yahya, E.B.; Mohamed, M.M.I.; Abdulsamad, M.A.; Allaq, A.A.; Gielecińska, A.; Kontek, R. Insights into the Role of LncRNAs and miRNAs in Glioma Progression and Their Potential as Novel Therapeutic Targets. Cancers (Basel), 2023, 15(13), 3298.
[http://dx.doi.org/10.3390/cancers15133298] [PMID: 37444408]
[64]
Cho, KH.; Xu, B.; Blenkiron, C.; Fraser, M. Emerging roles of miRNAs in brain development and perinatal brain injury. Front Physiol., 2020, 10, 227.
[65]
O'Neill, KL. Development of a Neuron Specific Non-Viral Delivery System for Rho-Kinase 2 Short Interfering RNA. Master's thesis, Faculdade de Engenharia da Universidade do Porto, 2019.
[66]
Buzzetti, M. Mechanisms of medulloblastoma vulnerability and new targeted therapies. phD thesis, University of Salford, 2020.
[67]
Katta, S.S.; Nagati, V.; Paturi, A.S.V.; Murakonda, S.P.; Murakonda, A.B.; Pandey, M.K.; Gupta, S.C.; Pasupulati, A.K.; Challagundla, K.B. Neuroblastoma: Emerging trends in pathogenesis, diagnosis, and therapeutic targets. J. Control. Release, 2023, 357, 444-459.
[http://dx.doi.org/10.1016/j.jconrel.2023.04.001] [PMID: 37023798]
[68]
Sanuki, R.; Yamamura, T. Tumor suppressive effects of miR-124 and its function in neuronal development. Int. J. Mol. Sci., 2021, 22(11), 5919.
[http://dx.doi.org/10.3390/ijms22115919] [PMID: 34072894]
[69]
Pathania, A.S. Crosstalk between Noncoding RNAs and the Epigenetics Machinery in Pediatric Tumors and Their Microenvironment. Cancers (Basel), 2023, 15(10), 2833.
[http://dx.doi.org/10.3390/cancers15102833] [PMID: 37345170]
[70]
Chaudhry, K.A.; Jacobi, J.J.; Gillard, B.M.; Karasik, E.; Martin, J.C.; da Silva Fernandes, T.; Hurley, E.; Feltri, M.L.; Attwood, K.M.; Twist, C.J.; Smiraglia, D.J.; Long, M.D.; Bianchi-Smiraglia, A. Aryl hydrocarbon receptor is a tumor promoter in MYCN-amplified neuroblastoma cells through suppression of differentiation. iScience, 2023, 26(11), 108303.
[http://dx.doi.org/10.1016/j.isci.2023.108303] [PMID: 38026169]
[71]
Xu, J.; Zheng, Y.; Wang, L.; Liu, Y.; Wang, X.; Li, Y.; Chi, G. miR-124: a promising therapeutic target for central nervous system injuries and diseases. Cell. Mol. Neurobiol., 2022, 42(7), 2031-2053.
[http://dx.doi.org/10.1007/s10571-021-01091-6] [PMID: 33886036]
[72]
Neo, W.H.; Yap, K.; Lee, S.H.; Looi, L.S.; Khandelia, P.; Neo, S.X.; Makeyev, E.V.; Su, I. MicroRNA miR-124 controls the choice between neuronal and astrocyte differentiation by fine-tuning Ezh2 expression. J. Biol. Chem., 2014, 289(30), 20788-20801.
[http://dx.doi.org/10.1074/jbc.M113.525493] [PMID: 24878960]
[73]
Zhao, Z.; Ma, X.; Sung, D.; Li, M.; Kosti, A.; Lin, G.; Chen, Y.; Pertsemlidis, A.; Hsiao, T.H.; Du, L. microRNA-449a functions as a tumor suppressor in neuroblastoma through inducing cell differentiation and cell cycle arrest. RNA Biol., 2015, 12(5), 538-554.
[http://dx.doi.org/10.1080/15476286.2015.1023495] [PMID: 25760387]
[74]
Wu, M.; Wang, M.; Jia, H.; Wu, P. Extracellular vesicles: emerging anti-cancer drugs and advanced functionalization platforms for cancer therapy. Drug Deliv., 2022, 29(1), 2513-2538.
[http://dx.doi.org/10.1080/10717544.2022.2104404] [PMID: 35915054]
[75]
Bayraktar, E.; Bayraktar, R.; Oztatlici, H.; Lopez-Berestein, G.; Amero, P.; Rodriguez-Aguayo, C. Targeting miRNAs and Other Non-Coding RNAs as a Therapeutic Approach: An Update. Noncoding RNA, 2023, 9(2), 27.
[http://dx.doi.org/10.3390/ncrna9020027] [PMID: 37104009]
[76]
Chen, X.; He, D.; Dong, X.D.; Dong, F.; Wang, J.; Wang, L.; Tang, J.; Hu, D.N.; Yan, D.; Tu, L. MicroRNA-124a is epigenetically regulated and acts as a tumor suppressor by controlling multiple targets in uveal melanoma. Invest. Ophthalmol. Vis. Sci., 2013, 54(3), 2248-2256.
[http://dx.doi.org/10.1167/iovs.12-10977] [PMID: 23404119]
[77]
Wei, J.; Kong, LY.; Wang, F.; Xu, S.; Doucette, T.; Ferguson, SD.; Yang, Y.; McEnery, K.; Jethwa, K.; Gjyshi, O.; Qiao, W. miR-124 inhibits STAT3 signaling to enhance T cell-mediated immune clearance of glioma. Cancer Res., 2013, 73(13), 3913-3926.
[78]
Jiang, H.; Jin, C.; Liu, J.; Hua, D.; Zhou, F.; Lou, X.; Zhao, N.; Lan, Q.; Huang, Q.; Yoon, J.G.; Zheng, S.; Lin, B. Next generation sequencing analysis of miRNAs: MiR-127-3p inhibits glioblastoma proliferation and activates TGF-β signaling by targeting SKI. OMICS, 2014, 18(3), 196-206.
[http://dx.doi.org/10.1089/omi.2013.0122] [PMID: 24517116]
[79]
Li, W.; Huang, H.; Su, J.; Ji, X.; Zhang, X.; Zhang, Z.; Wang, H. Retraction Note to: miR-124 Acts as a Tumor Suppressor in Glioblastoma via the Inhibition of Signal Transducer and Activator of Transcription 3. Mol. Neurobiol., 2017, 54(10), 8461.
[http://dx.doi.org/10.1007/s12035-017-0682-4] [PMID: 28707071]
[80]
Qiao, W.; Guo, B.; Zhou, H.; Xu, W.; Chen, Y.; Liang, Y.; Dong, B. miR-124 suppresses glioblastoma growth and potentiates chemosensitivity by inhibiting AURKA. Biochem. Biophys. Res. Commun., 2017, 486(1), 43-48.
[http://dx.doi.org/10.1016/j.bbrc.2017.02.120] [PMID: 28242198]
[81]
Agirre, X.; Vilas-Zornoza, A.; Jiménez-Velasco, A.; Martin-Subero, J.I.; Cordeu, L.; Gárate, L.; San José-Eneriz, E.; Abizanda, G.; Rodríguez-Otero, P.; Fortes, P.; Rifón, J.; Bandrés, E.; Calasanz, M.J.; Martín, V.; Heiniger, A.; Torres, A.; Siebert, R.; Román-Gomez, J.; Prósper, F. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res., 2009, 69(10), 4443-4453.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4025] [PMID: 19435910]
[82]
Tivnan, A.; Zhao, J.; Johns, T.G.; Day, B.W.; Stringer, B.W.; Boyd, A.W.; Tiwari, S.; Giles, K.M.; Teo, C.; McDonald, K.L. The tumor suppressor microRNA, miR-124a, is regulated by epigenetic silencing and by the transcriptional factor, REST in glioblastoma. Tumour Biol., 2014, 35(2), 1459-1465.
[http://dx.doi.org/10.1007/s13277-013-1200-6] [PMID: 24068568]
[83]
Xia, H.; Cheung, W.K.C.; Ng, S.S.; Jiang, X.; Jiang, S.; Sze, J.; Leung, G.K.K.; Lu, G.; Chan, D.T.M.; Bian, X.W.; Kung, H.; Poon, W.S.; Lin, M.C. Loss of brain-enriched miR-124 microRNA enhances stem-like traits and invasiveness of glioma cells. J. Biol. Chem., 2012, 287(13), 9962-9971.
[http://dx.doi.org/10.1074/jbc.M111.332627] [PMID: 22253443]
[84]
Silber, J.; Lim, D.A.; Petritsch, C.; Persson, A.I.; Maunakea, A.K.; Yu, M.; Vandenberg, S.R.; Ginzinger, D.G.; James, C.D.; Costello, J.F.; Bergers, G.; Weiss, W.A.; Alvarez-Buylla, A.; Hodgson, J.G. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med., 2008, 6(1), 14.
[http://dx.doi.org/10.1186/1741-7015-6-14] [PMID: 18577219]
[85]
Yeo, C.D.; Kim, Y.A.; Lee, H.Y.; Kim, J.W.; Kim, S.J.; Lee, S.H.; Kim, Y.K. Roflumilast treatment inhibits lung carcinogenesis in benzo(a)pyrene-induced murine lung cancer model. Eur. J. Pharmacol., 2017, 812, 189-195.
[http://dx.doi.org/10.1016/j.ejphar.2017.07.004] [PMID: 28684234]
[86]
Yurino, A.; Takenaka, K.; Yamauchi, T.; Nunomura, T.; Uehara, Y.; Jinnouchi, F.; Miyawaki, K.; Kikushige, Y.; Kato, K.; Miyamoto, T.; Iwasaki, H.; Kunisaki, Y.; Akashi, K. Enhanced reconstitution of human erythropoiesis and thrombopoiesis in an immunodeficient mouse model with KitWv mutations. Stem Cell Reports, 2016, 7(3), 425-438.
[http://dx.doi.org/10.1016/j.stemcr.2016.07.002] [PMID: 27499200]
[87]
Pineton de Chambrun, M.; Larcher, R.; Pène, F.; Argaud, L.; Demoule, A.; Jamme, M.; Coudroy, R.; Mathian, A.; Gibelin, A.; Azoulay, E.; Tandjaoui-Lambiotte, Y.; Dargent, A.; Beloncle, F.M.; Raphalen, J.H.; Couteau-Chardon, A.; de Prost, N.; Devaquet, J.; Contou, D.; Gaugain, S.; Trouiller, P.; Grangé, S.; Ledochowski, S.; Lemarie, J.; Faguer, S.; Degos, V.; Combes, A.; Luyt, C.E.; Amoura, Z. CAPS criteria fail to identify most severely-ill thrombotic antiphospholipid syndrome patients requiring intensive care unit admission. J. Autoimmun., 2019, 103, 102292.
[http://dx.doi.org/10.1016/j.jaut.2019.06.003] [PMID: 31253464]
[88]
Seeger, R.C.; Brodeur, G.M.; Sather, H.; Dalton, A.; Siegel, S.E.; Wong, K.Y.; Hammond, D. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N. Engl. J. Med., 1985, 313(18), 1111-1116.
[http://dx.doi.org/10.1056/NEJM198510313131802] [PMID: 4047115]
[89]
Look, A.T.; Hayes, F.A.; Shuster, J.J.; Douglass, E.C.; Castleberry, R.P.; Bowman, L.C.; Smith, E.I.; Brodeur, G.M. Clinical relevance of tumor cell ploidy and N-myc gene amplification in childhood neuroblastoma: a Pediatric Oncology Group study. J. Clin. Oncol., 1991, 9(4), 581-591.
[http://dx.doi.org/10.1200/JCO.1991.9.4.581] [PMID: 2066755]
[90]
Janoueix-Lerosey, I.; Schleiermacher, G.; Michels, E.; Mosseri, V.; Ribeiro, A.; Lequin, D.; Vermeulen, J.; Couturier, J.; Peuchmaur, M.; Valent, A.; Plantaz, D.; Rubie, H.; Valteau-Couanet, D.; Thomas, C.; Combaret, V.; Rousseau, R.; Eggert, A.; Michon, J.; Speleman, F.; Delattre, O. Overall genomic pattern is a predictor of outcome in neuroblastoma. J. Clin. Oncol., 2009, 27(7), 1026-1033.
[http://dx.doi.org/10.1200/JCO.2008.16.0630] [PMID: 19171713]
[91]
Philip, T.; Zucker, J.M.; Bernard, J.L.; Bordigoni, P.; Brunat-Mentigny, M.; Lutz, P. Ferritin as a tumor marker in neuroblastoma: a study of 63 cases. Cancer, 1984, 53(2), 208-215.
[92]
Yu, A.L.; Gilman, A.L.; Ozkaynak, M.F.; London, W.B.; Kreissman, S.G.; Chen, H.X.; Smith, M.; Anderson, B.; Villablanca, J.G.; Matthay, K.K.; Shimada, H.; Grupp, S.A.; Seeger, R.; Reynolds, C.P.; Buxton, A.; Reisfeld, R.A.; Gillies, S.D.; Cohn, S.L.; Maris, J.M.; Sondel, P.M. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med., 2010, 363(14), 1324-1334.
[http://dx.doi.org/10.1056/NEJMoa0911123] [PMID: 20879881]
[93]
Luo, H.; Zhao, Q.; Wei, W.; Zheng, L.; Yi, S.; Li, G.; Wang, W.; Sheng, H.; Pu, H.; Mo, H.; Zuo, Z.; Liu, Z.; Li, C.; Xie, C.; Zeng, Z.; Li, W.; Hao, X.; Liu, Y.; Cao, S.; Liu, W.; Gibson, S.; Zhang, K.; Xu, G.; Xu, R. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci. Transl. Med., 2020, 12(524), eaax7533.
[http://dx.doi.org/10.1126/scitranslmed.aax7533] [PMID: 31894106]
[94]
Hao, X.; Luo, H.; Krawczyk, M.; Wei, W.; Wang, W.; Wang, J.; Flagg, K.; Hou, J.; Zhang, H.; Yi, S.; Jafari, M.; Lin, D.; Chung, C.; Caughey, B.A.; Li, G.; Dhar, D.; Shi, W.; Zheng, L.; Hou, R.; Zhu, J.; Zhao, L.; Fu, X.; Zhang, E.; Zhang, C.; Zhu, J.K.; Karin, M.; Xu, R.H.; Zhang, K. DNA methylation markers for diagnosis and prognosis of common cancers. Proc. Natl. Acad. Sci. USA, 2017, 114(28), 7414-7419.
[http://dx.doi.org/10.1073/pnas.1703577114] [PMID: 28652331]
[95]
Nicolini, A.; Ferrari, P.; Duffy, MJ. Prognostic and predictive biomarkers in breast cancer: Past, present and future. In: Seminars in cancer biology; Academic Press, 2018.
[96]
Weigel, M.T.; Dowsett, M. Current and emerging biomarkers in breast cancer: prognosis and prediction. Endocr. Relat. Cancer, 2010, 17(4), R245-R262.
[http://dx.doi.org/10.1677/ERC-10-0136] [PMID: 20647302]
[97]
Duffy, M.J.; Walsh, S.; McDermott, E.W.; Crown, J. Biomarkers in breast cancer: where are we and where are we going? Adv. Clin. Chem., 2015, 71, 1-23.
[http://dx.doi.org/10.1016/bs.acc.2015.05.001] [PMID: 26411409]
[98]
Holdenrieder, S. Biomarkers along the continuum of care in lung cancer. Scandinavian J. Clin. Laborat. Investig., 2016, 76(S245), S40-S45.
[http://dx.doi.org/10.1080/00365513.2016.1208446]
[99]
Henry, L.N.; Hayes, D.F.; Ramsey, S.D.; Hortobagyi, G.N.; Barlow, W.E.; Gralow, J.R. Promoting quality and evidence-based care in early-stage breast cancer follow-up. J. Natl. Cancer Inst., 2014, 106(4), dju034.
[http://dx.doi.org/10.1093/jnci/dju034] [PMID: 24627271]
[100]
Verma, M.; Manne, U. Genetic and epigenetic biomarkers in cancer diagnosis and identifying high risk populations. Crit. Rev. Oncol. Hematol., 2006, 60(1), 9-18.
[http://dx.doi.org/10.1016/j.critrevonc.2006.04.002] [PMID: 16829121]
[101]
Ludwig, J.A.; Weinstein, J.N. Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer, 2005, 5(11), 845-856.
[http://dx.doi.org/10.1038/nrc1739] [PMID: 16239904]
[102]
Zhao, N.; Guo, M.; Wang, K.; Zhang, C.; Liu, X. Identification of pan-cancer prognostic biomarkers through integration of multi-omics data. Front. Bioeng. Biotechnol., 2020, 8, 268.
[http://dx.doi.org/10.3389/fbioe.2020.00268] [PMID: 32300588]

© 2024 Bentham Science Publishers | Privacy Policy