Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Recent Molecular Targets and their Ligands for the Treatment of Alzheimer Disease

Author(s): Gülşah Bayraktar* and Vildan Alptüzün

Volume 24, Issue 28, 2024

Published on: 20 August, 2024

Page: [2447 - 2464] Pages: 18

DOI: 10.2174/0115680266318722240809050235

Price: $65

Open Access Journals Promotions 2
Abstract

Alzheimer’s disease is a multifaceted neurodegenerative disease. Cholinergic dysfunction, amyloid β toxicity, tauopathies, oxidative stress, neuroinflammation are among the main pathologies of the disease. Ligands targeting more than one pathology, multi-target directed ligands, attract attention in the recent years to tackle Alzheimer’s disease. In this review, we aimed to cover different biochemical pathways, that are revealed in recent years for the pathology of the disease, as druggable targets such as cannabinoid receptors, matrix metalloproteinases, histone deacetylase and various kinases including, glycogen synthase kinase-3, mitogen-activated protein kinase and c-Jun N-terminal kinase, and their ligands for the treatment of Alzheimer’s disease in the hope of providing more realistic insights into the field.

Keywords: Alzheimer’s disease, Cannabinoid receptors, Matrix metalloproteinases, Histone deacetylases, Glycogen synthase kinase-3β, Mitogen-activated protein kinases, c-Jun N-terminal kinases.

Graphical Abstract
[1]
Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet, 2021, 397(10284), 1577-1590.
[http://dx.doi.org/10.1016/S0140-6736(20)32205-4]
[2]
Patterson, C. World Alzheimer Report 2018. In: The state of the art of dementia research: New frontiers; Alzheimer’s Disease International., 2018.
[3]
Cummings, J.; Lee, G.; Nahed, P.; Kambar, M.E.Z.N.; Zhong, K.; Fonseca, J.; Taghva, K. Alzheimer’s disease drug development pipeline: 2022. Alzheimers Dement., 2022, 8(1), e12295.
[http://dx.doi.org/10.1002/trc2.12295]
[4]
Cummings, J.; Lee, G.; Ritter, A.; Sabbagh, M.; Zhong, K. Alzheimer’s disease drug development pipeline: 2020. Alzheimers Dement., 2020, 6(1), e12050.
[http://dx.doi.org/10.1002/trc2.12050]
[5]
Cummings, J.; Lee, G.; Zhong, K.; Fonseca, J.; Taghva, K. Alzheimer’s disease drug development pipeline: 2021. Alzheimers Dement., 2021, 7(1), e12179.
[http://dx.doi.org/10.1002/trc2.12179]
[6]
Cummings, J. New approaches to symptomatic treatments for Alzheimer’s disease. Mol. Neurodegener., 2021, 16(1), 2-13.
[http://dx.doi.org/10.1186/s13024-021-00424-9]
[7]
Oumata, N.; Lu, K.; Teng, Y.; Cavé, C.; Peng, Y.; Galons, H.; Roques, B.P. Molecular mechanisms in Alzheimer’s disease and related potential treatments such as structural target convergence of antibodies and simple organic molecules. Eur. J. Med. Chem., 2022, 240, 114578.
[http://dx.doi.org/10.1016/j.ejmech.2022.114578]
[8]
scarpini, E.; Schelterns, P.; Feldman, H. Treatment of Alzheimer’s disease; Current status and new perspectives. Lancet Neurol., 2003, 2(9), 539-547.
[http://dx.doi.org/10.1016/S1474-4422(03)00502-7]
[9]
Greig, N.H.; Utsuki, T.; Yu, Q.S.; Zhu, X.; Holloway, H.W.; Perry, T.; Lee, B.; Ingram, D.K.; Lahiri, D.K. A new therapeutic target in alzheimer’s disease treatment: Attention to butyrylcholinesterase. Curr. Med. Res. Opin., 2001, 17(3), 159-165.
[http://dx.doi.org/10.1185/03007990152673800]
[10]
Guillozet, A.L.; Mesulam, M.M.; Smiley, J.F.; Mash, D.C. Butyrylcholinesterase in the life cycle of amyloid plaques. Ann. Neurol., 1997, 42(6), 909-918.
[http://dx.doi.org/10.1002/ana.410420613]
[11]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science, 2002, 297(5580), 353-356.
[http://dx.doi.org/10.1126/science.1072994]
[12]
Morphy, R.; Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem., 2005, 48(21), 6523-6543.
[http://dx.doi.org/10.1021/jm058225d]
[13]
Bennett, D.A.; Schneider, J.A.; Wilson, R.S.; Bienias, J.L.; Arnold, S.E. Neurofibrillary tangles mediate the association of amyloid load with clinical alzheimer disease and level of cognitive function. Arch Neurol, 2004, 61, 378-384.
[14]
Lewis, J.; Dickson, D.W.; Lin, W.-L.; Chisholm, L.; Corral, A.; Jones, G.; Yen, S.-H.; Sahara, N.; Skipper, L.; Yager, D.; Eckman, C.; Hardy, J.; Hutton, M.; McGowan, E. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science, 2001, 293(5534), 1487-1491.
[http://dx.doi.org/10.1126/science.1058189]
[15]
Cavalli, A.; Bolognesi, M.L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.; Melchiorre, C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem., 2008, 51(3), 347-372.
[http://dx.doi.org/10.1021/jm7009364]
[16]
Lalut, J.; Rochais, C.; Dallemagne, P. Multiple ligands in neurodegenerative diseases. In: Drug Selectivity: An Evolving Concept in Medicinal Chemistry; Wiley Online Library, 2017; pp. 477-508.
[http://dx.doi.org/10.1002/9783527674381.ch16]
[17]
Rai, S.N.; Singh, C.; Singh, A.; Singh, M.P.; Singh, B.K. Mitochondrial dysfunction: A potential therapeutic target to treat alzheimer’s disease. Mol. Neurobiol., 2020, 57(7), 3075-3088.
[http://dx.doi.org/10.1007/s12035-020-01945-y]
[18]
Kepp, K.P. Bioinorganic chemistry of alzheimer’s disease. Chem Rev, 2012, 112, 5193-5239.
[http://dx.doi.org/10.1021/cr300009x]
[19]
Albertini, C.; Salerno, A.; de Sena Murteira Pinheiro, P.; Bolognesi, M.L. From combinations to multitarget-directed ligands: A continuum in Alzheimer’s disease polypharmacology. Med. Res. Rev., 2021, 41(5), 2606-2633.
[http://dx.doi.org/10.1002/med.21699]
[20]
Lembo, V.; Bottegoni, G. Systematic investigation of dual-target-directed ligands. J. Med. Chem., 2024, 67(12), 10374-10385.
[http://dx.doi.org/10.1021/acs.jmedchem.4c00838]
[21]
Design of Hybrid Molecules for Drug Development; Decker, M., Ed.; Elsevier, 2017.
[22]
Howlett, A.C.; Breivogel, C.S.; Childers, S.R.; Deadwyler, S.A.; Hampson, R.E.; Porrino, L.J. Cannabinoid physiology and pharmacology: 30 years of progress. Neuropharmacology, 2004, 47, 345-358.
[http://dx.doi.org/10.1016/j.neuropharm.2004.07.030]
[23]
Turcotte, C.; Blanchet, M.R.; Laviolette, M.; Flamand, N. The CB2 receptor and its role as a regulator of inflammation. Cell. Mol. Life Sci., 2016, 73(23), 4449-4470.
[http://dx.doi.org/10.1007/s00018-016-2300-4]
[24]
Cabral, G.A.; Griffin-Thomas, L. Emerging role of the cannabinoid receptor CB 2 in immune regulation: Therapeutic prospects for neuroinflammation. Expert Rev. Mol. Med., 2009, 11, e3.
[http://dx.doi.org/10.1017/S1462399409000957]
[25]
McGeer, P.L.; McGeer, E. Conquering alzheimer’s disease by self treatment. J. Alzheimers Dis., 2018, 64, S361-S363.
[http://dx.doi.org/10.3233/JAD-179913]
[26]
Cassano, T.; Calcagnini, S.; Pace, L.; De Marco, F.; Romano, A.; Gaetani, S. Cannabinoid receptor 2 signaling in neurodegenerative disorders: From pathogenesis to a promising therapeutic target. Front. Neurosci., 2017, 11
[http://dx.doi.org/10.3389/fnins.2017.00030]
[27]
Aso, E.; Ferrer, I. CB2 cannabinoid receptor as potential target against alzheimer’s disease. Front. Neurosci., 2016, 10
[http://dx.doi.org/10.3389/fnins.2016.00243]
[28]
Aso, E.; Ferrer, I. Cannabinoids for treatment of Alzheimer’s disease: Moving toward the clinic. Front. Pharmacol., 2014, 5
[http://dx.doi.org/10.3389/fphar.2014.00037]
[29]
Wu, J.; Bie, B.; Yang, H.; Xu, J.J.; Brown, D.L.; Naguib, M. Activation of the CB2 receptor system reverses amyloid-induced memory deficiency. Neurobiol. Aging, 2013, 34(3), 791-804.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.06.011]
[30]
Ferrisi, R.; Ceni, C.; Bertini, S.; Macchia, M.; Manera, C.; Gado, F. Medicinal chemistry approach, pharmacology and neuroprotective benefits of CB2R modulators in neurodegenerative diseases. Pharmacol. Res., 2021, 170, 105607.
[http://dx.doi.org/10.1016/j.phrs.2021.105607]
[31]
Gonzalez-Naranjo, P. Multitarget cannabinoids as novel strategy for Alzheimer disease. Curr. Alzheimer Res., 2013, 10(3), 229-239.
[http://dx.doi.org/10.2174/1567205011310030002]
[32]
González-Naranjo, P.; Pérez-Macias, N.; Campillo, N.E.; Pérez, C.; Arán, V.J.; Girón, R.; Sánchez-Robles, E.; Martín, M.I.; Gómez-Cañas, M.; García-Arencibia, M.; Fernández-Ruiz, J.; Páez, J.A. Cannabinoid agonists showing BuChE inhibition as potential therapeutic agents for Alzheimer’s disease. Eur. J. Med. Chem., 2014, 73, 56-72.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.026]
[33]
González-Naranjo, P.; Pérez-Macias, N.; Pérez, C.; Roca, C.; Vaca, G.; Girón, R.; Sánchez-Robles, E.; Martín-Fontelles, M.I.; de Ceballos, M.L.; Martin-Requero, A.; Campillo, N.E.; Páez, J.A. Indazolylketones as new multitarget cannabinoid drugs. Eur. J. Med. Chem., 2019, 166, 90-107.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.030]
[34]
Nuñez-Borque, E.; González-Naranjo, P.; Bartolomé, F.; Alquézar, C.; Reinares-Sebastián, A.; Pérez, C.; Ceballos, M.L.; Páez, J.A.; Campillo, N.E.; Martín-Requero, Á. Targeting cannabinoid receptor activation and BACE-1 activity counteracts TgAPP mice memory impairment and alzheimer’s disease lymphoblast alterations. Mol. Neurobiol., 2020, 57(4), 1938-1951.
[http://dx.doi.org/10.1007/s12035-019-01813-4]
[35]
Montanari, S.; Mahmoud, A.M.; Pruccoli, L.; Rabbito, A.; Naldi, M.; Petralla, S.; Moraleda, I.; Bartolini, M.; Monti, B.; Iriepa, I.; Belluti, F.; Gobbi, S.; Di Marzo, V.; Bisi, A.; Tarozzi, A.; Ligresti, A.; Rampa, A. Discovery of novel benzofuran-based compounds with neuroprotective and immunomodulatory properties for Alzheimer’s disease treatment. Eur. J. Med. Chem., 2019, 178, 243-258.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.080]
[36]
Pagé, D.; Balaux, E.; Boisvert, L.; Liu, Z.; Milburn, C.; Tremblay, M.; Wei, Z.; Woo, S.; Luo, X.; Cheng, Y.X.; Yang, H.; Srivastava, S.; Zhou, F.; Brown, W.; Tomaszewski, M.; Walpole, C.; Hodzic, L.; St-Onge, S.; Godbout, C.; Salois, D.; Payza, K. Novel benzimidazole derivatives as selective CB2 agonists. Bioorg. Med. Chem. Lett., 2008, 18(13), 3695-3700.
[http://dx.doi.org/10.1016/j.bmcl.2008.05.073]
[37]
Dolles, D.; Hoffmann, M.; Gunesch, S.; Marinelli, O.; Möller, J.; Santoni, G.; Chatonnet, A.; Lohse, M.J.; Wittmann, H.J.; Strasser, A.; Nabissi, M.; Maurice, T.; Decker, M. Structure–activity relationships and computational investigations into the development of potent and balanced dual-acting butyrylcholinesterase inhibitors and human cannabinoid receptor 2 ligands with pro-cognitive in vivo profiles. J. Med. Chem., 2018, 61(4), 1646-1663.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01760]
[38]
Scheiner, M.; Dolles, D.; Gunesch, S.; Hoffmann, M.; Nabissi, M.; Marinelli, O.; Naldi, M.; Bartolini, M.; Petralla, S.; Poeta, E.; Monti, B.; Falkeis, C.; Vieth, M.; Hübner, H.; Gmeiner, P.; Maitra, R.; Maurice, T.; Decker, M. Dual-acting cholinesterase–human cannabinoid receptor 2 ligands show pronounced neuroprotection in vitro and overadditive and disease-modifying neuroprotective effects in vivo. J. Med. Chem., 2019, 62(20), 9078-9102.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00623]
[39]
Spatz, P.; Steinmüller, S.A.M.; Tutov, A.; Poeta, E.; Morilleau, A.; Carles, A.; Deventer, M.H.; Hofmann, J.; Stove, C.P.; Monti, B.; Maurice, T.; Decker, M. Dual-acting small molecules: Subtype-selective cannabinoid receptor 2 agonist/butyrylcholinesterase inhibitor hybrids show neuroprotection in an alzheimer’s disease mouse model. J. Med. Chem., 2023, 66(9), 6414-6435.
[http://dx.doi.org/10.1021/acs.jmedchem.3c00541]
[40]
Janero, D.R.; Makriyannis, A. Cannabinoid receptor antagonists: Pharmacological opportunities, clinical experience, and translational prognosis. Expert Opin. Emerg. Drugs, 2009, 14(1), 43-65.
[http://dx.doi.org/10.1517/14728210902736568]
[41]
Mugnaini, C.; Rabbito, A.; Brizzi, A.; Palombi, N.; Petrosino, S.; Verde, R.; Di Marzo, V.; Ligresti, A.; Corelli, F. Synthesis of novel 2-(1-adamantanylcarboxamido)thiophene derivatives. Selective cannabinoid type 2 (CB2) receptor agonists as potential agents for the treatment of skin inflammatory disease. Eur. J. Med. Chem., 2019, 161, 239-251.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.070]
[42]
Mugnaini, C.; Brizzi, A.; Paolino, M.; Scarselli, E.; Castelli, R.; de Candia, M.; Gambacorta, N.; Nicolotti, O.; Kostrzewa, M.; Kumar, P.; Mahmoud, A.M.; Borgonetti, V.; Iannotta, M.; Morace, A.; Galeotti, N.; Maione, S.; Altomare, C.D.; Ligresti, A.; Corelli, F. Novel dual-acting hybrids targeting type-2 cannabinoid receptors and cholinesterase activity show neuroprotective effects in vitro and amelioration of cognitive impairment in vivo. ACS Chem. Neurosci., 2024, 15(5), 955-971.
[http://dx.doi.org/10.1021/acschemneuro.3c00656]
[43]
Zipfel, P.; Rochais, C.; Baranger, K.; Rivera, S.; Dallemagne, P. Matrix metalloproteinases as new targets in alzheimer’s disease: Opportunities and challenges. J. Med. Chem., 2020, 63(19), 10705-10725.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00352]
[44]
Sternlicht, M.D.; Werb, Z. How matrix metalloproteinases regulate cell behavior Annu Rev Cell Dev Biol, 2001, 17, 463-516.
[45]
Page-McCaw, A.; Ewald, A.J.; Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol., 2007, 8(3), 221-233.
[http://dx.doi.org/10.1038/nrm2125]
[46]
Baranger, K.; Rivera, S.; Liechti, F.D.; Grandgirard, D.; Bigas, J.; Seco, J.; Tarrago, T.; Leib, S.L.; Khrestchatisky, M. Endogenous and synthetic MMP inhibitors in CNS physiopathology. In: Prog Brain Res; , 2014; 214, pp. 313-351.
[http://dx.doi.org/10.1016/B978-0-444-63486-3.00014-1]
[47]
Rivera, S.; García-González, L.; Khrestchatisky, M.; Baranger, K. Metalloproteinases and their tissue inhibitors in Alzheimer’s disease and other neurodegenerative disorders. Cell. Mol. Life Sci., 2019, 76(16), 3167-3191.
[http://dx.doi.org/10.1007/s00018-019-03178-2]
[48]
Rosenberg, G.A. Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol., 2009, 8(2), 205-216.
[http://dx.doi.org/10.1016/S1474-4422(09)70016-X]
[49]
Behl, T.; Kaur, G.; Sehgal, A.; Bhardwaj, S.; Singh, S.; Buhas, C.; Judea-Pusta, C.; Uivarosan, D.; Munteanu, M.A.; Bungau, S. Multifaceted role of matrix metalloproteinases in neurodegenerative diseases: Pathophysiological and therapeutic perspectives. Int. J. Mol. Sci., 2021, 22(3), 1413.
[http://dx.doi.org/10.3390/ijms22031413]
[50]
Panda, S.P.; Soni, U. A review of dementia, focusing on the distinct roles of viral protein corona and MMP9 in dementia: Potential pharmacotherapeutic priorities. Ageing Res. Rev., 2022, 75, 101560.
[http://dx.doi.org/10.1016/j.arr.2022.101560]
[51]
Py, N.A.; Bonnet, A.E.; Bernard, A.; Marchalant, Y.; Charrat, E.; Checler, F.; Khrestchatisky, M.; Baranger, K.Ã.; Rivera, S. Differential spatio-temporal regulation of MMPs in the 5xFAD mouse model of Alzheimer’s disease: Evidence for a pro-amyloidogenic role of MT1-MMP. Front. Aging Neurosci., 2014, 6
[http://dx.doi.org/10.3389/fnagi.2014.00247]
[52]
Backstrom, J.R.; Lim, G.P.; Cullen, M.J. Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-beta peptide (1-40). J Neurosci, 1996, 16(24), 7910-7919.
[53]
Yan, P.; Hu, X.; Song, H.; Yin, K.; Bateman, R.J.; Cirrito, J.R.; Xiao, Q.; Hsu, F.F.; Turk, J.W.; Xu, J.; Hsu, C.Y.; Holtzman, D.M.; Lee, J.M. Matrix metalloproteinase-9 degrades amyloid-β fibrils in vitro and compact plaques in situ. J. Biol. Chem., 2006, 281(34), 24566-24574.
[http://dx.doi.org/10.1074/jbc.M602440200]
[54]
Llano, E.; Pendás, A.M.; Freije, J.M.; Knauper, V. Identification and characterization of human MT5-MMP, a new membrane-bound activator of progelatinase A overexpressed in brain tumors. Cancer Res, 1999, 59(11), 2570-2576.
[55]
Pei, D. Identification and characterization of the fifth membrane- type matrix metalloproteinase MT5-MMP. J Biol Chem, 1999, 274(13), 8925-8932.
[http://dx.doi.org/10.1074/jbc.274.13.8925]
[56]
Li, K.; Tay, F.R.; Yiu, C.K.Y. The past, present and future perspectives of matrix metalloproteinase inhibitors. Pharmacol. Ther., 2020, 207, 107465.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107465]
[57]
Kumar, D.; Gupta, S.K.; Ganeshpurkar, A.; Gutti, G.; Krishnamurthy, S.; Modi, G.; Singh, S.K. Development of Piperazinediones as dual inhibitor for treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2018, 150, 87-101.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.078]
[58]
Swetha, R.; Kumar, D.; Gupta, S.K.; Ganeshpurkar, A.; Singh, R.; Gutti, G.; Kumar, D.; Jana, S.; Krishnamurthy, S.; Singh, S.K. Multifunctional hybrid sulfonamides as novel therapeutic agents for Alzheimer’s disease. Future Med. Chem., 2019, 11(24), 3161-3178.
[http://dx.doi.org/10.4155/fmc-2019-0106]
[59]
Kumar, D Development of Adamantyl Analogous as NMDA Receptor Antagonist for Treatment of AD, 2019.
[60]
Bertran, A.; Khomiak, D.; Konopka, A.; Rejmak, E.; Bulska, E.; Seco, J.; Kaczmarek, L.; Tarragó, T.; Prades, R. Design and synthesis of selective and blood-brain barrier-permeable hydroxamate-based gelatinase inhibitors. Bioorg. Chem., 2020, 94, 103365.
[http://dx.doi.org/10.1016/j.bioorg.2019.103365]
[61]
Ciccone, L.; Vandooren, J.; Nencetti, S.; Orlandini, E. Natural marine and terrestrial compounds as modulators of matrix metalloproteinases-2 (MMP-2) and MMP-9 in alzheimer’s disease. Pharmaceuticals, 2021, 14(2), 86.
[http://dx.doi.org/10.3390/ph14020086]
[62]
Ishola, A.A.; Adewole, K.E. In silico screening of anticholinesterase alkaloids for cyclooxygenase-2 (COX-2) and matrix metalloproteinase 8 (MMP-8) inhibitory potentials as multi-target inhibitors of Alzheimer’s disease. Med. Chem. Res., 2019, 28(10), 1704-1717.
[http://dx.doi.org/10.1007/s00044-019-02407-4]
[63]
Han, B.; Wang, M.; Li, J.; Chen, Q.; Sun, N.; Yang, X.; Zhang, Q. Perspectives and new aspects of histone deacetylase inhibitors in the therapy of CNS diseases. Eur. J. Med. Chem., 2023, 258, 115613.
[http://dx.doi.org/10.1016/j.ejmech.2023.115613]
[64]
Stünkel, W.; Campbell, R.M. Sirtuin 1 (SIRT1): The misunderstood HDAC. SLAS Discov., 2011, 16(10), 1153-1169.
[http://dx.doi.org/10.1177/1087057111422103]
[65]
LoPresti, P. Hdac6 in diseases of cognition and of neurons. Cells, 2020, 10(1), 12.
[http://dx.doi.org/10.3390/cells10010012]
[66]
Li, T.; Zhang, C.; Hassan, S.; Liu, X.; Song, F.; Chen, K.; Zhang, W.; Yang, J. Histone deacetylase 6 in cancer. J. Hematol. Oncol., 2018, 11(1), 111.
[http://dx.doi.org/10.1186/s13045-018-0654-9]
[67]
Latcheva, N.K.; Viveiros, J.M.; Waddell, E.A.; Nguyen, P.T.T.; Liebl, F.L.W.; Marenda, D.R. Epigenetic crosstalk: Pharmacological inhibition of HDACs can rescue defective synaptic morphology and neurotransmission phenotypes associated with loss of the chromatin reader Kismet. Mol. Cell. Neurosci., 2018, 87, 77-85.
[http://dx.doi.org/10.1016/j.mcn.2017.11.007]
[68]
Xu, K.; Dai, X.L.; Huang, H.C.; Jiang, Z.F. Targeting HDACs: A promising therapy for Alzheimer’s disease. Oxid. Med. Cell. Longev., 2011, 2011, 1-5.
[http://dx.doi.org/10.1155/2011/143269]
[69]
Zhang, L.; Sheng, S.; Qin, C. The role of HDAC6 in alzheimer’s disease. J. Alzheimers Dis., 2013, 33, 283-295.
[http://dx.doi.org/10.3233/JAD-2012-120727]
[70]
Jiao, F.; Gong, Z. The beneficial roles of sirt1 in neuroinflammation-related diseases. Oxid Med Cell Longev, 2020, 2020
[http://dx.doi.org/10.1155/2020/6782872]
[71]
Manal, M.; Chandrasekar, M.J.N.; Gomathi Priya, J.; Nanjan, M.J. Inhibitors of histone deacetylase as antitumor agents: A critical review. Bioorg. Chem., 2016, 67, 18-42.
[http://dx.doi.org/10.1016/j.bioorg.2016.05.005]
[72]
Guo, Z.; Zhang, Z.; Zhang, Y.; Wang, G.; Huang, Z.; Zhang, Q.; Li, J. Design, synthesis and biological evaluation of brain penetrant benzazepine-based histone deacetylase 6 inhibitors for alleviating stroke-induced brain infarction. Eur. J. Med. Chem., 2021, 218, 113383.
[http://dx.doi.org/10.1016/j.ejmech.2021.113383]
[73]
Yu, C.W.; Chang, P.T.; Hsin, L.W.; Chern, J.W. Quinazolin-4-one derivatives as selective histone deacetylase-6 inhibitors for the treatment of Alzheimer’s disease. J. Med. Chem., 2013, 56(17), 6775-6791.
[http://dx.doi.org/10.1021/jm400564j]
[74]
Tseng, H.J.; Lin, M.H.; Shiao, Y.J.; Yang, Y.C.; Chu, J.C.; Chen, C.Y.; Chen, Y.Y.; Lin, T.E.; Su, C.J.; Pan, S.L.; Chen, L.C.; Wang, C.Y.; Hsu, K.C.; Huang, W.J. Synthesis and biological evaluation of acridine-based histone deacetylase inhibitors as multitarget agents against Alzheimer’s disease. Eur. J. Med. Chem., 2020, 192, 112193.
[http://dx.doi.org/10.1016/j.ejmech.2020.112193]
[75]
Hsu, K.C.; Chu, J.C.; Tseng, H.J.; Liu, C.I.; Wang, H.C.; Lin, T.E.; Lee, H.S.; Hsin, L.W.; Wang, A.H.J.; Lin, C.H.; Huang, W.J. Synthesis and biological evaluation of phenothiazine derivative-containing hydroxamic acids as potent class II histone deacetylase inhibitors. Eur. J. Med. Chem., 2021, 219, 113419.
[http://dx.doi.org/10.1016/j.ejmech.2021.113419]
[76]
Chen, X.; Chen, X.; Steimbach, R.R.; Wu, T.; Li, H.; Dan, W.; Shi, P.; Cao, C.; Li, D.; Miller, A.K.; Qiu, Z.; Gao, J.; Zhu, Y. Novel 2, 5-diketopiperazine derivatives as potent selective histone deacetylase 6 inhibitors: Rational design, synthesis and antiproliferative activity. Eur. J. Med. Chem., 2020, 187, 111950.
[http://dx.doi.org/10.1016/j.ejmech.2019.111950]
[77]
Liang, T.; Xie, Z.; Dang, B.; Wang, J.; Zhang, T.; Luan, X.; Lu, T.; Cao, C.; Chen, X. Discovery of indole-piperazine derivatives as selective histone deacetylase 6 inhibitors with neurite outgrowth-promoting activities and neuroprotective activities. Bioorg. Med. Chem. Lett., 2023, 81, 129148.
[http://dx.doi.org/10.1016/j.bmcl.2023.129148]
[78]
He, F.; Ran, Y.; Li, X.; Wang, D.; Zhang, Q.; Lv, J.; Yu, C.; Qu, Y.; Zhang, X.; Xu, A.; Wei, C.; Chou, C.J.; Wu, J. Design, synthesis and biological evaluation of dual-function inhibitors targeting NMDAR and HDAC for Alzheimer’s disease. Bioorg. Chem., 2020, 103, 104109.
[http://dx.doi.org/10.1016/j.bioorg.2020.104109]
[79]
Yao, C.; Jiang, X.; Zhao, R.; Zhong, Z.; Ge, J.; Zhu, J.; Ye, X.Y.; Xie, Y.; Liu, Z.; Xie, T.; Bai, R. HDAC1/MAO-B dual inhibitors against Alzheimer’s disease: Design, synthesis and biological evaluation of N-propargylamine-hydroxamic acid/o-aminobenzamide hybrids. Bioorg. Chem., 2022, 122, 105724.
[http://dx.doi.org/10.1016/j.bioorg.2022.105724]
[80]
Hanger, D.P.; Anderton, B.H.; Noble, W. Tau phosphorylation: The therapeutic challenge for neurodegenerative disease. Trends Mol. Med., 2009, 15(3), 112-119.
[http://dx.doi.org/10.1016/j.molmed.2009.01.003]
[81]
Shi, X.L.; Yan, N.; Cui, Y.J.; Liu, Z.P. A unique gsk-3β inhibitor b10 has a direct effect on aβ, targets tau and metal dyshomeostasis, and promotes neuronal neurite outgrowth. Cells, 2020, 9(3), 649.
[http://dx.doi.org/10.3390/cells9030649]
[82]
Alvarez, A.; Toro, R.; Cáceres, A.; Maccioni, R.B. Inhibition of tau phosphorylating protein kinase cdk5 prevents β-amyloid-induced neuronal death. FEBS Lett., 1999, 459(3), 421-426.
[http://dx.doi.org/10.1016/S0014-5793(99)01279-X]
[83]
Thakur, S.; Dhapola, R.; Sarma, P.; Medhi, B.; Reddy, D.H. Neuroinflammation in alzheimer’s disease: Current progress in molecular signaling and therapeutics. Inflammation, 2023, 46(1), 1-17.
[http://dx.doi.org/10.1007/s10753-022-01721-1]
[84]
Lee, J.K.; Kim, N.J. Recent advances in the inhibition of p38 MAPK as a potential strategy for the treatment of Alzheimer’s disease. Molecules, 2017, 22(8), 1287.
[http://dx.doi.org/10.3390/molecules22081287]
[85]
Zhao, Y.; Kuca, K.; Wu, W.; Wang, X.; Nepovimova, E.; Musilek, K.; Wu, Q. Hypothesis: JNK signaling is a therapeutic target of neurodegenerative diseases. Alzheimers Dement., 2022, 18(1), 152-158.
[http://dx.doi.org/10.1002/alz.12370]
[86]
Wang, C.; Cui, Y.; Xu, T.; Zhou, Y.; Yang, R.; Wang, T. New insights into glycogen synthase kinase-3: A common target for neurodegenerative diseases. Biochem. Pharmacol., 2023, 218, 115923.
[http://dx.doi.org/10.1016/j.bcp.2023.115923]
[87]
Wang, Y.; Tian, Q.; Liu, E.J.; Zhao, L.; Song, J.; Liu, X.A.; Ren, Q.G.; Jiang, X.; Zeng, J.; Yang, Y.T.; Wang, J.Z. Activation of GSK-3 disrupts cholinergic homoeostasis in nucleus basalis of Meynert and frontal cortex of rats. J. Cell. Mol. Med., 2017, 21(12), 3515-3528.
[http://dx.doi.org/10.1111/jcmm.13262]
[88]
Bradley, C.A.; Peineau, S.; Taghibiglou, C.; Nicolas, C.S.; Whitcomb, D.J.; Bortolotto, Z.A.; Kaang, B.K.; Cho, K.; Wang, Y.T.; Collingridge, G.L. A pivotal role of GSK-3 in synaptic plasticity. Front. Mol. Neurosci., 2012, 5
[http://dx.doi.org/10.3389/fnmol.2012.00013]
[89]
Lovestone, S.; Boada, M.; Dubois, B.; Hüll, M.; Rinne, J.O.; Huppertz, H.J.; Calero, M.; Andrés, M.V.; Gómez-Carrillo, B.; León, T.; del Ser, T. A phase II trial of tideglusib in alzheimer’s disease. J. Alzheimers Dis., 2015, 45(1), 75-88.
[http://dx.doi.org/10.3233/JAD-141959]
[90]
Shri, S.R.; Manandhar, S.; Nayak, Y.; Pai, K.S.R. Role of GSK-3β inhibitors: New promises and opportunities for alzheimer’s disease. Adv. Pharm. Bull., 2023, 13(4), 688-700.
[http://dx.doi.org/10.34172/apb.2023.071]
[91]
Arfeen, M.; Bhagat, S.; Patel, R.; Prasad, S.; Roy, I.; Chakraborti, A.K.; Bharatam, P.V. Design, synthesis and biological evaluation of 5-benzylidene-2-iminothiazolidin-4-ones as selective GSK-3β inhibitors. Eur. J. Med. Chem., 2016, 121, 727-736.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.075]
[92]
Khanfar, M.A.; Hill, R.A.; Kaddoumi, A.; El Sayed, K.A. Discovery of novel GSK-3β inhibitors with potent in vitro and in Vivo activities and excellent brain permeability using combined ligand- and structure-based virtual screening. J. Med. Chem., 2010, 53(24), 8534-8545.
[http://dx.doi.org/10.1021/jm100941j]
[93]
Pandey, M.K.; DeGrado, T.R. Glycogen synthase kinase-3 (GSK-3)-targeted therapy and imaging. Theranostics, 2016, 6(4), 571-593.
[http://dx.doi.org/10.7150/thno.14334]
[94]
Gupta, V.; Mahata, T.; Roy, R.; Gharai, P.K.; Jana, A.; Garg, S.; Ghosh, S. Discovery of imidazole-based GSK-3β inhibitors for transdifferentiation of human mesenchymal stem cells to neurons: A potential single-molecule neurotherapeutic foresight. Front. Mol. Neurosci., 2022, 15, 1002419.
[http://dx.doi.org/10.3389/fnmol.2022.1002419]
[95]
Al-blewi, F.; Shaikh, S.A.; Naqvi, A.; Aljohani, F.; Aouad, M.R.; Ihmaid, S.; Rezki, N. Design and synthesis of novel imidazole derivatives possessing triazole pharmacophore with potent anticancer activity, and in silico ADMET with GSK-3β molecular docking investigations. Int. J. Mol. Sci., 2021, 22(3), 1162.
[http://dx.doi.org/10.3390/ijms22031162]
[96]
Dong, Y.; Lu, J.; Zhang, S.; Chen, L.; Wen, J.; Wang, F.; Mao, Y.; Li, L.; Zhang, J.; Liao, S.; Dong, L. Design, synthesis and bioevaluation of 1,2,4-thiadiazolidine-3,5-dione derivatives as potential GSK-3β inhibitors for the treatment of Alzheimer’s disease. Bioorg. Chem., 2023, 134, 106446.
[http://dx.doi.org/10.1016/j.bioorg.2023.106446]
[97]
Liu, J.G.; Zhao, D.; Gong, Q.; Bao, F.; Chen, W.W.; Zhang, H.; Xu, M.H. Development of bisindole-substituted aminopyrazoles as novel gsk-3β inhibitors with suppressive effects against microglial inflammation and oxidative neurotoxicity. ACS Chem. Neurosci., 2020, 11(20), 3398-3408.
[http://dx.doi.org/10.1021/acschemneuro.0c00520]
[98]
Jiang, X.Y.; Chen, T.K.; Zhou, J.T.; He, S.Y.; Yang, H.Y.; Chen, Y.; Qu, W.; Feng, F.; Sun, H.P. Dual GSK-3β/AChE inhibitors as a new strategy for multitargeting anti-alzheimer’s disease drug discovery. ACS Med. Chem. Lett., 2018, 9(3), 171-176.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00463]
[99]
Jiang, X.; Zhou, J.; Wang, Y.; Chen, L.; Duan, Y.; Huang, J.; Liu, C.; Chen, Y.; Liu, W.; Sun, H.; Feng, F.; Qu, W. Rational design and biological evaluation of a new class of thiazolopyridyl tetrahydroacridines as cholinesterase and GSK-3 dual inhibitors for Alzheimer’s disease. Eur. J. Med. Chem., 2020, 207, 112751.
[http://dx.doi.org/10.1016/j.ejmech.2020.112751]
[100]
Jiang, X.; Wang, Y.; Liu, C.; Xing, C.; Wang, Y.; Lyu, W.; Wang, S.; Li, Q.; Chen, T.; Chen, Y.; Feng, F.; Liu, W.; Sun, H. Discovery of potent glycogen synthase kinase 3/cholinesterase inhibitors with neuroprotection as potential therapeutic agent for Alzheimer’s disease. Bioorg. Med. Chem., 2021, 30, 115940.
[http://dx.doi.org/10.1016/j.bmc.2020.115940]
[101]
Yao, H.; Uras, G.; Zhang, P.; Xu, S.; Yin, Y.; Liu, J.; Qin, S.; Li, X.; Allen, S.; Bai, R.; Gong, Q.; Zhang, H.; Zhu, Z.; Xu, J. Discovery of novel tacrine–pyrimidone hybrids as potent dual AChE/GSK-3 inhibitors for the treatment of alzheimer’s disease. J. Med. Chem., 2021, 64(11), 7483-7506.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00160]
[102]
Gandini, A.; Bartolini, M.; Tedesco, D.; Martinez-Gonzalez, L.; Roca, C.; Campillo, N.E.; Zaldivar-Diez, J.; Perez, C.; Zuccheri, G.; Miti, A.; Feoli, A.; Castellano, S.; Petralla, S.; Monti, B.; Rossi, M.; Moda, F.; Legname, G.; Martinez, A.; Bolognesi, M.L. Tau-centric multitarget approach for alzheimer’s disease: Development of first-in-class dual glycogen synthase kinase 3β and tau-aggregation inhibitors. J. Med. Chem., 2018, 61(17), 7640-7656.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00610]
[103]
Sivaprakasam, P.; Han, X.; Civiello, R.L.; Jacutin-Porte, S.; Kish, K.; Pokross, M.; Lewis, H.A.; Ahmed, N.; Szapiel, N.; Newitt, J.A.; Baldwin, E.T.; Xiao, H.; Krause, C.M.; Park, H.; Nophsker, M.; Lippy, J.S.; Burton, C.R.; Langley, D.R.; Macor, J.E.; Dubowchik, G.M. Discovery of new acylaminopyridines as GSK-3 inhibitors by a structure guided in-depth exploration of chemical space around a pyrrolopyridinone core. Bioorg. Med. Chem. Lett., 2015, 25(9), 1856-1863.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.046]
[104]
Hartz, R.A.; Ahuja, V.T.; Sivaprakasam, P.; Xiao, H.; Krause, C.M.; Clarke, W.J.; Kish, K.; Lewis, H.; Szapiel, N.; Ravirala, R.; Mutalik, S.; Nakmode, D.; Shah, D.; Burton, C.R.; Macor, J.E.; Dubowchik, G.M. Design, structure–activity relationships, and in vivo evaluation of potent and brain-penetrant imidazo[1,2- b ]pyridazines as glycogen synthase kinase-3β (GSK-3β) inhibitors. J. Med. Chem., 2023, 66(6), 4231-4252.
[http://dx.doi.org/10.1021/acs.jmedchem.3c00133]
[105]
Corrêa, S.A.L.; Eales, K.L. The role of p38 MAPK and its substrates in neuronal plasticity and neurodegenerative disease. J. Signal Transduct., 2012, 2012, 1-12.
[http://dx.doi.org/10.1155/2012/649079]
[106]
Zhang, Y.Y.; Mei, Z.Q.; Wu, J.W.; Wang, Z.X. Enzymatic activity and substrate specificity of mitogen-activated protein kinase p38α in different phosphorylation states. J. Biol. Chem., 2008, 283(39), 26591-26601.
[http://dx.doi.org/10.1074/jbc.M801703200]
[107]
Munoz, L.; Ammit, A.J. Targeting p38 MAPK pathway for the treatment of Alzheimer’s disease. Neuropharmacology, 2010, 58(3), 561-568.
[http://dx.doi.org/10.1016/j.neuropharm.2009.11.010]
[108]
Maphis, N.; Jiang, S.; Xu, G.; Kokiko-Cochran, O.N.; Roy, S.M.; Van Eldik, L.J.; Watterson, D.M.; Lamb, B.T.; Bhaskar, K. Selective suppression of the α isoform of p38 MAPK rescues late-stage tau pathology. Alzheimers Res. Ther., 2016, 8(1), 54.
[http://dx.doi.org/10.1186/s13195-016-0221-y]
[109]
Chen, B.; Teng, Y.; Zhang, X.; Lv, X.; Yin, Y. Metformin alleviated A β -induced apoptosis via the suppression of JNK MAPK signaling pathway in cultured hippocampal neurons. BioMed Res. Int., 2016, 2016, 1-8.
[http://dx.doi.org/10.1155/2016/1421430]
[110]
Munoz, L.; Ranaivo, H.R.; Roy, S.M.; Hu, W.; Craft, J.M.; McNamara, L.K.; Chico, L.W.; Van Eldik, L.J.; Watterson, D.M. A novel p38α MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer’s disease mouse model. J. Neuroinflammation, 2007, 4(1), 21.
[http://dx.doi.org/10.1186/1742-2094-4-21]
[111]
Ranaivo, H.R.; Craft, J.M.; Hu, W.; Guo, L.; Wing, L.K.; Van Eldik, L.J.; Watterson, D.M. Glia as a therapeutic target: Selective suppression of human amyloid-β-induced upregulation of brain proinflammatory cytokine production attenuates neurodegeneration. J. Neurosci., 2006, 26(2), 662-670.
[http://dx.doi.org/10.1523/JNEUROSCI.4652-05.2006]
[112]
Roy, S.M.; Grum-Tokars, V.L.; Schavocky, J.P.; Saeed, F.; Staniszewski, A.; Teich, A.F.; Arancio, O.; Bachstetter, A.D.; Webster, S.J.; Van Eldik, L.J.; Minasov, G.; Anderson, W.F.; Pelletier, J.C.; Watterson, D.M. Targeting human central nervous system protein kinases: An isoform selective p38αmapk inhibitor that attenuates disease progression in alzheimer’s disease mouse models. ACS Chem. Neurosci., 2015, 6(4), 666-680.
[http://dx.doi.org/10.1021/acschemneuro.5b00002]
[113]
Heo, J.; Shin, H.; Lee, J.; Kim, T.; Inn, K.S.; Kim, N.J. Synthesis and biological evaluation of N-cyclopropylbenzamide-benzophenone hybrids as novel and selective p38 mitogen activated protein kinase (MAPK) inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(17), 3694-3698.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.036]
[114]
Gee, M.S.; Son, S.H.; Jeon, S.H.; Do, J.; Kim, N.; Ju, Y.J.; Lee, S.J.; Chung, E.K.; Inn, K.S.; Kim, N.J.; Lee, J.K. A selective p38α/β MAPK inhibitor alleviates neuropathology and cognitive impairment, and modulates microglia function in 5XFAD mouse. Alzheimers Res. Ther., 2020, 12(1), 45.
[http://dx.doi.org/10.1186/s13195-020-00617-2]
[115]
Spencer, J.P.E. The interactions of flavonoids within neuronal signalling pathways. Genes Nutr., 2007, 2(3), 257-273.
[http://dx.doi.org/10.1007/s12263-007-0056-z]
[116]
Calderaro, A.; Patanè, G.T.; Tellone, E.; Barreca, D.; Ficarra, S.; Misiti, F.; Laganà, G. The neuroprotective potentiality of flavonoids on alzheimer’s disease. Int. J. Mol. Sci., 2022, 23(23), 14835.
[http://dx.doi.org/10.3390/ijms232314835]
[117]
Liu, P.; Zhou, Y.; Shi, J.; Wang, F.; Yang, X.; Zheng, X.; Wang, Y.; He, Y.; Xie, X.; Pang, X. Myricetin improves pathological changes in 3×Tg-AD mice by regulating the mitochondria-NLRP3 inflammasome-microglia channel by targeting P38 MAPK signaling pathway. Phytomedicine, 2023, 115, 154801.
[http://dx.doi.org/10.1016/j.phymed.2023.154801]
[118]
Antoniou, X.; Falconi, M.; Di Marino, D.; Borsello, T. JNK3 as a therapeutic target for neurodegenerative diseases. J. Alzheimers Dis., 2011, 24, 633-642.
[http://dx.doi.org/10.3233/JAD-2011-091567]
[119]
Waetzig, V.; Herdegen, T. Context-specific inhibition of JNKs: Overcoming the dilemma of protection and damage. Trends Pharmacol. Sci., 2005, 26, 455-461.
[http://dx.doi.org/10.1016/j.tips.2005.07.006]
[120]
Wei, H.; Zhang, H.; Xie, J.; Meng, D.; Wang, X.; Ke, D.; Zeng, J.; Liu, R. Protein phosphatase 2A as a drug target in the treatment of cancer and alzheimer’s disease. Curr. Med. Sci., 2020, 40(1), 1-8.
[http://dx.doi.org/10.1007/s11596-020-2140-1]
[121]
Ardanaz, C.G.; Ezkurdia, A.; Bejarano, A.; Echarte, B.; Smerdou, C.; Martisova, E.; Martínez-Valbuena, I.; Luquin, M.R.; Ramírez, M.J.; Solas, M. JNK3 overexpression in the entorhinal cortex impacts on the hippocampus and induces cognitive deficiencies and tau misfolding. ACS Chem. Neurosci., 2023, 14(11), 2074-2088.
[http://dx.doi.org/10.1021/acschemneuro.3c00092]
[122]
Dou, X.; Huang, H.; Li, Y.; Jiang, L.; Wang, Y.; Jin, H.; Jiao, N.; Zhang, L.; Zhang, L.; Liu, Z. Multistage screening reveals 3-substituted indolin-2-one derivatives as novel and isoform-selective c-Jun N-terminal kinase 3 (JNK3) inhibitors: Implications to drug discovery for potential treatment of neurodegenerative diseases. J. Med. Chem., 2019, 62(14), 6645-6664.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00537]
[123]
Li, Z.; Zhu, G.; Liu, X.; Gao, T.; Fang, F.; Dou, X.; Li, Y.; Zheng, R.; Jin, H.; Zhang, L.; Liu, Z.; Zhang, L. The structure-based optimization of 3-substituted indolin-2-one derivatives as potent and isoform-selective c-Jun N-terminal kinase 3 (JNK3) inhibitors and biological evaluation. Eur. J. Med. Chem., 2023, 250, 115167.
[http://dx.doi.org/10.1016/j.ejmech.2023.115167]
[124]
Dou, X.; Huang, H.; Jiang, L.; Zhu, G.; Jin, H.; Jiao, N.; Zhang, L.; Liu, Z.; Zhang, L. Rational modification, synthesis and biological evaluation of 3,4-dihydroquinoxalin-2(1H)-one derivatives as potent and selective c-Jun N-terminal kinase 3 (JNK3) inhibitors. Eur. J. Med. Chem., 2020, 201, 112445.
[http://dx.doi.org/10.1016/j.ejmech.2020.112445]
[125]
Kim, M.; Lee, J.; Jung, K.; Kim, M.; Park, Y.J.; Ahn, H.; Kwon, Y.H.; Hah, J.M. Syntheses and biological evaluation of 1-heteroaryl-2-aryl-1 H -benzimidazole derivatives as c-Jun N-terminal kinase inhibitors with neuroprotective effects. Bioorg. Med. Chem., 2013, 21(8), 2271-2285.
[http://dx.doi.org/10.1016/j.bmc.2013.02.021]
[126]
Jun, J.; Baek, J.; Yang, S.; Moon, H.; Kim, H.; Cho, H.; Hah, J.M. Discovery of a potent and selective JNK3 inhibitor with neuroprotective effect against amyloid β-induced neurotoxicity in primary rat neurons. Int. J. Mol. Sci., 2021, 22(20), 11084.
[http://dx.doi.org/10.3390/ijms222011084]
[127]
Zheng, K.; Iqbal, S.; Hernandez, P.; Park, H.; LoGrasso, P.V.; Feng, Y. Design and synthesis of highly potent and isoform selective JNK3 inhibitors: SAR studies on aminopyrazole derivatives. J. Med. Chem., 2014, 57(23), 10013-10030.
[http://dx.doi.org/10.1021/jm501256y]
[128]
Feng, Y.; Park, H.; Ryu, J.C.; Yoon, S.O.K. N -aromatic-substituted indazole derivatives as brain-penetrant and orally bioavailable JNK3 inhibitors. ACS Med. Chem. Lett., 2021, 12(10), 1546-1552.
[http://dx.doi.org/10.1021/acsmedchemlett.1c00334]
[129]
Jun, J.; Moon, H.; Yang, S.; Lee, J.; Baek, J.; Kim, H.; Cho, H.; Hwang, K.; Ahn, S.; Kim, Y.; Kim, G.; Kim, H.; Kwon, H.; Hah, J.M. Carbamate JNK3 inhibitors show promise as effective treatments for alzheimer’s disease: In vivo studies on mouse models. J. Med. Chem., 2023, 66(9), 6372-6390.
[http://dx.doi.org/10.1021/acs.jmedchem.3c00393]
[130]
Jun, J.; Yang, S.; Lee, J.; Moon, H.; Kim, J.; Jung, H.; Im, D.; Oh, Y.; Jang, M.; Cho, H.; Baek, J.; Kim, H.; Kang, D.; Bae, H.; Tak, C.; Hwang, K.; Kwon, H.; Kim, H.; Hah, J.M. Discovery of novel imidazole chemotypes as isoform-selective JNK3 inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2023, 245, 114894.
[http://dx.doi.org/10.1016/j.ejmech.2022.114894]
[131]
Jun, J.; Baek, J.; Kang, D.; Moon, H.; Kim, H.; Cho, H.; Hah, J.M. Novel 1,4,5,6-tetrahydrocyclopenta[d]imidazole-5-carboxamide-based JNK3 inhibitors: Design, synthesis, molecular docking, and therapeutic potential in neurodegenerative diseases. Eur. J. Med. Chem., 2023, 245, 114917.
[http://dx.doi.org/10.1016/j.ejmech.2022.114917]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy