Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Research Article

Isolation and Identification of Iron, Chromium, and Manganese Tolerant Filamentous Fungi from Mining Soil

Author(s): Patrícia de A. Nóbrega, Beatriz L. Ferreira, Lucas S. Sá, Francinaldo S. Braga, Roberto M. Bezerra and Irlon M. Ferreira*

Volume 13, Issue 3, 2024

Published on: 16 August, 2024

Page: [174 - 184] Pages: 11

DOI: 10.2174/0122115501320119240730060458

Open Access Journals Promotions 2
Abstract

Background: In this study, filamentous fungi from iron mining soils in the Amazon were isolated and identified as Talaromyces verruculosus, Trichoderma pseudoasperelloides, Penicillium rolfsii, Aspergillus cf. pseudoviridinutans, Aspergillus niger, Purpureocillium lilacinum, and Penicillium cf. guaibinense.

Objective: The objective of this study was to evaluate the isolated strains for radial growth rate (VCR) on solid media and liquid in the presence of metals.

Methods: All these strains showed adaptive behavior in the presence of metals (Fe2+, Mn2+, and Cr3+), but not significantly compared to controls.

Results: The T. verruculosus strain was selected to evaluate its growth capacity in solid and liquid media, enriched with 1, 10, and 20 mg/L of iron, chromium, and manganese, respectively.

Conclusion: T. verruculosus strain showed tolerance to the concentrations of the metals studied. Therefore, we can suggest that this characteristic of metal tolerance (Fe2+, Mn2+, and Cr3+) exhibited by fungi isolated from Amazonian environments may indicate the potential for bioremediating areas polluted by heavy metals.

Keywords: Amazon fungi, heavy metal pollution, metal contamination, extreme environments, Talaromyces verruculosus, microorganisms of soil.

Graphical Abstract
[1]
Rahman Z, Singh VP. Bioremediation of toxic heavy metals (THMs) contaminated sites: Concepts, applications and challenges. Environ Sci Pollut Res Int 2020; 27(22): 27563-81.
[http://dx.doi.org/10.1007/s11356-020-08903-0] [PMID: 32418096]
[2]
Pratush A, Kumar A, Hu Z. Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: A review. Int Microbiol 2018; 21(3): 97-106.
[http://dx.doi.org/10.1007/s10123-018-0012-3] [PMID: 30810952]
[3]
Tang W, Shan B, Zhang H, et al. Heavy metal contamination in the surface sediments of representative limnetic ecosystems in eastern China. Sci Rep 2014; 4(1): 7152.
[http://dx.doi.org/10.1038/srep07152] [PMID: 25412580]
[4]
Wang J, Feng X, Anderson CWN, Xing Y, Shang L. Remediation of mercury contaminated sites – A review. J Hazard Mater 2012; 221-222: 1-18.
[http://dx.doi.org/10.1016/j.jhazmat.2012.04.035] [PMID: 22579459]
[5]
Hassan A, Pariatamby A, Ossai IC, et al. Bioaugmentation-assisted bioremediation and kinetics modelling of heavy metal-polluted landfill soil. Int J Environ Sci Technol 2022; 19(7): 6729-54.
[http://dx.doi.org/10.1007/s13762-021-03626-2]
[6]
Tufail MA, Iltaf J, Zaheer T, et al. Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review. Sci Total Environ 2022; 850(May): 157961.
[http://dx.doi.org/10.1016/j.scitotenv.2022.157961] [PMID: 35963399]
[7]
Rao JVB, Vengamma B, Naveen T, Naveen V. Lead encephalopathy in adults. J Neurosci Rural Pract 2014; 5(2): 161-3.
[http://dx.doi.org/10.4103/0976-3147.131665] [PMID: 24966557]
[8]
Manna K, Debnath B, Singh WS. Sources and toxicological effects of lead on human health. Indian J Med Spec 2019; 10(2): 66.
[http://dx.doi.org/10.4103/INJMS.INJMS_30_18]
[9]
Rosales E, Pazos M, Ángeles Sanromán M. Feasibility of solid-state fermentation using spent fungi-substrate in the biodegradation of PAHs. Clean 2013; 41(6): 610-5.
[http://dx.doi.org/10.1002/clen.201100305]
[10]
Liu SH, Zeng GM, Niu QY, et al. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresour Technol 2017; 224: 25-33.
[http://dx.doi.org/10.1016/j.biortech.2016.11.095] [PMID: 27916498]
[11]
Singh RK, Tripathi R, Ranjan A, Srivastava AK. Fungi as Potential Candidates for Bioremediation. Elsevier Inc. 2019.
[http://dx.doi.org/10.1016/B978-0-12-818095-2.00009-6]
[12]
Liaquat F, Munis MFH, Haroon U, et al. Evaluation of metal tolerance of fungal strains isolated from contaminated mining soil of Nanjing, China. Biology 2020; 9(12): 469.
[http://dx.doi.org/10.3390/biology9120469] [PMID: 33333787]
[13]
Raja M, Praveena G, William SJ. Isolation and identification of fungi from soil in loyola college campus, Chennai, India. Int J Curr Microbiol Appl Sci 2017; 6(2): 1789-95.
[http://dx.doi.org/10.20546/ijcmas.2017.602.200]
[14]
Pelozato M, Hugen C, Campos ML, et al. Comparison between Cadmium, Copper and Zinc extraction methods from santa catarina soils derived from basalt and granite-migmatite. Rev Agroveter Sci 2011; 10(1)
[15]
Kazi TG, Jamali MK, Arain MB, et al. Evaluation of an ultrasonic acid digestion procedure for total heavy metals determination in environmental and biological samples. J Hazard Mater 2009; 161(2-3): 1391-8.
[http://dx.doi.org/10.1016/j.jhazmat.2008.04.103] [PMID: 18539386]
[16]
Sena IS, Ferreira AM, Marinho VH, et al. Euterpe oleracea mart (Açaizeiro) from the Brazilian amazon: A novel font of fungi for lipase production. Microorganisms 2022; 10(12): 2394.
[http://dx.doi.org/10.3390/microorganisms10122394] [PMID: 36557647]
[17]
Aamir S. A rapid and efficient method of fungal genomic DNA extraction, suitable for PCR based molecular methods. Plant Pathol Quar J Fungal Biol 2015; 5(2): 74-81.
[http://dx.doi.org/10.5943/ppq/5/2/6]
[18]
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X Windows Interface: Flexible Strategies for Multiple Sequence Alignment Aided by Quality Analysis Tools. Oxford University Press 1997; 25.
[19]
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30(12): 2725-9.
[http://dx.doi.org/10.1093/molbev/mst197] [PMID: 24132122]
[20]
Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111-20.
[21]
Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4(4): 406-25.
[http://dx.doi.org/10.1093/oxfordjournals.molbev.a040454]
[22]
Mousavi SM, Djafarian K, Mojtahed A, Varkaneh HK, Shab-Bidar S. The effect of zinc supplementation on plasma C-reactive protein concentrations: A systematic review and meta-analysis of randomized controlled trials. Eur J Pharmacol 2018; 834: 10-6.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.019] [PMID: 30012497]
[23]
Perrone G, Susca A, Cozzi G, et al. Biodiversity of aspergillus species in some important agricultural products. Stud Mycol 2007; 59: 53-66.
[http://dx.doi.org/10.3114/sim.2007.59.07]
[24]
Frostegård Å, Tunlid A, Bååth E. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 1993; 59(11): 3605-17.
[http://dx.doi.org/10.1128/aem.59.11.3605-3617.1993] [PMID: 16349080]
[25]
Baldrian P. Interactions of heavy metals with white-rot fungi. Enzyme Microb Technol 2003; 32(1): 78-91.
[http://dx.doi.org/10.1016/S0141-0229(02)00245-4]
[26]
Sardrood BP, Goltapeh EM, Varma A. An introduction to bioremediation. In: Goltapeh EM, Danesh YR, Varma A, Eds. Fungi as Bioremediators. Berlin, Heidelberg: Springer Berlin Heidelberg 2013; pp. 3-27.
[http://dx.doi.org/10.1007/978-3-642-33811-3_1]
[27]
Sharma KR, Giri R, Sharma RK. Efficient bioremediation of metal containing industrial wastewater using white rot fungi. Int J Environ Sci Technol 2023; 20(1): 943-50.
[http://dx.doi.org/10.1007/s13762-022-03914-5]
[28]
Colla LM, Primaz AL, de Lima M, Bertolin TE, Costa JAV. Isolation and selection of fungi for bioremediation from soil contaminated with triazine herbicides. Sci Agrotechnol 2008; 32
[29]
Ayangbenro A S, Babalola O O. A new strategy for heavy metal polluted environments: A review of microbial biosorbents. Int J Environ Res Public Health 2017.
[http://dx.doi.org/10.3390/ijerph14010094]
[30]
Priyanka SKD, Dwivedi SK. Fungi mediated detoxification of heavy metals: Insights on mechanisms, influencing factors and recent developments. J Water Process Eng 2023; 53: 103800.
[http://dx.doi.org/10.1016/j.jwpe.2023.103800]
[31]
Yilmaz N, López-Quintero CA, Vasco-Palacios AM, et al. Four novel Talaromyces species isolated from leaf litter from Colombian Amazon rain forests. Mycol Prog 2016; 15(10-11): 1041-56.
[http://dx.doi.org/10.1007/s11557-016-1227-3]
[32]
Molelekoa TBJ, Augustyn W, Regnier T, da Silva LS. Chemical characterization and toxicity evaluation of fungal pigments for potential application in food, phamarceutical and agricultural industries. Saudi J Biol Sci 2023; 30(5): 103630.
[http://dx.doi.org/10.1016/j.sjbs.2023.103630] [PMID: 37113475]
[33]
Fontes DI, Bezerra TS, de Freitas EPB, et al. Production of cellulases from Amazonian fungi and their application in babassu cellulose hydrolysis. Int Biodeterior Biodegradation 2023; 182: 105631.
[http://dx.doi.org/10.1016/j.ibiod.2023.105631]
[34]
Faridian L, Baharlouei J, Fallah Nosratabad A, Kari Dolat Abad H. An exploratory research on the adoption of different phosphate-solubilizing fungi for production of phosphate biofertilizers. Geomicrobiol J 2023; 40(5): 493-500.
[http://dx.doi.org/10.1080/01490451.2023.2196288]
[35]
Nkuna R, Matambo T. Determining the metabolic processes of metal-tolerant fungi isolated from mine tailings for bioleaching. Minerals 2024; 14(3): 235.
[http://dx.doi.org/10.3390/min14030235]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy