Review Article

Potential Target of CDK6 Signaling Pathway for Cancer Treatment

Author(s): Rajesh Basnet*, Obed Boadi Amissah, Buddha Bahadur Basnet, Rongqi Huang, Yirong Sun, Jean de Dieu Habimana and Zhiyuan Li*

Volume 25, Issue 11, 2024

Published on: 19 July, 2024

Page: [724 - 739] Pages: 16

DOI: 10.2174/0113894501313781240627062206

Price: $65

Abstract

Background: Cancer involves uncontrolled cell growth due to genetic mutations. Tumors can form when CDK6, a gene essential for controlling cell growth, isn't working correctly. Researchers are investigating drugs that inhibit CDK6; some of them appear promising. Nevertheless, CDK6 is advantageous and harmful to cancer because it controls other cellular processes. By inhibiting CDK6 and CDK4, CDK4/6 inhibitors offer a novel therapeutic strategy that stops cell proliferation. The study investigates the function of CDK6 in cancer, the difficulties in targeting CDK6, and possible remedies.

Objective: Scientists have developed drugs designed to block CDK6 and prevent it from altering other proteins. These drugs, also known as CDK6 inhibitors, help treat cancer. Finding the best drugs for CDK6 is still tricky, though. The drugs' selectivity, potency, and cost are some difficulties. These factors depend on CDK6's structure and interactions with other proteins. The structure of CDK6 and how it influences its function and regulation are explained in this review. It also describes CDK6's function in cancer and its interaction with other molecules and proteins, which is crucial for cell division. This review also discusses the present and upcoming therapies that target CDK6, as well as how CDK6 interacts with drugs that block it.

Conclusion: This review presents the structure, current research, and overview of CDK6. It also reviews the role of CDK6 in cancer, function, and regulation. Additionally, it explores its role in cancer signaling networks and its interaction with CDK6 inhibitors. Lastly, it discusses the current status and prospects of therapies targeting CDK6.

Keywords: Cyclin-dependent kinases, CDK6, cancer, cancer therapy, retinoblastoma, CDK4/6 inhibitors, drug design and development.

Graphical Abstract
[1]
Abbas Z, Rehman S. An overview of cancer treatment modalities. Neoplasm 2018; 1: 139-57.
[2]
Hassanpour SH, Dehghani M. Review of cancer from perspective of molecular. J canc res pract 2017; 4(4): 127-9.
[3]
Roskoski R Jr. Cyclin-dependent protein serine/threonine kinase inhibitors as anticancer drugs. Pharmacol Res 2019; 139: 471-88.
[http://dx.doi.org/10.1016/j.phrs.2018.11.035] [PMID: 30508677]
[4]
Ding L, Cao J, Lin W, et al. The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer. Int J Mol Sci 2020; 21(6): 1960.
[http://dx.doi.org/10.3390/ijms21061960] [PMID: 32183020]
[5]
Deshpande A, Sicinski P, Hinds PW. Cyclins and cdks in development and cancer: A perspective. Oncogene 2005; 24(17): 2909-15.
[http://dx.doi.org/10.1038/sj.onc.1208618] [PMID: 15838524]
[6]
Malumbres M. Cyclin-dependent kinases. Genome Biol 2014; 15(6): 122.
[http://dx.doi.org/10.1186/gb4184] [PMID: 25180339]
[7]
Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: A changing paradigm. Nat Rev Cancer 2009; 9(3): 153-66.
[http://dx.doi.org/10.1038/nrc2602] [PMID: 19238148]
[8]
Ghafouri-Fard S, Khoshbakht T, Hussen BM, et al. A review on the role of cyclin dependent kinases in cancers. Cancer Cell Int 2022; 22(1): 325.
[http://dx.doi.org/10.1186/s12935-022-02747-z] [PMID: 36266723]
[9]
Tigan A-S, Bellutti F, Kollmann K, Tebb G, Sexl V. CDK6—a review of the past and a glimpse into the future: from cell-cycle control to transcriptional regulation. Oncogene 2016; 35(24): 3083-91.
[http://dx.doi.org/10.1038/onc.2015.407] [PMID: 26500059]
[10]
Sherr CJ, Beach D, Shapiro GI. Targeting CDK4 and CDK6: From discovery to therapy. Cancer Discov 2016; 6(4): 353-67.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0894] [PMID: 26658964]
[11]
Zhao H, Wang Y, He Y, et al. ANKRD29, as a new prognostic and immunological biomarker of non–small cell lung cancer, inhibits cell growth and migration by regulating MAPK signaling pathway. Biol Direct 2023; 18(1): 28.
[http://dx.doi.org/10.1186/s13062-023-00385-7] [PMID: 37277814]
[12]
Fassl A, Geng Y, Sicinski P. CDK4 and CDK6 kinases: From basic science to cancer therapy. Science 2022; 375(6577): eabc1495.
[http://dx.doi.org/10.1126/science.abc1495] [PMID: 35025636]
[13]
Goel S, Bergholz JS, Zhao JJ. Targeting CDK4 and CDK6 in cancer. Nat Rev Cancer 2022; 22(6): 356-72.
[http://dx.doi.org/10.1038/s41568-022-00456-3] [PMID: 35304604]
[14]
Nilmani , D’costa M, Bothe A, et al. CDK regulators—Cell cycle progression or apoptosis—Scenarios in normal cells and cancerous cells. Adv Protein Chem Struct Biol 2023; 135: 125-77.
[http://dx.doi.org/10.1016/bs.apcsb.2022.11.008] [PMID: 37061330]
[15]
Adon T, Shanmugarajan D, Kumar HY. CDK4/6 inhibitors: A brief overview and prospective research directions. RSC Advances 2021; 11(47): 29227-46.
[http://dx.doi.org/10.1039/D1RA03820F] [PMID: 35479560]
[16]
Costello JF, Plass C, Arap W, et al. Cyclin-dependent kinase 6 (CDK6) amplification in human gliomas identified using two-dimensional separation of genomic DNA. Cancer Res 1997; 57(7): 1250-4.
[PMID: 9102208]
[17]
Lu H, Schulze-Gahmen U. Toward understanding the structural basis of cyclin-dependent kinase 6 specific inhibition. J Med Chem 2006; 49(13): 3826-31.
[http://dx.doi.org/10.1021/jm0600388] [PMID: 16789739]
[18]
Susanti NMP, Tjahjono DH. Cyclin-dependent kinase 4 and 6 inhibitors in cell cycle dysregulation for breast cancer treatment. Molecules 2021; 26(15): 4462.
[http://dx.doi.org/10.3390/molecules26154462] [PMID: 34361615]
[19]
Ataei-Nazari S, Amoushahi M, Madsen JF, et al. Cyclin-dependent kinase 6 (CDK6) as a potent regulator of the ovarian primordial-to-primary follicle transition. Front Cell Dev Biol 2022; 10: 1036917.
[http://dx.doi.org/10.3389/fcell.2022.1036917] [PMID: 36619863]
[20]
Zhang J, Xu D, Zhou Y, Zhu Z, Yang X. Mechanisms and implications of CDK4/6 inhibitors for the treatment of NSCLC. Front Oncol 2021; 11: 676041.
[http://dx.doi.org/10.3389/fonc.2021.676041] [PMID: 34395246]
[21]
Zhang X, Sun Y, Cheng S, et al. CDK6 increases glycolysis and suppresses autophagy by mTORC1-HK2 pathway activation in cervical cancer cells. Cell Cycle 2022; 21(9): 984-1002.
[http://dx.doi.org/10.1080/15384101.2022.2039981] [PMID: 35167417]
[22]
Li GS, Huang ZG, Li DM, et al. CDK6 is a novel predictive and prognosis biomarker correlated with immune infiltrates in multiple human neoplasms, including small cell lung carcinoma. Funct Integr Genomics 2023; 23(4): 332.
[http://dx.doi.org/10.1007/s10142-023-01253-3] [PMID: 37950078]
[23]
Klein K, Witalisz-Siepracka A, Gotthardt D, et al. T cell-intrinsic CDK6 Is dispensable for anti-viral and anti-tumor responses in vivo. Front Immunol 2021; 12: 650977.
[http://dx.doi.org/10.3389/fimmu.2021.650977] [PMID: 34248938]
[24]
Kallas A, Pook M, Trei A, Maimets T. Assessment of the potential of CDK2 inhibitor NU6140 to influence the expression of pluripotency Markers NANOG, OCT4, and SOX2 in 2102Ep and H9 Cells. Int J Cell Biol 2014; 2014: 280638.
[25]
Zhang W, Sui Y, Ni J, Yang T. Insights into the Nanog gene: A propeller for stemness in primitive stem cells. Int J Biol Sci 2016; 12(11): 1372-81.
[http://dx.doi.org/10.7150/ijbs.16349] [PMID: 27877089]
[26]
Engeland K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ 2022; 29(5): 946-60.
[http://dx.doi.org/10.1038/s41418-022-00988-z] [PMID: 35361964]
[27]
Abukhdeir AM, Park BH. p21 and p27: roles in carcinogenesis and drug resistance. Expert Rev Mol Med 2008; 10: e19.
[http://dx.doi.org/10.1017/S1462399408000744] [PMID: 18590585]
[28]
Tian Y, Qi M, Hong Z, et al. Activation of transient receptor potential vanilloid 4 promotes the proliferation of stem cells in the adult hippocampal dentate gyrus. Mol Neurobiol 2017; 54(8): 5768-79.
[http://dx.doi.org/10.1007/s12035-016-0113-y] [PMID: 27660267]
[29]
Yousuf M, Shamsi A, Anjum F, et al. Effect of pH on the structure and function of cyclin-dependent kinase 6. PLoS One 2022; 17(2): e0263693.
[http://dx.doi.org/10.1371/journal.pone.0263693] [PMID: 35148332]
[30]
Cho YS, Angove H, Brain C, et al. Fragment-based discovery of 7-azabenzimidazoles as potent, highly selective, and orally active CDK4/6 inhibitors. ACS Med Chem Lett 2012; 3(6): 445-9.
[http://dx.doi.org/10.1021/ml200241a] [PMID: 24900493]
[31]
Amalia E, Diantini A, Subarnas A. Overview of current and future targets of breast cancer medicines. J Pharmac Sci Res 2019; 11(6): 2385-97.
[32]
Yousuf M, Khan P, Shamsi A, et al. Inhibiting CDK6 activity by quercetin is an attractive strategy for cancer therapy. ACS Omega 2020; 5(42): 27480-91.
[http://dx.doi.org/10.1021/acsomega.0c03975] [PMID: 33134711]
[33]
Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 2013; 140(15): 3079-93.
[http://dx.doi.org/10.1242/dev.091744] [PMID: 23861057]
[34]
Lu H, Chang DJ, Baratte B, Meijer L, Schulze-Gahmen U. Crystal structure of a human cyclin-dependent kinase 6 complex with a flavonol inhibitor, fisetin. J Med Chem 2005; 48(3): 737-43.
[http://dx.doi.org/10.1021/jm049353p] [PMID: 15689157]
[35]
Buss H, Handschick K, Jurrmann N, et al. Cyclin-dependent kinase 6 phosphorylates NF-κB P65 at serine 536 and contributes to the regulation of inflammatory gene expression. PLoS One 2012; 7(12): e51847.
[http://dx.doi.org/10.1371/journal.pone.0051847] [PMID: 23300567]
[36]
Kaldis P. The CDK-Activating Kinase (CAK). Springer Science & Business Media 2003.
[37]
Kaldis P, Ojala PM, Tong L, Mäkelä TP, Solomon MJ. CAK-independent activation of CDK6 by a viral cyclin. Mol Biol Cell 2001; 12(12): 3987-99.
[http://dx.doi.org/10.1091/mbc.12.12.3987] [PMID: 11739795]
[38]
Yousuf M, Alam M, Shamsi A, et al. Structure-guided design and development of cyclin-dependent kinase 4/6 inhibitors: A review on therapeutic implications. Int J Biol Macromol 2022; 218: 394-408.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.07.156] [PMID: 35878668]
[39]
Chakraborty S. Sen, A.Rediscovering Cancer: From Mechanism to Therapy. Apple Academic Press 2018; pp. 81-134.
[40]
Nardone V, Barbarino M, Angrisani A, et al. CDK4, CDK6/cyclin-D1 complex inhibition and radiotherapy for cancer control: a role for autophagy. Int J Mol Sci 2021; 22(16): 8391.
[http://dx.doi.org/10.3390/ijms22168391] [PMID: 34445095]
[41]
Kozar K, Sicinski P. Cell cycle progression without cyclin D-CDK4 and cyclin D-CDK6 complexes. Cell Cycle 2005; 4(3): 388-91.
[http://dx.doi.org/10.4161/cc.4.3.1551] [PMID: 15738651]
[42]
Scheicher R, Hoelbl-Kovacic A, Bellutti F, et al. CDK6 as a key regulator of hematopoietic and leukemic stem cell activation. Blood 2015; 125(1): 90-101.
[http://dx.doi.org/10.1182/blood-2014-06-584417] [PMID: 25342715]
[43]
Goel S, DeCristo MJ, Watt AC, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 2017; 548(7668): 471-5.
[http://dx.doi.org/10.1038/nature23465] [PMID: 28813415]
[44]
Viola JPB, Carvalho LDS, Fonseca BPF, Teixeira LK. NFAT transcription factors: from cell cycle to tumor development. Braz J Med Biol Res 2005; 38(3): 335-44.
[http://dx.doi.org/10.1590/S0100-879X2005000300003] [PMID: 15761612]
[45]
Mognol GP, Carneiro FRG, Robbs BK, Faget DV, Viola JPB. Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player. Cell Death Dis 2016; 7(4): e2199-9.
[http://dx.doi.org/10.1038/cddis.2016.97] [PMID: 27100893]
[46]
Chen W, Zhang W, Chen M, et al. Applications and mechanisms of the cyclin-dependent kinase 4/6 inhibitor, PD-0332991, in solid tumors. Cell Oncol 2022; 45(6): 1053-71.
[http://dx.doi.org/10.1007/s13402-022-00714-4] [PMID: 36087253]
[47]
Zhang Z, Golomb L, Meyerson M. Functional genomic analysis of CDK4 and CDK6 gene dependency across human cancer cell lines. Cancer Res 2022; 82(11): 2171-84.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-2428] [PMID: 35395071]
[48]
Kim S, Leong A, Kim M, Yang HW. CDK4/6 initiates Rb inactivation and CDK2 activity coordinates cell-cycle commitment and G1/S transition. Sci Rep 2022; 12(1): 16810.
[http://dx.doi.org/10.1038/s41598-022-20769-5] [PMID: 36207346]
[49]
Zhou Y, Nakajima R, Shirasawa M, et al. Expanding roles of the E2F-RB-p53 pathway in tumor suppression. Biology 2023; 12(12): 1511.
[http://dx.doi.org/10.3390/biology12121511] [PMID: 38132337]
[50]
Ivanova IA, D’Souza SJA, Dagnino L. Signalling in the epidermis: the E2F cell cycle regulatory pathway in epidermal morphogenesis, regeneration and transformation. Int J Biol Sci 2005; 1(2): 87-95.
[http://dx.doi.org/10.7150/ijbs.1.87] [PMID: 15951853]
[51]
Zhan L, Zhang Y, Wang W, Song E, Fan Y, Wei B. E2F1: A promising regulator in ovarian carcinoma. Tumour Biol 2016; 37(3): 2823-31.
[http://dx.doi.org/10.1007/s13277-015-4770-7] [PMID: 26749284]
[52]
D’Amici S, Ceccarelli S, Vescarelli E, et al. TNFα modulates fibroblast growth factor receptor 2 gene expression through the pRB/E2F1 pathway: identification of a non-canonical E2F binding motif. PLoS One 2013; 8(4): e61491.
[http://dx.doi.org/10.1371/journal.pone.0061491] [PMID: 23613863]
[53]
Laurenti E, Frelin C, Xie S, et al. CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell 2015; 16(3): 302-13.
[http://dx.doi.org/10.1016/j.stem.2015.01.017] [PMID: 25704240]
[54]
Zhang L, Li Y, Hu C, et al. CDK6-PI3K signaling axis is an efficient target for attenuating ABCB1/P-gp mediated multi-drug resistance (MDR) in cancer cells. Mol Cancer 2022; 21(1): 103.
[http://dx.doi.org/10.1186/s12943-022-01524-w] [PMID: 35459184]
[55]
Roncato R, Angelini J, Pani A, et al. CDK4/6 inhibitors in breast cancer treatment: potential interactions with drug, gene, and pathophysiological conditions. Int J Mol Sci 2020; 21(17): 6350.
[http://dx.doi.org/10.3390/ijms21176350] [PMID: 32883002]
[56]
Andrikopoulou A, Shalit A, Zografos E, et al. MicroRNAs as potential predictors of response to CDK4/6 inhibitor treatment. Cancers 2021; 13(16): 4114.
[http://dx.doi.org/10.3390/cancers13164114] [PMID: 34439268]
[57]
Akbari M, Adili A, Faraji A, et al. Restoration of miR-124 serves as a promising therapeutic approach in CRC by affecting CDK6 which is itself a prognostic and diagnostic factor. Gene Rep 2021; 24: 101274.
[http://dx.doi.org/10.1016/j.genrep.2021.101274]
[58]
Kowalczyk W, Waliszczak G, Jach R, Dulińska-Litewka J. Steroid receptors in breast cancer: Understanding of molecular function as a basis for effective therapy development. Cancers (Basel) 2021; 13(19): 4779.
[http://dx.doi.org/10.3390/cancers13194779] [PMID: 34638264]
[59]
Lin M, Chen Y, Jin Y, Hu X, Zhang J. Comparative overall survival of CDK4/6 inhibitors plus endocrine therapy vs. endocrine therapy alone for hormone receptor-positive, HER2-negative metastatic breast cancer. J Cancer 2020; 11(24): 7127-36.
[http://dx.doi.org/10.7150/jca.48944] [PMID: 33193875]
[60]
Piezzo M, Chiodini P, Riemma M, et al. Progression-free survival and overall survival of CDK 4/6 inhibitors plus endocrine therapy in metastatic breast cancer: A systematic review and meta-analysis. Int J Mol Sci 2020; 21(17): 6400.
[http://dx.doi.org/10.3390/ijms21176400] [PMID: 32899139]
[61]
Wang L, Gao S, Li D, et al. CDK4/6 inhibitors plus endocrine therapy improve overall survival in advanced HR+/HER2− breast cancer: A meta-analysis of randomized controlled trials. Breast J 2020; 26(7): 1439-43.
[http://dx.doi.org/10.1111/tbj.13703] [PMID: 31828901]
[62]
Lloyd MR, Spring LM, Bardia A, Wander SA. Mechanisms of resistance to CDK4/6 blockade in advanced hormone receptor–positive, HER2-negative breast cancer and emerging therapeutic opportunities. Clin Cancer Res 2022; 28(5): 821-30.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-2947] [PMID: 34725098]
[63]
Piezzo M, Cocco S, Caputo R, et al. Targeting cell cycle in breast cancer: CDK4/6 inhibitors. Int J Mol Sci 2020; 21(18): 6479.
[http://dx.doi.org/10.3390/ijms21186479] [PMID: 32899866]
[64]
George MA, Qureshi S, Omene C, Toppmeyer DL, Ganesan S. Clinical and pharmacologic differences of CDK4/6 inhibitors in breast cancer. Front Oncol 2021; 11: 693104.
[http://dx.doi.org/10.3389/fonc.2021.693104] [PMID: 34327137]
[65]
Lim JTE, Mansukhani M, Weinstein IB. Cyclin-dependent kinase 6 associates with the androgen receptor and enhances its transcriptional activity in prostate cancer cells. Proc Natl Acad Sci 2005; 102(14): 5156-61.
[http://dx.doi.org/10.1073/pnas.0501203102] [PMID: 15790678]
[66]
Khleif SN, DeGregori J, Yee CL, et al. Inhibition of cyclin D-CDK4/CDK6 activity is associated with an E2F-mediated induction of cyclin kinase inhibitor activity. Proc Natl Acad Sci 1996; 93(9): 4350-4.
[http://dx.doi.org/10.1073/pnas.93.9.4350] [PMID: 8633069]
[67]
de Brot S, Mongan NP. The cell cycle and androgen signaling interactions in prostate cancer. Precision Molecular Pathology of Prostate Cancer. Cham: Springer 2018; pp. 381-404.
[http://dx.doi.org/10.1007/978-3-319-64096-9_22]
[68]
Caksa S, Aplin AE. PROactively TACkling CDK4/6 therapy resistance. Nat Can 2021; 2(4): 372-3.
[http://dx.doi.org/10.1038/s43018-021-00193-w] [PMID: 35121999]
[69]
Zhu X, Luo C, Lin K, et al. Overexpression of DJ-1 enhances colorectal cancer cell proliferation through the cyclin-D1/MDM2-p53 signaling pathway. Biosci Trends 2020; 14(2): 83-95.
[http://dx.doi.org/10.5582/bst.2019.01272] [PMID: 32132307]
[70]
Zhou Y, Li X, Morita Y, et al. Identification of the effects of chondroitin sulfate on inhibiting CDKs in colorectal cancer based on bioinformatic analysis and experimental validation. Front Oncol 2021; 11: 705939.
[http://dx.doi.org/10.3389/fonc.2021.705939] [PMID: 34595111]
[71]
Fan Y, Li H, Liang X, Xiang Z. CBX3 promotes colon cancer cell proliferation by CDK6 kinase-independent function during cell cycle. Oncotarget 2017; 8(12): 19934-46.
[http://dx.doi.org/10.18632/oncotarget.15253] [PMID: 28193906]
[72]
Wijnen R, Pecoraro C, Carbone D, et al. Cyclin dependent kinase-1 (CDK-1) inhibition as a novel therapeutic strategy against pancreatic ductal adenocarcinoma (PDAC). Cancers 2021; 13(17): 4389.
[http://dx.doi.org/10.3390/cancers13174389] [PMID: 34503199]
[73]
Goodwin CM, Waters AM, Klomp JE, et al. Combination therapies with CDK4/6 inhibitors to treat KRAS-mutant pancreatic cancer. Cancer Res 2023; 83(1): 141-57.
[http://dx.doi.org/10.1158/0008-5472.CAN-22-0391] [PMID: 36346366]
[74]
Srivastava RK, Chen Q, Siddiqui I, Sarva K, Shankar S. Linkage of curcumin-induced cell cycle arrest and apoptosis by cyclin-dependent kinase inhibitor p21(/WAF1/CIP1). Cell Cycle 2007; 6(23): 2953-61.
[http://dx.doi.org/10.4161/cc.6.23.4951] [PMID: 18156803]
[75]
Wang C, Luo H, Chen X, et al. Discovery of dual PARP and CDK6 inhibitors for triple-negative breast cancer with wild-type BRCA. Bioorg Chem 2023; 139: 106683.
[http://dx.doi.org/10.1016/j.bioorg.2023.106683] [PMID: 37379778]
[76]
Dai M, Boudreault J, Wang N, et al. Differential regulation of cancer progression by CDK4/6 plays a central role in DNA replication and repair pathways. Cancer Res 2021; 81(5): 1332-46.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-2121] [PMID: 33372040]
[77]
Chen P, Lee NV, Hu W, et al. Spectrum and degree of CDK drug interactions predicts clinical performance. Mol Cancer Ther 2016; 15(10): 2273-81.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0300] [PMID: 27496135]
[78]
Tolaney SM, Sahebjam S, Le Rhun E, et al. A phase II study of abemaciclib in patients with brain metastases secondary to hormone receptor–positive breast cancer. Clin Cancer Res 2020; 26(20): 5310-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-1764] [PMID: 32694159]
[79]
Corona SP, Generali D. Abemaciclib: A CDK4/6 inhibitor for the treatment of HR+/HER2– advanced breast cancer. Drug Des Devel Ther 2018; 12: 321-30.
[http://dx.doi.org/10.2147/DDDT.S137783] [PMID: 29497278]
[80]
Yang L, Xue J, Yang Z, et al. Side effects of CDK4/6 inhibitors in the treatment of HR+/HER2− advanced breast cancer: A systematic review and meta-analysis of randomized controlled trials. Ann Palliat Med 2021; 10(5): 5590-9.
[http://dx.doi.org/10.21037/apm-21-1096] [PMID: 34107710]
[81]
Sammons SL, Topping DL, Blackwell KL. HR+, HER2-advanced breast cancer and CDK4/6 inhibitors: mode of action, clinical activity, and safety profiles. Curr Cancer Drug Targets 2017; 17(7): 637-49.
[PMID: 28359238]
[82]
Agostinetto E, Arecco L, de Azambuja E. Adjuvant CDK4/6 inhibitors for early breast cancer: how to choose wisely? Oncol Ther 2023; 2023: 1-11.
[PMID: 37989811]
[83]
O’Leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol 2016; 13(7): 417-30.
[http://dx.doi.org/10.1038/nrclinonc.2016.26] [PMID: 27030077]
[84]
Watt AC, Goel S. Cellular mechanisms underlying response and resistance to CDK4/6 inhibitors in the treatment of hormone receptor-positive breast cancer. Breast Cancer Res 2022; 24(1): 17.
[http://dx.doi.org/10.1186/s13058-022-01510-6] [PMID: 35248122]
[85]
Sobhani N, D’Angelo A, Pittacolo M, et al. Updates on the CDK4/6 inhibitory strategy and combinations in breast cancer. Cells 2019; 8(4): 321.
[http://dx.doi.org/10.3390/cells8040321] [PMID: 30959874]
[86]
Ogata R, Kishino E, Saitoh W, Koike Y, Kurebayashi J. Resistance to cyclin-dependent kinase (CDK) 4/6 inhibitors confers cross-resistance to other CDK inhibitors but not to chemotherapeutic agents in breast cancer cells. Breast Cancer 2021; 28(1): 206-15.
[http://dx.doi.org/10.1007/s12282-020-01150-8] [PMID: 32860163]
[87]
Huang Z, Li X, Tang B, et al. SETDB1 modulates degradation of phosphorylated RB and anticancer efficacy of CDK4/6 inhibitors. Cancer Res 2023; 83(6): 875-89.
[http://dx.doi.org/10.1158/0008-5472.CAN-22-0264] [PMID: 36637424]
[88]
Heckler M, Ali LR, Clancy-Thompson E, et al. Inhibition of CDK4/6 promotes CD8 T-cell memory formation. Cancer Discov 2021; 11(10): 2564-81.
[http://dx.doi.org/10.1158/2159-8290.CD-20-1540] [PMID: 33941591]
[89]
Cazzaniga ME, Ciaccio A, Danesi R, et al. Late onset toxicities associated with the use of CDK 4/6 inhibitors in hormone receptor positive (HR+), human epidermal growth factor receptor-2 negative (HER2-) metastatic breast cancer patients: A multidisciplinary, pan-EU position paper regarding their optimal management. The GIOCONDA project. Front Oncol 2023; 13: 1247270.
[http://dx.doi.org/10.3389/fonc.2023.1247270] [PMID: 37954071]
[90]
Luo X, Zhao Y, Tang P, et al. Discovery of new small-molecule cyclin-dependent kinase 6 inhibitors through computational approaches. Mol Divers 2021; 25(1): 367-82.
[http://dx.doi.org/10.1007/s11030-020-10120-3] [PMID: 32770459]
[91]
Nuwayhid S, Stockett D, Hyde J, Aleshin A, Walker DH, Arkin MR. SNS-032 is a potent and selective inhibitor of CDK2, 7 and 9 and induces cell death by inhibiting cell cycle progression and the expression of antiapoptotic proteins. Proc Am Assoc Cancer Res. 2006; 47: p. 491.
[92]
Shapiro GI. Preclinical and clinical development of the cyclin-dependent kinase inhibitor flavopiridol. Clin Cancer Res 2004; 10(12): 4270s-5s.
[http://dx.doi.org/10.1158/1078-0432.CCR-040020] [PMID: 15217973]
[93]
Senderowicz AM. Flavopiridol: The first cyclin-dependent kinase inhibitor in human clinical trials. Invest New Drugs 1999; 17(3): 313-20.
[http://dx.doi.org/10.1023/A:1006353008903] [PMID: 10665481]
[94]
Büyükkaramikli NC, de Groot S, Riemsma R, et al. Ribociclib with an aromatase inhibitor for previously untreated, HR-positive, HER2-negative, locally advanced or metastatic breast cancer: An Evidence Review Group perspective of a NICE Single Technology Appraisal. PharmacoEconomics 2019; 37(2): 141-53.
[http://dx.doi.org/10.1007/s40273-018-0708-4] [PMID: 30194622]
[95]
O’Shaughnessy J, Petrakova K, Sonke GS, et al. Ribociclib plus letrozole versus letrozole alone in patients with de novo HR+, HER2− advanced breast cancer in the randomized MONALEESA-2 trial. Breast Cancer Res Treat 2018; 168(1): 127-34.
[http://dx.doi.org/10.1007/s10549-017-4518-8] [PMID: 29164421]
[96]
Gelbert LM, Cai S, Lin X, et al. Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Invest New Drugs 2014; 32(5): 825-37.
[http://dx.doi.org/10.1007/s10637-014-0120-7] [PMID: 24919854]
[97]
Hope I, Endicott JA, Watt JE. Emerging approaches to CDK inhibitor development, a structural perspective. RSC Chemical Biology 2023; 4(2): 146-64.
[http://dx.doi.org/10.1039/D2CB00201A] [PMID: 36794018]
[98]
Huang J, Zheng L, Sun Z, Li J. CDK4/6 inhibitor resistance mechanisms and treatment strategies (Review). Int J Mol Med 2022; 50(4): 128.
[http://dx.doi.org/10.3892/ijmm.2022.5184] [PMID: 36043521]
[99]
Xu X, Pan X, Wang T, et al. Intrinsic and acquired resistance to CDK4/6 inhibitors and potential overcoming strategies. Acta Pharmacol Sin 2021; 42(2): 171-8.
[http://dx.doi.org/10.1038/s41401-020-0416-4] [PMID: 32504067]
[100]
Tadesse S, Yu M, Kumarasiri M, Le BT, Wang S. Targeting CDK6 in cancer: State of the art and new insights. Cell Cycle 2015; 14(20): 3220-30.
[http://dx.doi.org/10.1080/15384101.2015.1084445] [PMID: 26315616]
[101]
Sharma V, Sharma PC, Kumar V. in silico molecular docking analysis of natural pyridoacridines as anticancer agents. Adv Chem 2016; 2016(5409387): 1-9.
[http://dx.doi.org/10.1155/2016/5409387]
[102]
Roberts PJ, Kumarasamy V, Witkiewicz AK, Knudsen ES. Chemotherapy and CDK4/6 inhibitors: Unexpected bedfellows. Mol Cancer Ther 2020; 19(8): 1575-88.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1161] [PMID: 32546660]
[103]
Yip HYK, Papa A. Signaling pathways in cancer: therapeutic targets, combinatorial treatments, and new developments. Cells 2021; 10(3): 659.
[http://dx.doi.org/10.3390/cells10030659] [PMID: 33809714]
[104]
Malumbres M, Pevarello P, Barbacid M, Bischoff JR. CDK inhibitors in cancer therapy: what is next? Trends Pharmacol Sci 2008; 29(1): 16-21.
[http://dx.doi.org/10.1016/j.tips.2007.10.012] [PMID: 18054800]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy