Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Review Article

Microwave Revolution: Transforming Biomedical Synthesis for Tissue Engineering Advancements

Author(s): Srikruthi Kunigal Sridhar, Penmetsa Durga Bhavani, Sadhana Noothi, Lakshmi Radhika Gajula, Prakash Goudanavar, Buduru Gowthami and Nimbagal Raghavendra Naveen*

Volume 11, Issue 2, 2024

Published on: 19 July, 2024

Page: [95 - 115] Pages: 21

DOI: 10.2174/0122133356321729240715094501

Price: $65

Open Access Journals Promotions 2
Abstract

Microwave-Assisted Synthesis (MAS) has emerged as a groundbreaking technique revolutionizing the field of biomedical and tissue engineering. This review aims to explore the fundamental principles, techniques, and applications of MAS in these domains. Beginning with an overview highlighting its significance, we delve into the basic principles, mechanisms, and comparative analysis with conventional methods. Subsequently, the review explores MAS techniques in biomaterial synthesis, tissue scaffold fabrication, functionalization, and nanomaterial synthesis, along with their role in drug delivery systems. We then examine its diverse applications, including rapid biomaterial synthesis, property tailoring, biocompatibility enhancements, and tissue regeneration strategies. Furthermore, we address the challenges and future perspectives, focusing on safety considerations, understanding cellular responses, integration with advanced technologies, regulatory aspects, and future directions. This comprehensive review underscores MAS as a transformative tool driving innovations in biomedical research and therapeutic applications.

Keywords: Microwave-assisted synthesis, tissue engineering, regulatory considerations, drug delivery, electromagnetic radiation, biomedical synthesis.

[1]
El Seoud, O.A.; Heinze, T. Organic esters of cellulose: New perspectives for old polymers. Adv. Polym. Sci., 2005, 186, 103-149.
[http://dx.doi.org/10.1007/b136818]
[2]
Rahman, Z.; Zidan, A.S.; Khan, M.A. Non-destructive methods of characterization of risperidone solid lipid nanoparticles. Eur. J. Pharm. Biopharm., 2010, 76(1), 127-137.
[http://dx.doi.org/10.1016/j.ejpb.2010.05.003] [PMID: 20470882]
[3]
Appukkuttan, P.; Van der Eycken, E. Recent developments in microwave-assisted, transition-metal-catalysed C-C and C-N bond-forming reactions. Eur. J. Org. Chem., 2008, 2008(7), 1133-1155.
[http://dx.doi.org/10.1002/ejoc.200701056]
[4]
Caddick, S. Microwave assisted organic reactions. Tetrahedron, 1995, 51(38), 10403-10432.
[http://dx.doi.org/10.1016/0040-4020(95)00662-R]
[5]
Karunakaran, G.; Cho, E.B.; Kumar, G.S.; Kolesnikov, E.; Janarthanan, G.; Pillai, M.M.; Rajendran, S.; Boobalan, S.; Gorshenkov, M.V.; Kuznetsov, D. Ascorbic acid-assisted microwave synthesis of mesoporous ag-doped hydroxyapatite nanorods from biowaste seashells for implant applications. ACS Appl. Bio Mater., 2019, 2(5), 2280-2293.
[http://dx.doi.org/10.1021/acsabm.9b00239] [PMID: 35030667]
[6]
Battocletti, J.H. Biomedical applications of microwave engineering. Handbook of Microwave Technology; Elsevier, 1995.
[http://dx.doi.org/10.1016/B978-012374695-5/50030-4]
[7]
Silakari, P.; Singh, J.; Sharma, S. Microwave synthesizer: A biomedical engineering technique with advanced applications. Curr. Mat. Sci., 2024, 17(1), 65-76.
[http://dx.doi.org/10.2174/2666145416666230223115523]
[8]
Singh, G.; Singh, R.P.; Jolly, S.S. Customized hydroxyapatites for bone-tissue engineering and drug delivery applications: A review. J. Sol-Gel Sci. Technol., 2020, 94(3), 505-530.
[http://dx.doi.org/10.1007/s10971-020-05222-1]
[9]
Krishnakumar, G.S.; Sampath, S.; Muthusamy, S.; John, M.A. Importance of crosslinking strategies in designing smart biomaterials for bone tissue engineering: A systematic review. Mater. Sci. Eng. C, 2019, 96, 941-954.
[http://dx.doi.org/10.1016/j.msec.2018.11.081] [PMID: 30606606]
[10]
Khalid, H.; Suhaib, F.; Zahid, S.; Ahmed, S.; Jamal, A.; Kaleem, M.; Khan, A.S. Microwave-assisted synthesis and in vitro osteogenic analysis of novel bioactive glass fibers for biomedical and dental applications. Biomed. Mater., 2018, 14(1), 015005.
[http://dx.doi.org/10.1088/1748-605X/aae3f0] [PMID: 30251708]
[11]
Li, S.; Chen, C.; Zhang, D.; Zhang, X.; Sun, B.; Lv, S. Microwave-assisted fast and efficient dissolution of silkworm silk for constructing fibroin-based biomaterials. Chem. Eng. Sci., 2018, 189, 286-295.
[http://dx.doi.org/10.1016/j.ces.2018.06.003]
[12]
Kumar, A.; Kuang, Y.; Liang, Z.; Sun, X. Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: A review. Materials Today Nano, 2020, 11, 100076.
[http://dx.doi.org/10.1016/j.mtnano.2020.100076]
[13]
Nüchter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. Microwave assisted synthesis a critical technology overview. Green Chem., 2004, 6(3), 128-141.
[http://dx.doi.org/10.1039/B310502D]
[14]
Zito, C.A.; Orlandi, M.O.; Volanti, D.P. Accelerated microwave-assisted hydrothermal/solvothermal processing: Fundamentals, morphologies, and applications. J. Electroceram., 2018, 40(4), 271-292.
[http://dx.doi.org/10.1007/s10832-018-0128-z]
[15]
Rao, S.S.; Saptami, K.; Venkatesan, J.; Rekha, P.D. Microwave-assisted rapid synthesis of silver nanoparticles using fucoidan: Characterization with assessment of biocompatibility and antimicrobial activity. Int. J. Biol. Macromol., 2020, 163, 745-755.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.230] [PMID: 32599248]
[16]
Baghbanzadeh, M.; Carbone, L.; Cozzoli, P.D.; Kappe, C.O. Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew. Chem. Int. Ed., 2011, 50(48), 11312-11359.
[http://dx.doi.org/10.1002/anie.201101274] [PMID: 22058070]
[17]
Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave material processing-A review. AIChE J., 2012, 58(2), 330-363.
[http://dx.doi.org/10.1002/aic.12766]
[18]
Díaz-Ortiz, Á.; Prieto, P.; de la Hoz, A. A critical overview on the effect of microwave irradiation in organic synthesis. Chem. Rec., 2019, 19(1), 85-97.
[http://dx.doi.org/10.1002/tcr.201800059] [PMID: 30035361]
[19]
Wang, H.Q.; Nann, T. Monodisperse upconverting nanocrystals by microwave-assisted synthesis. ACS Nano, 2009, 3(11), 3804-3808.
[http://dx.doi.org/10.1021/nn9012093] [PMID: 19873986]
[20]
Dzierba, C.D.; Combs, A.P. Microwave-assisted chemistry as a tool for drug discovery. Annu. Rep. Med. Chem., 2002, 37, 247-256.
[http://dx.doi.org/10.1016/S0065-7743(02)37026-X]
[21]
Nomanbhay, S.; Ong, M. A review of microwave-assisted reactions for biodiesel production. Bioengineering, 2017, 4(2), 57.
[http://dx.doi.org/10.3390/bioengineering4020057] [PMID: 28952536]
[22]
Saleem, Q.; Torabfam, M.; Fidan, T.; Kurt, H.; Yüce, M.; Clarke, N.; Bayazit, M.K. Microwave-promoted continuous flow systems in nanoparticle synthesis: A perspective. ACS Sustain. Chem.& Eng., 2021, 9(30), 9988-10015.
[http://dx.doi.org/10.1021/acssuschemeng.1c02695]
[23]
Desbrières, J.; Petit, C.; Reynaud, S. Microwave-assisted modifications of polysaccharides. Pure Appl. Chem., 2014, 86(11), 1695-1706.
[http://dx.doi.org/10.1515/pac-2014-0711]
[24]
Kheradmandfard, M.; Kashani-Bozorg, S.F.; Noori-Alfesharaki, A.H.; Kharazi, A.Z.; Kheradmandfard, M.; Abutalebi, N. Ultra-fast, highly efficient and green synthesis of bioactive forsterite nanopowder via microwave irradiation. Mater. Sci. Eng. C, 2018, 92, 236-244.
[http://dx.doi.org/10.1016/j.msec.2018.06.026] [PMID: 30184747]
[25]
Pandey, A.; Pandey, G.; Aswath, P. Synthesis of polylactic acid-polyglycolic acid blends using microwave radiation. J. Mech. Behav. Biomed. Mater., 2008, 1(3), 227-233.
[http://dx.doi.org/10.1016/j.jmbbm.2007.12.001] [PMID: 19627787]
[26]
Liu, L.J.; Zhang, C.; Liao, L.Q.; Wang, X.L.; Zhuo, R.X. Microwave-assisted polymerization of D, L-lactide with stannous octanoate as catalyst. Chin. Chem. Lett., 2001, 12(8)
[27]
Zhang, C.; Liao, L.; Liu, L. Rapid ring-opening polymerization of D,L-lactide by microwaves. Macromol. Rapid Commun., 2004, 25(15), 1402-1405.
[http://dx.doi.org/10.1002/marc.200400106]
[28]
Cohn, D.; Younes, H. Biodegradable PEO/PLA block copolymers. J. Biomed. Mater. Res., 1988, 22(11), 993-1009.
[http://dx.doi.org/10.1002/jbm.820221104] [PMID: 3241012]
[29]
Cohn, D.; Hotovely-Salomon, A. Biodegradable multiblock PEO/PLA thermoplastic elastomers: Molecular design and properties. Polymer, 2005, 46(7), 2068-2075.
[http://dx.doi.org/10.1016/j.polymer.2005.01.012]
[30]
Yu, Z.; Liu, L. Microwave-assisted synthesis of poly ε-caprolactone-poly ethylene glycol-poly ε-caprolactone tri-block co-polymers and use as matrices for sustained delivery of ibuprofen taken as model drug. J. Biomater. Sci. Polym. Ed., 2005, 16(8), 957-971.
[http://dx.doi.org/10.1163/1568562054414667] [PMID: 16128231]
[31]
Zhang, C.; Liao, L.; Gong, S.S. Microwave-assisted synthesis of PLLA-PEG-PLLA triblock copolymers. Macromol. Rapid Commun., 2007, 28(4), 422-427.
[http://dx.doi.org/10.1002/marc.200600709]
[32]
Adams, N.; Schubert, U.S. Poly 2-oxazolines in biological and biomedical application contexts. Adv. Drug Deliv. Rev., 2007, 59(15), 1504-1520.
[http://dx.doi.org/10.1016/j.addr.2007.08.018] [PMID: 17904246]
[33]
Fijten, M.W.M.; Kranenburg, J.M.; Thijs, H.M.L.; Paulus, R.M.; van Lankvelt, B.M.; de Hullu, J.; Springintveld, M.; Thielen, D.J.G.; Tweedie, C.A.; Hoogenboom, R.; Van Vliet, K.J.; Schubert, U.S. Synthesis and structure-property relationships of random and block copolymers: A direct comparison for copoly 2-oxazolines. Macromolecules, 2007, 40(16), 5879-5886.
[http://dx.doi.org/10.1021/ma070720r]
[34]
Bloksma, M.M.; Rogers, S.; Schubert, U.S.; Hoogenboom, R. Secondary structure formation of main-chain chiral poly 2-oxazolines in solution. Soft Matter, 2010, 6(5), 994.
[http://dx.doi.org/10.1039/b921467d]
[35]
Hoogenboom, R.; Wiesbrock, F.; Leenen, M.A.M.; Thijs, H.M.L.; Huang, H.; Fustin, C-A.; Guillet, P.; Gohy, J-F.; Schubert, U.S. Synthesis and aqueous micellization of amphiphilic tetrablock terand quarterpoly 2-oxazolines. Macromolecules, 2007, 40(8), 2837-2843.
[http://dx.doi.org/10.1021/ma062725e]
[36]
Sosnik, A.; Carcaboso, A.; Chiappetta, D. Polymeric nanocarriers: new endeavors for the optimization of the technological aspects of drugs. Recent Pat. Biomed. Eng., 2008, 1(1), 43-59.
[http://dx.doi.org/10.2174/1874764710801010043]
[37]
Zdrahala, R.J.; Zdrahala, I.J. Biomedical applications of polyurethanes: A review of past promises, present realities, and a vibrant future. J. Biomater. Appl., 1999, 14(1), 67-90.
[http://dx.doi.org/10.1177/088532829901400104] [PMID: 10405885]
[38]
Caracciolo, P.C.; Thomas, V.; Vohra, Y.K.; Buffa, F.; Abraham, G.A. Electrospinning of novel biodegradable polyester urethanes and poly(ester urethane urea)s for soft tissue-engineering applications. J. Mater. Sci. Mater. Med., 2009, 20(10), 2129-2137.
[http://dx.doi.org/10.1007/s10856-009-3768-3] [PMID: 19434481]
[39]
Mallakpour, S.; Rafiemanzelat, F.; Faghihi, K. Synthesis and characterization of new self-colored thermally stable polyamide-ether-urethanes based on an azo dye and different diisocyanates. Dyes Pigments, 2007, 74(3), 713-722.
[http://dx.doi.org/10.1016/j.dyepig.2006.05.007]
[40]
Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Polyethylene glycol in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed., 2010, 49(36), 6288-6308.
[http://dx.doi.org/10.1002/anie.200902672] [PMID: 20648499]
[41]
Williams, D.F. The williams dictionary of biomaterials. In: Eng. Mat. Sci; Liverpool University Press, 1999.
[http://dx.doi.org/10.5949/UPO9781846314438]
[42]
Dharman, M.M.; Ahn, J-Y.; Lee, M-K.; Shim, H-L.; Kim, K-H.; Kim, I.; Park, D-W. A novel and faster route for the synthesis of polyether-polycarbonate from carbon dioxide and epoxide through microwave irradiation. Res. Chem. Intermed., 2008, 34(8-9), 835-844.
[http://dx.doi.org/10.1007/BF03036945]
[43]
Chatti, S.; Bortolussi, M.; Loupy, A.; Blais, J.C.; Bogdal, D.; Majdoub, M. Efficient synthesis of polyethers from isosorbide by microwave-assisted phase transfer catalysis. Eur. Polym. J., 2002, 38(9), 1851-1861.
[http://dx.doi.org/10.1016/S0014-3057(02)00071-X]
[44]
Chatti, S.; Bortolussi, M.; Loupy, A.; Blais, J.C.; Bogdal, D.; Roger, P. Synthesis of new polyethers derived from isoidide under phase‐transfer catalysis: Reactivity and selectivity under microwaves and classical heating. J. Appl. Polym. Sci., 2003, 90(5), 1255-1266.
[http://dx.doi.org/10.1002/app.12719]
[45]
Rosen, H.B.; Chang, J.; Wnek, G.E.; Linhardt, R.J.; Langer, R. Bioerodible polyanhydrides for controlled drug delivery. Biomaterials, 1983, 4(2), 131-133.
[http://dx.doi.org/10.1016/0142-9612(83)90054-6] [PMID: 6860755]
[46]
Vogel, B.M.; Mallapragada, S.K.; Narasimhan, B. Rapid synthesis of polyanhydrides by microwave polymerization. Macromol. Rapid Commun., 2004, 25(1), 330-333.
[http://dx.doi.org/10.1002/marc.200300156]
[47]
Babić, M.M.; Božić, B.Đ.; Božić, B.Đ.; Ušćumlić, G.S.; Tomić, S.L. The innovative combined microwave-assisted and photo-polymerization technique for synthesis of the novel degradable hydroxyethyl methacrylate/gelatin based scaffolds. Mater. Lett., 2018, 213, 236-240.
[http://dx.doi.org/10.1016/j.matlet.2017.11.087]
[48]
Lee, S.H.; Lee, K.W.; Gade, P.S.; Robertson, A.M.; Wang, Y. Microwave-assisted facile fabrication of porous polyglycerol sebacate scaffolds. J. Biomater. Sci. Polym. Ed., 2018, 29(7-9), 907-916.
[http://dx.doi.org/10.1080/09205063.2017.1335076] [PMID: 28569644]
[49]
Beşkardeş, I.G.; Demirtaş, T.T.; Durukan, M.D.; Gümüşderelioğlu, M. Microwave-assisted fabrication of chitosan-hydroxyapatite superporous hydrogel composites as bone scaffolds. J. Tissue Eng. Regen. Med., 2015, 9(11), 1233-1246.
[http://dx.doi.org/10.1002/term.1677] [PMID: 23239627]
[50]
Kaynak Bayrak, G.; Demirtaş, T.T.; Gümüşderelioğlu, M. Microwave-induced biomimetic approach for hydroxyapatite coatings of chitosan scaffolds. Carbohydr. Polym., 2017, 157, 803-813.
[http://dx.doi.org/10.1016/j.carbpol.2016.10.016] [PMID: 27987994]
[51]
Ruiz-Trejo, E.; Azad, A.K.; Irvine, J.T.S. A 60-second microwave-assisted synthesis of nickel foam and its application to the impregnation of porous scaffolds. J. Electrochem. Soc., 2015, 162(3), F273-F279.
[http://dx.doi.org/10.1149/2.0531503jes]
[52]
Makvandi, P.; Ali, G.W.; Della Sala, F.; Abdel-Fattah, W.I.; Borzacchiello, A. Hyaluronic acid/corn silk extract based injectable nanocomposite: A biomimetic antibacterial scaffold for bone tissue regeneration. Mater. Sci. Eng. C, 2020, 107, 110195.
[http://dx.doi.org/10.1016/j.msec.2019.110195] [PMID: 31761207]
[53]
Radwan-Pragłowska, J.; Piątkowski, M.; Janus, Ł.; Bogdał, D.; Matysek, D.; Cablik, V. 3D scaffolds prepared from acylated chitosan applicable in skin regeneration synthesis and characterization. IJPAC Int. J. Polym. Anal. Charact., 2019, 24(1), 75-86.
[http://dx.doi.org/10.1080/1023666X.2018.1553348]
[54]
Piątkowski, M.; Radwan-Pragłowska, J.; Janus, Ł.; Bogdał, D.; Matysek, D.; Cablik, V. Microwave-assisted synthesis and characterization of chitosan aerogels doped with Au-NPs for skin regeneration. Polym. Test., 2019, 73, 366-376.
[http://dx.doi.org/10.1016/j.polymertesting.2018.11.024]
[55]
İlhan, G.T.; Irmak, G.; Gümüşderelioğlu, M. Microwave assisted methacrylation of Kappa carrageenan: A bioink for cartilage tissue engineering. Int. J. Biol. Macromol., 2020, 164, 3523-3534.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.241] [PMID: 32890561]
[56]
Radwan-Pragłowska, J.; Piątkowski, M.; Janus, Ł.; Bogdał, D.; Matysek, D.; Cablik, V. Microwave-assisted synthesis and characterization of antioxidant chitosan-based aerogels for biomedical applications. IJPAC Int. J. Polym. Anal. Charact., 2018, 23(8), 721-729.
[http://dx.doi.org/10.1080/1023666X.2018.1504471]
[57]
Dharmalingam, K.; Padmavathi, G.; Kunnumakkara, A.B.; Anandalakshmi, R. Microwave-assisted synthesis of cellulose/zinc-sulfate calcium-phosphate (ZSCAP) nanocomposites for biomedical applications. Mater. Sci. Eng. C, 2019, 100, 535-543.
[http://dx.doi.org/10.1016/j.msec.2019.02.109] [PMID: 30948090]
[58]
Wang, H.; Zhang, X.; Mani, M.; Jaganathan, S.; Huang, Y.; Wang, C. Microwave-assisted dip coating of Aloe vera on metallocene polyethylene incorporated with nano-rods of hydroxyapaptite for bone tissue engineering. Coatings, 2017, 7(11), 182.
[http://dx.doi.org/10.3390/coatings7110182]
[59]
Kheradmandfard, M.; Noori-Alfesharaki, A.H.; Zargar-Kharazi, A.; Kheradmandfard, M.; Kashani-Bozorg, S.F. Ultra-fast microwave-assisted synthesis of diopside nanopowder for biomedical applications. Ceram. Int., 2018, 44(15), 18752-18758.
[http://dx.doi.org/10.1016/j.ceramint.2018.07.105]
[60]
Kalita, G.; Ayhan, M.E.; Sharma, S.; Shinde, S.M.; Ghimire, D.; Wakita, K.; Umeno, M.; Tanemura, M. Low temperature deposited graphene by surface wave plasma CVD as effective oxidation resistive barrier. Corros. Sci., 2014, 78, 183-187.
[http://dx.doi.org/10.1016/j.corsci.2013.09.013]
[61]
Kalita, G.; Kayastha, M.S.; Uchida, H.; Wakita, K.; Umeno, M. Direct growth of nanographene films by surface wave plasma chemical vapor deposition and their application in photovoltaic devices. RSC Adv., 2012, 2(8), 3225.
[http://dx.doi.org/10.1039/c2ra01024k]
[62]
Cook, J.P.; Goodall, G.W.; Khutoryanskaya, O.V.; Khutoryanskiy, V.V. Microwave-assisted hydrogel synthesis: a new method for crosslinking polymers in aqueous solutions. Macromol. Rapid Commun., 2012, 33(4), 332-336.
[http://dx.doi.org/10.1002/marc.201100742] [PMID: 22252908]
[63]
Wang, Y.; Ahmed, A.; Azam, A.; Bing, D.; Shan, Z.; Zhang, Z.; Tariq, M.K.; Sultana, J.; Mushtaq, R.T.; Mehboob, A.; Xiaohu, C.; Rehman, M. Applications of additive manufacturing (AM) in sustainable energy generation and battle against COVID-19 pandemic: The knowledge evolution of 3D printing. J. Manuf. Syst., 2021, 60, 709-733.
[http://dx.doi.org/10.1016/j.jmsy.2021.07.023] [PMID: 35068653]
[64]
Zhang, L.; Zheng, G.J.; Guo, Y.T.; Zhou, L.; Du, J.; He, H. Preparation of novel biodegradable pHEMA hydrogel for a tissue engineering scaffold by microwave-assisted polymerization. Asian Pac. J. Trop. Med., 2014, 7(2), 136-140.
[http://dx.doi.org/10.1016/S1995-7645(14)60009-2] [PMID: 24461527]
[65]
Javanbakht, S.; Shaabani, A. Stimuli-responsive bio-based quantum dots in biomedical applications. Nanoengineering of Biomaterials. Drug Delivery & Biomedical Applications, 2021, 2-2.
[http://dx.doi.org/10.1002/9783527832095.ch28]
[66]
Jeong, C.G.; Atala, A. 3D printing and biofabrication for load bearing tissue engineering. Adv. Exp. Med. Biol., 2015, 881, 3-14.
[http://dx.doi.org/10.1007/978-3-319-22345-2_1]
[67]
Kalita, G.; Wakita, K.; Umeno, M. Low temperature growth of graphene film by microwave assisted surface wave plasma CVD for transparent electrode application. RSC Adv., 2012, 2(7), 2815.
[http://dx.doi.org/10.1039/c2ra00648k]
[68]
Sood, A.; Das, S.S.; Dev, A.; Bhardwaj, D.; Kumar, A.; Agrawal, G.; Han, S.S. Fluorescent nanocomposites loaded hydrogels as a theranostic platform for advanced healthcare applications: Recent trends and opportunities. Eur. Polym. J., 2023, 196, 112323.
[http://dx.doi.org/10.1016/j.eurpolymj.2023.112323]
[69]
Xu, Q.; Tang, Y.; Zhu, P.; Zhang, W.; Zhang, Y.; Solis, O.S.; Hu, T.S.; Wang, J. Machine learning guided microwave-assisted quantum dot synthesis and an indication of residual H2O2 in human teeth. Nanoscale, 2022, 14(37), 13771-13778.
[http://dx.doi.org/10.1039/D2NR03718A] [PMID: 36102636]
[70]
Jovanovic, J.; Stankovic, B.; Adnadjevic, B. Kinetics of isothermal dehydration of equilibrium swollen PAAG hydrogel under the microwave heating conditions. J. Therm. Anal. Calorim., 2017, 127(1), 655-662.
[http://dx.doi.org/10.1007/s10973-016-5440-8]
[71]
Gajjar, J.A.; Vekariya, R.H.; Sharma, V.S.; Kher, S.N.; Rajani, D.P.; Parekh, H.M. Mesomorphic properties, microwave-assisted synthesis, and antimicrobial evaluation of novel Schiff base functionalized resorcin[4]arene derivatives. Mol. Cryst. Liq. Cryst., 2021, 715(1), 37-55.
[http://dx.doi.org/10.1080/15421406.2020.1856615]
[72]
Dąbrowska, S.; Chudoba, T.; Wojnarowicz, J.; Łojkowski, W. Current trends in the development of microwave reactors for the synthesis of nanomaterials in laboratories and industries: A review. Crystals, 2018, 8(10), 379.
[http://dx.doi.org/10.3390/cryst8100379]
[73]
Hashimi, A.S.; Ginting, R.T.; Chin, S.X.; Lau, K.S.; Nazhif Mohd Nohan, M.A.; Zakaria, S.; Yap, C.C.; Chia, C.H. Fast microwave-assisted synthesis of copper nanowires as reusable high-performance transparent conductive electrode. Curr. Appl. Phys., 2020, 20(1), 205-211.
[http://dx.doi.org/10.1016/j.cap.2019.11.006]
[74]
Zhang, C.; Pan, H.; Wang, X.; Sun, S.K. Microwave-assisted ultrafast fabrication of high-performance polypyrrole nanoparticles for photothermal therapy of tumors in vivo. Biomater. Sci., 2018, 6(10), 2750-2756.
[http://dx.doi.org/10.1039/C8BM00653A] [PMID: 30187038]
[75]
Kabir, E. Application of microwave heating in polymer synthesis: A review. Resul. Chem., 2023, 6, 101178.
[http://dx.doi.org/10.1016/j.rechem.2023.101178]
[76]
Zhang, Y.S.; Khademhosseini, A. Advances in engineering hydrogels. Science, 2017, 356(6337), eaaf3627.
[http://dx.doi.org/10.1126/science.aaf3627] [PMID: 28473537]
[77]
Allen, R.P.; Bolandparvaz, A.; Ma, J.A.; Manickam, V.A.; Lewis, J.S. Latent, immunosuppressive nature of polylactic- co-glycolic acid Microparticles. ACS Biomater. Sci. Eng., 2018, 4(3), 900-918.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00831] [PMID: 30555893]
[78]
Song, P.; Lei, Y.; Hu, X.; Wang, C.; Wang, J.; Tang, Y. Rapid one-step synthesis of carbon-supported platinum-copper nanoparticles with enhanced electrocatalytic activity via microwave-assisted heating. J. Colloid Interface Sci., 2020, 574, 421-429.
[http://dx.doi.org/10.1016/j.jcis.2020.04.041] [PMID: 32344232]
[79]
Zhu, J.; Marchant, R.E. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev. Med. Devices, 2011, 8(5), 607-626.
[http://dx.doi.org/10.1586/erd.11.27] [PMID: 22026626]
[80]
Florensa, M.; Llenas, M.; Medina-Gutiérrez, E.; Sandoval, S.; Tobías-Rossell, G. Key parameters for the rational design, synthesis, and functionalization of biocompatible mesoporous silica nanoparticles. Pharmaceutics, 2022, 14(12), 2703.
[http://dx.doi.org/10.3390/pharmaceutics14122703] [PMID: 36559195]
[81]
Fakhri, V.; Su, C.H.; Tavakoli Dare, M.; Bazmi, M.; Jafari, A.; Pirouzfar, V. Harnessing the power of polyol-based polyesters for biomedical innovations: Synthesis, properties, and biodegradation. J. Mater. Chem. B Mater. Biol. Med., 2023, 11(40), 9597-9629.
[http://dx.doi.org/10.1039/D3TB01186K] [PMID: 37740402]
[82]
Thakur, A.; Kumar, A.; Kaya, S.; Marzouki, R.; Zhang, F.; Guo, L. Recent advancements in surface modification, characterization and functionalization for enhancing the biocompatibility and corrosion resistance of biomedical implants. Coatings, 2022, 12(10), 1459.
[http://dx.doi.org/10.3390/coatings12101459]
[83]
Makadia, H.K.; Siegel, S.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 2011, 3(3), 1377-1397.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[84]
Gupta, D.; Jamwal, D.; Rana, D.; Katoch, A. Microwave synthesized nanocomposites for enhancing oral bioavailability of drugs. In: Applications of Nanocomposite Materials in Drug Delivery; Elsevier, 2018; pp. 619-632.
[http://dx.doi.org/10.1016/B978-0-12-813741-3.00027-3]
[85]
Hussain, M.; Khan, S.M.; Al-Khaled, K.; Ayadi, M.; Abbas, N.; Chammam, W. Performance analysis of biodegradable materials for orthopedic applications. Mater. Today Commun., 2022, 31, 103167.
[http://dx.doi.org/10.1016/j.mtcomm.2022.103167]
[86]
Chong, W.J.; Shen, S.; Li, Y.; Trinchi, A.; Pejak Simunec, D.; Kyratzis, I.L.; Sola, A.; Wen, C. Biodegradable PLA-ZnO nanocomposite biomaterials with antibacterial properties, tissue engineering viability, and enhanced biocompatibility. Smart. Mat. Manufact., 2023, 1, 100004.
[http://dx.doi.org/10.1016/j.smmf.2022.100004]
[87]
Sridhar, R.; Lakshminarayanan, R.; Madhaiyan, K.; Amutha Barathi, V.; Lim, K.H.C.; Ramakrishna, S. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem. Soc. Rev., 2015, 44(3), 790-814.
[http://dx.doi.org/10.1039/C4CS00226A] [PMID: 25408245]
[88]
Pina, S.; Oliveira, J.M.; Reis, R.L. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: A review. Adv. Mater., 2015, 27(7), 1143-1169.
[http://dx.doi.org/10.1002/adma.201403354] [PMID: 25580589]
[89]
Li, X.; Sun, Q.; Li, Q.; Kawazoe, N.; Chen, G. Functional hydrogels with tunable structures and properties for tissue engineering applications. Front Chem., 2018, 6, 499.
[http://dx.doi.org/10.3389/fchem.2018.00499] [PMID: 30406081]
[90]
Fumakia, M.; Ho, E.A. Nanoparticles encapsulated with LL37 and serpin A1 promotes wound healing and synergistically enhances antibacterial activity. Mol. Pharm., 2016, 13(7), 2318-2331.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00099] [PMID: 27182713]
[91]
Xing, F.; Ma, H.; Yu, P.; Zhou, Y.; Luo, R.; Xiang, Z.; Maria Rommens, P.; Duan, X.; Ritz, U. Multifunctional metal-organic frameworks for wound healing and skin regeneration. Mater. Des., 2023, 233, 112252.
[http://dx.doi.org/10.1016/j.matdes.2023.112252]
[92]
Perale, G.; Veglianese, P.; Rossi, F.; Peviani, M.; Santoro, M.; Llupi, D.; Micotti, E.; Forloni, G.; Masi, M. In situ agar-carbomer hydrogel polycondensation: A chemical approach to regenerative medicine. Mater. Lett., 2011, 65(11), 1688-1692.
[http://dx.doi.org/10.1016/j.matlet.2011.02.036]
[93]
Mou, X.; Wu, Q.; Zhang, Z.; Liu, Y.; Zhang, J.; Zhang, C.; Chen, X.; Fan, K.; Liu, H. Nanozymes for regenerative medicine. Small Methods, 2022, 6(11), 2200997.
[http://dx.doi.org/10.1002/smtd.202200997] [PMID: 36202750]
[94]
Kar, A.; Ahamad, N.; Dewani, M.; Awasthi, L.; Patil, R.; Banerjee, R. Wearable and implantable devices for drug delivery: Applications and challenges. Biomaterials, 2022, 283, 121435.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121435] [PMID: 35227964]
[95]
Miao, T.; Wang, J.; Zeng, Y.; Liu, G.; Chen, X. Polysaccharide‐based controlled release systems for therapeutics delivery and tissue engineering: from bench to bedside. Adv. Sci., 2018, 5(4), 1700513.
[http://dx.doi.org/10.1002/advs.201700513] [PMID: 29721408]
[96]
Moradi Alvand, Z.; Rajabi, H.R.; Mirzaei, A.; Masoumiasl, A.; Sadatfaraji, H. Rapid and green synthesis of cadmium telluride quantum dots with low toxicity based on a plant-mediated approach after microwave and ultrasonic assisted extraction: Synthesis, characterization, biological potentials and comparison study. Mater. Sci. Eng. C, 2019, 98, 535-544.
[http://dx.doi.org/10.1016/j.msec.2019.01.010] [PMID: 30813055]
[97]
DuFort, C.C.; Paszek, M.J.; Weaver, V.M. Balancing forces: architectural control of mechanotransduction. Nat. Rev. Mol. Cell Biol., 2011, 12(5), 308-319.
[http://dx.doi.org/10.1038/nrm3112] [PMID: 21508987]
[98]
Legant, W.R.; Miller, J.S.; Blakely, B.L.; Cohen, D.M.; Genin, G.M.; Chen, C.S. Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat. Methods, 2010, 7(12), 969-971.
[http://dx.doi.org/10.1038/nmeth.1531] [PMID: 21076420]
[99]
Han, Y.; Tang, J.; Liu, S.; Zhao, X.; Wang, R.; Xia, J.; Qin, C.; Chen, H.; Lin, Q. Cellular microenvironment-sensitive drug eluting coating on intraocular lens for enhanced posterior capsular opacification prevention and in vivo biocompatibility. ACS Appl. Bio Mater., 2020, 3(6), 3582-3593.
[http://dx.doi.org/10.1021/acsabm.0c00331] [PMID: 35025228]
[100]
Zhang, Y.; Si, H.; Liu, S.; Jiang, Z.; Zhang, J.; Gong, C. Facile synthesis of BN/Ni nanocomposites for effective regulation of microwave absorption performance. J. Alloys Compd., 2021, 850, 156680.
[http://dx.doi.org/10.1016/j.jallcom.2020.156680]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy