Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Research Article

Zinc Gluconate Supplementation Protects against Methotrexate-induced Neurotoxicity in Rats via Downregulation of Oxidative Stress, Inflammation and Neuron-specific Enolase Reactivity in Rats

Author(s): Anthony T. Olofinnade, Adejoke Y. Onaolapo, Olufemi B. Okunola and Olakunle J. Onaolapo*

Volume 13, Issue 3, 2024

Published on: 27 June, 2024

Page: [159 - 173] Pages: 15

DOI: 10.2174/0122115501305679240612095751

Open Access Journals Promotions 2
Abstract

Background: The global increase in the incidence of cancers, as well as neurotoxicity induced by cancer therapy, has necessitated research into agents that are neuroprotective without impeding cancer treatment.

Objective: The objective of this study is to investigate the neuroprotective effects of feed-added zinc on methotrexate-induced changes in rats.

Methods: Animals were grouped into normal control and methotrexate control, which were fed rodent chow and three groups fed zinc gluconate incorporated into the diet at 25, 50 and 100 mg/kg, respectively. Animals in the first group, in addition to normal diet, received intraperitoneal (i.p.) injections of saline at 2 ml/ kg, while rats in the four other groups were administered methotrexate i.p. at 20 mg/kg/day on the last three days (19-21) of the experiment. On day 22, rats were exposed to the behavioural paradigms, following which they were euthanised and blood was taken for biochemical assays. Sections of the hippocampus were homogenised for the assessment of neurotransmitters or processed for histological and immunohistochemical studies.

Results: Dietary zinc supplements at certain concentrations protected against the development of methotrexate-induced alteration in body weight, food intake, memory histomorphology, and neuron- specific enolase reactivity.

Conclusion: Dietary zinc supplementation was protective against neurotoxicity induced following methotrexate administration, with possible mechanisms being the down-regulation of oxidative stress, inflammation and neuron-specific enolase reactivity.

Keywords: Methotrexate, chemotherapy, cognitive deficit, neurotoxicity, neuron specific enolase, zinc.

Graphical Abstract
[1]
Koźmiński P, Halik PK, Chesori R, Gniazdowska E. Overview of dual-acting drug methotrexate in different neurological diseases, autoimmune pathologies and cancers. Int J Mol Sci 2020; 21(10): 3483.
[http://dx.doi.org/10.3390/ijms21103483] [PMID: 32423175]
[2]
Taha M, Eldemerdash OM, Elshaffei IM, Yousef EM, Senousy MA. Dexmedetomidine attenuates methotrexate-induced neurotoxicity and memory deficits in rats through improving hippocampal neurogenesis: The role of miR-15a/ROCK-1/ERK1/2/CREB/BDNF pathway modulation. Int J Mol Sci 2023; 24(1): 766.
[http://dx.doi.org/10.3390/ijms24010766] [PMID: 36614208]
[3]
Sritawan N, Suwannakot K, Naewla S, et al. Effect of metformin treatment on memory and hippocampal neurogenesis decline correlated with oxidative stress induced by methotrexate in rats. Biomed Pharmacother 2021; 144: 112280.
[http://dx.doi.org/10.1016/j.biopha.2021.112280] [PMID: 34628167]
[4]
Bhojwani D, Sabin ND, Pei D, et al. Methotrexate-induced neurotoxicity and leukoencephalopathy in childhood acute lymphoblastic leukemia. J Clin Oncol 2014; 32(9): 949-59.
[http://dx.doi.org/10.1200/JCO.2013.53.0808] [PMID: 24550419]
[5]
Stone JB, DeAngelis LM. Cancer-treatment-induced neurotoxicity—focus on newer treatments. Nat Rev Clin Oncol 2016; 13(2): 92-105.
[http://dx.doi.org/10.1038/nrclinonc.2015.152] [PMID: 26391778]
[6]
Naewla S, Sirichoat A, Pannangrong W, Chaisawang P, Wigmore P, Welbat JU. Hesperidin alleviates methotrexate-induced memory deficits via hippocampal neurogenesis in adult rats. Nutrients 2019; 11(4): 936.
[http://dx.doi.org/10.3390/nu11040936] [PMID: 31027240]
[7]
Mateos MK, Marshall GM, Barbaro PM, et al. Methotrexate-related central neurotoxicity: clinical characteristics, risk factors and genome-wide association study in children treated for acute lymphoblastic leukemia. Haematologica 2021; 107(3): 635-43.
[http://dx.doi.org/10.3324/haematol.2020.268565] [PMID: 33567813]
[8]
Taha M, Eldemerdash OM, Elshaffei IM, Yousef EM, Soliman AS, Senousy MA. Apigenin attenuates hippocampal microglial activation and restores cognitive function in methotrexate-treated rats: Targeting the miR-15a/ROCK-1/ERK1/2 pathway. Mol Neurobiol 2023; 60(7): 3770-87.
[http://dx.doi.org/10.1007/s12035-023-03299-7] [PMID: 36943623]
[9]
Sirichoat A, Anosri T, Kaewngam S, et al. Neuroprotective properties of chrysin on decreases of cell proliferation, immature neurons and neuronal cell survival in the hippocampal dentate gyrus associated with cognition induced by methotrexate. Neurotoxicology 2022; 92: 15-24.
[http://dx.doi.org/10.1016/j.neuro.2022.06.010] [PMID: 35779630]
[10]
Cavalcanti CL, Gonçalves MCR, Alves AF, et al. Antidepressant, anxiolytic and neuroprotective activities of two zinc compounds in diabetic rats. Front Neurosci 2020; 13: 1411.
[http://dx.doi.org/10.3389/fnins.2019.01411] [PMID: 32038128]
[11]
Franco C, Canzoniero LMT. Zinc homeostasis and redox alterations in obesity. Front Endocrinol 2024; 14: 1273177.
[http://dx.doi.org/10.3389/fendo.2023.1273177] [PMID: 38260166]
[12]
Grønli J, Soulé J, Bramham CR. Sleep and protein synthesis-dependent synaptic plasticity: Impacts of sleep loss and stress. Front Behav Neurosci 2014; 7: 224.
[http://dx.doi.org/10.3389/fnbeh.2013.00224] [PMID: 24478645]
[13]
Hagmeyer S, Haderspeck JC, Grabrucker AM. Behavioral impairments in animal models for zinc deficiency. Front Behav Neurosci 2015; 8: 443.
[http://dx.doi.org/10.3389/fnbeh.2014.00443] [PMID: 25610379]
[14]
Portbury S, Adlard P. Zinc signal in brain diseases. Int J Mol Sci 2017; 18(12): 2506.
[http://dx.doi.org/10.3390/ijms18122506] [PMID: 29168792]
[15]
Blanco-Alvarez VM, Soto-Rodriguez G, Gonzalez-Barrios JA, et al. Prophylactic subacute administration of zinc increases CCL2, CCR2, FGF2, and IGF-1 expression and prevents the long-term memory loss in a rat model of cerebral hypoxia-ischemia. Neural Plast 2015; 2015: 1-15.
[http://dx.doi.org/10.1155/2015/375391] [PMID: 26355725]
[16]
Tomas-Sanchez C, Blanco-Alvarez VM, Martinez-Fong D, et al. Prophylactic zinc and therapeutic selenium administration increases the antioxidant enzyme activity in the rat temporoparietal cortex and improves memory after a transient hypoxia-ischemia. Oxid Med Cell Longev 2018; 2018: 1-17.
[http://dx.doi.org/10.1155/2018/9416432] [PMID: 30258527]
[17]
Aguilar-Peralta AK, Gonzalez-Vazquez A, Tomas-Sanchez C, et al. Prophylactic zinc administration combined with swimming exercise prevents cognitive-emotional disturbances and tissue injury following a transient hypoxic-ischemic insult in the rat. Behav Neurol 2022; 2022: 1-20.
[http://dx.doi.org/10.1155/2022/5388944] [PMID: 35637877]
[18]
Ali M, Aziz T. The combination of zinc and melatonin enhanced neuroprotection and attenuated neuropathy in oxaliplatin-induced neurotoxicity. Drug Des Devel Ther 2022; 16: 3447-63.
[http://dx.doi.org/10.2147/DDDT.S385914] [PMID: 36217449]
[19]
Tran CD, Sundar S, Howarth GS. Dietary zinc supplementation and methotrexate-induced small intestinal mucositis in metallothionein-knockout and wild-type mice. Cancer Biol Ther 2009; 8(17): 1662-7.
[http://dx.doi.org/10.4161/cbt.8.17.9293] [PMID: 19633421]
[20]
Musa NS, Howarth GS, Tran CD. Zinc supplementation alone is effective for partial amelioration of methotrexate-induced intestinal damage. Altern Ther Health Med 2015; 21 (Suppl. 2): 22-31.
[PMID: 26308757]
[21]
Pradhan R, Koirala S, Adhikari N, et al. Protection against methotrexate induced hepato-renal toxicity in rats by zinc and its combination with vitamin C and vitamin E. Medical Safety & Global Health 2016; 5(2): 2574-0407.
[22]
Hassanein EHM, Kamel EO, Ali FEM, Ahmed MAR. Berberine and/or zinc protect against methotrexate-induced intestinal damage: Role of GSK-3β/NRF2 and JAK1/STAT-3 signaling pathways. Life Sci 2021; 281: 119754.
[http://dx.doi.org/10.1016/j.lfs.2021.119754] [PMID: 34174323]
[23]
Onaolapo OJ, Jegede OR, Adegoke O, Ayinde MO, Akeredolu OM, Onaolapo AY. Dietary zinc supplement militates against ketamine-induced behaviours by age-dependent modulation of oxidative stress and acetylcholinesterase activity in mice. Pharmacol Rep 2020; 72(1): 55-66. a
[http://dx.doi.org/10.1007/s43440-019-00003-2] [PMID: 32016846]
[24]
Onaolapo OJ, Ademakinwa OQ, Olalekan TO, Onaolapo AY. Ketamine-induced behavioural and brain oxidative changes in mice: An assessment of possible beneficial effects of zinc as mono- or adjunct therapy. Psychopharmacology 2017; 234(18): 2707-25.
[http://dx.doi.org/10.1007/s00213-017-4666-x] [PMID: 28612134]
[25]
Elsawy H, Alzahrani AM, Alfwuaires M, Abdel-Moneim AM, Khalil M. Beneficial role of naringin against methotrexate-induced injury to rat testes: Biochemical and ultrastructural analyses. Redox Rep 2022; 27(1): 158-66.
[http://dx.doi.org/10.1080/13510002.2022.2101832] [PMID: 35861275]
[26]
Onaolapo AY, Ojo FO, Onaolapo OJ. Biflavonoid quercetin protects against cyclophosphamide–induced organ toxicities via modulation of inflammatory cytokines, brain neurotransmitters, and astrocyte immunoreactivity. Food Chem Toxicol 2023; 178: 113879.
[http://dx.doi.org/10.1016/j.fct.2023.113879] [PMID: 37301500]
[27]
Onaolapo AY, Odetunde I, Akintola AS, et al. Dietary composition modulates impact of food-added monosodium glutamate on behaviour, metabolic status and cerebral cortical morphology in mice. Biomed Pharmacother 2019; 109: 417-28.
[http://dx.doi.org/10.1016/j.biopha.2018.10.172] [PMID: 30399577]
[28]
Oj O, T A, O A, C A, Ay O. Zinc tempers haloperidol-induced behavioural changes in healthy mice. Int J Neurosci Behav Sci 2016; 4(2): 21-31.
[http://dx.doi.org/10.13189/ijnbs.2016.040201]
[29]
Olofinnade AT, Onaolapo AY, Onaolapo OJ. Graded effects of dry-feed added sodium benzoate/ascorbic acid combination on neurobehaviour, oxidative stress, and markers of inflammation in mice. Curr Bioact Compd 2024; 20(1): e060723218474.
[http://dx.doi.org/10.2174/1573407219666230706145617]
[30]
Onaolapo AY, Sulaiman H, Olofinnade AT, Onaolapo OJ. Antidepressant-like potential of silymarin and silymarin-sertraline combination in mice: Highlighting effects on behaviour, oxidative stress, and neuroinflammation. World J Pharmacol 2022; 11(3): 27-47. [DOI: 10.5497/wjp.v11.i3.27].
[http://dx.doi.org/10.5497/wjp.v11.i3.27]
[31]
Onaolapo OJ, Olofinnade AT, Ojo FO, Falade J, Onaolapo AY. Prepubertal continuous dietary folate fortification enhances the brain function of adult mice by modulating antioxidant status, inflammation, and brain neurotransmitter levels. Antiinflamm Antiallergy Agents Med Chem 2023; 22(3): 198-209.
[http://dx.doi.org/10.2174/0118715230249814230925060325] [PMID: 37861002]
[32]
Olofinnade AT, Onaolapo TM, Oladimeji S, et al. An evaluation of the effects of pyridoxal phosphate in chlorpromazineinduced parkinsonism using mice. Cent Nerv Syst Agents Med Chem 2020; 20(1): 13-25. b
[http://dx.doi.org/10.2174/1871524920666200120142508] [PMID: 31987026]
[33]
Falade J, Onaolapo AY, Onaolapo OJ. Evaluation of the behavioural, antioxidative and histomorphological effects of folic acid-supplemented diet in dexamethasone-induced depression in mice. Cent Nerv Syst Agents Med Chem 2021; 21(1): 73-81.
[http://dx.doi.org/10.2174/1871524921666210114125355] [PMID: 33459248]
[34]
Onaolapo AY, Onaolapo OJ, Nwoha PU. Alterations in behaviour, cerebral cortical morphology and cerebral oxidative stress markers following aspartame ingestion. J Chem Neuroanat 2016; 78: 42-56.
[http://dx.doi.org/10.1016/j.jchemneu.2016.08.006] [PMID: 27565676]
[35]
Onaolapo AY, Onaolapo OJ, Nwoha PU. Aspartame and the hippocampus: Revealing a bi-directional, dose/time-dependent behavioural and morphological shift in mice. Neurobiol Learn Mem 2017; 139: 76-88.
[http://dx.doi.org/10.1016/j.nlm.2016.12.021] [PMID: 28049023]
[36]
Khorsandi H, Nikpayam O, Yousefi R, et al. Zinc supplementation improves body weight management, inflammatory biomarkers and insulin resistance in individuals with obesity: A randomized, placebo-controlled, double-blind trial. Diabetol Metab Syndr 2019; 11(1): 101.
[http://dx.doi.org/10.1186/s13098-019-0497-8] [PMID: 31827626]
[37]
Thoen RU, Barther NN, Schemitt E, et al. Zinc supplementation reduces diet-induced obesity and improves insulin sensitivity in rats. Appl Physiol Nutr Metab 2019; 44(6): 580-6.
[http://dx.doi.org/10.1139/apnm-2018-0519] [PMID: 30339765]
[38]
Abdollahi S, Toupchian O, Jayedi A, Meyre D, Tam V, Soltani S. Zinc supplementation and body weight: A systematic review and dose–response meta-analysis of randomized controlled trials. Adv Nutr 2020; 11(2): 398-411.
[http://dx.doi.org/10.1093/advances/nmz084] [PMID: 31504083]
[39]
Hasani M, Saidpour A, Irandoost P, et al. Beneficial effects of Se/Zn co-supplementation on body weight and adipose tissue inflammation in high-fat diet-induced obese rats. Food Sci Nutr 2021; 9(7): 3414-25.
[http://dx.doi.org/10.1002/fsn3.2203] [PMID: 34631042]
[40]
Moghadam AR, Tutunchi S, Namvaran-Abbas-Abad A, et al. Pre-administration of turmeric prevents methotrexate-induced liver toxicity and oxidative stress. BMC Complement Altern Med 2015; 15(1): 246.
[http://dx.doi.org/10.1186/s12906-015-0773-6] [PMID: 26199067]
[41]
Boukhettala N, Leblond J, Claeyssens S, et al. Methotrexate induces intestinal mucositis and alters gut protein metabolism independently of reduced food intake. Am J Physiol Endocrinol Metab 2009; 296(1): E182-90.
[http://dx.doi.org/10.1152/ajpendo.90459.2008] [PMID: 18984853]
[42]
Olechnowicz J, Tinkov A, Skalny A, Suliburska J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci 2018; 68(1): 19-31.
[http://dx.doi.org/10.1007/s12576-017-0571-7] [PMID: 28965330]
[43]
Seigers R, Schagen SB, Coppens CM, et al. Methotrexate decreases hippocampal cell proliferation and induces memory deficits in rats. Behav Brain Res 2009; 201(2): 279-84.
[http://dx.doi.org/10.1016/j.bbr.2009.02.025] [PMID: 19428645]
[44]
Suwannakot K, Sritawan N, Naewla S, et al. Melatonin attenuates methotrexate-induced reduction of antioxidant activity related to decreases of neurogenesis in adult rat hippocampus and prefrontal cortex. Oxid Med Cell Longev 2022; 2022: 1-13.
[http://dx.doi.org/10.1155/2022/1596362] [PMID: 35873801]
[45]
Cruz-Carreras MT, Chaftari P, Shamsnia A, Guha-Thakurta N, Gonzalez C. Methotrexate-induced leukoencephalopathy presenting as stroke in the emergency department. Clin Case Rep 2017; 5(10): 1644-8.
[http://dx.doi.org/10.1002/ccr3.1110] [PMID: 29026563]
[46]
Cole PD, Vijayanathan V, Ali NF, et al. Memantine protects rats treated with intrathecal methotrexate from developing spatial memory deficits. Clin Cancer Res 2013; 19(16): 4446-54.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1179] [PMID: 23833301]
[47]
Wen J, Maxwell RR, Wolf AJ, Spira M, Gulinello ME, Cole PD. Methotrexate causes persistent deficits in memory and executive function in a juvenile animal model. Neuropharmacology 2018; 139: 76-84.
[http://dx.doi.org/10.1016/j.neuropharm.2018.07.007] [PMID: 29990472]
[48]
Onaolapo OJ, Onaolapo AY. Subchronic oral bromocriptine methanesulfonate enhances open field novelty-induced behavior and spatial memory in male swiss albino mice. Neurosci J 2013; 2013: 1-5.
[http://dx.doi.org/10.1155/2013/948241] [PMID: 26317106]
[49]
Kelley AE, Cador M, Stinus L. Behavioral analysis of the effect of substance P injected into the ventral mesencephalon on investigatory and spontaneous motor behavior in the rat. Psychopharmacology 1985; 85(1): 37-46.
[http://dx.doi.org/10.1007/BF00427319] [PMID: 2580328]
[50]
Mink JW, Thach WT. Basal ganglia intrinsic circuits and their role in behavior. Curr Opin Neurobiol 1993; 3(6): 950-7.
[http://dx.doi.org/10.1016/0959-4388(93)90167-W] [PMID: 8124079]
[51]
Onaolapo OJ, Onaolapo AY. Sex differential effect of acute caffeine administration on open field novelty induced behaviour in Swiss albino mice. J Neurosci Behav Health 2011; 3(8): 99-106.
[52]
Choi S, Hong DK, Choi BY, Suh SW. Zinc in the brain: Friend or Foe? Int J Mol Sci 2020; 21(23): 8941.
[http://dx.doi.org/10.3390/ijms21238941] [PMID: 33255662]
[53]
Ngala EM, Ninsiima HI, Valladares MB, Anatole PC. Zinc and linoleic acid protect against behavioural deficits in rat model of parkinsonism induced with rotenone Afr. J Biomed Res 2020; 23: 247-54.
[54]
Sensi SL, Yin HZ, Carriedo SG, Rao SS, Weiss JH. Preferential Zn 2+ influx through Ca 2+ -permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc Natl Acad Sci USA 1999; 96(5): 2414-9.
[http://dx.doi.org/10.1073/pnas.96.5.2414] [PMID: 10051656]
[55]
Levenson CW. Zinc supplementation: Neuroprotective or neurotoxic? Nutr Rev 2005; 63(4): 122-5.
[http://dx.doi.org/10.1111/j.1753-4887.2005.tb00130.x] [PMID: 15869126]
[56]
Cope EC, Morris DR, Scrimgeour AG, Levenson CW. Use of zinc as a treatment for traumatic brain injury in the rat: Effects on cognitive and behavioral outcomes. Neurorehabil Neural Repair 2012; 26(7): 907-13.
[http://dx.doi.org/10.1177/1545968311435337] [PMID: 22331212]
[57]
Li Z, Liu Y, Wei R, Yong VW, Xue M. The important role of zinc in neurological diseases. Biomolecules 2022; 13(1): 28.
[http://dx.doi.org/10.3390/biom13010028] [PMID: 36671413]
[58]
Amada N, Kakumoto Y, Futamura T, Maeda K. Prenatal methotrexate injection increases behaviors possibly associated with depression and/or autism in rat offspring; A new animal model for mental disorder, based on folate metabolism deficit during pregnancy. Neuropsychopharmacol Rep 2022; 42(3): 263-71.
[http://dx.doi.org/10.1002/npr2.12255] [PMID: 35502620]
[59]
Wen J, Patel C, Diglio F, et al. Cognitive impairment persists at least 1 year after juvenile rats are treated with methotrexate. Neuropharmacology 2022; 206: 108939.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108939] [PMID: 34986414]
[60]
Gower-Winter SD, Levenson CW. Zinc in the central nervous system: From molecules to behavior. Biofactors 2012; 38(3): 186-93.
[http://dx.doi.org/10.1002/biof.1012] [PMID: 22473811]
[61]
Petrilli MA, Kranz TM, Kleinhaus K, et al. The emerging role for zinc in depression and psychosis. Front Pharmacol 2017; 8: 414. a
[http://dx.doi.org/10.3389/fphar.2017.00414] [PMID: 28713269]
[62]
Madhyastha S, Somayaji SN, Rao MS, Nalini K, Bairy KL. Effect of intracerebroventricular methotrexate on brain amines. Indian J Physiol Pharmacol 2005; 49(4): 427-35.
[PMID: 16579396]
[63]
Madhyastha S, Somayaji SN, Rao MS, Nalini K, Bairy KL. Hippocampal brain amines in methotrexate-induced learning and memory deficit. Can J Physiol Pharmacol 2002; 80(11): 1076-84.
[http://dx.doi.org/10.1139/y02-135] [PMID: 12489927]
[64]
Ryczko D, Dubuc R. Dopamine and the brainstem locomotor networks: From lamprey to human. Front Neurosci 2017; 11: 295.
[http://dx.doi.org/10.3389/fnins.2017.00295] [PMID: 28603482]
[65]
Baldwin D, Rudge S. The role of serotonin in depression and anxiety. Int Clin Psychopharmacol 1995; 9 (Suppl. 4): 41-6.
[http://dx.doi.org/10.1097/00004850-199501004-00006] [PMID: 7622823]
[66]
Schetz JA, Sibley DR. Zinc allosterically modulates antagonist binding to cloned D1 and D2 dopamine receptors. J Neurochem 1997; 68(5): 1990-7.
[http://dx.doi.org/10.1046/j.1471-4159.1997.68051990.x] [PMID: 9109525]
[67]
Gill CH, Peters JA, Lambert JJ. An electrophysiological investigation of the properties of a murine recombinant 5-HT 3 receptor stably expressed in HEK 293 cells. Br J Pharmacol 1995; 114(6): 1211-21.
[http://dx.doi.org/10.1111/j.1476-5381.1995.tb13335.x] [PMID: 7620711]
[68]
Cherasse Y, Urade Y. Dietary zinc acts as a sleep modulator. Int J Mol Sci 2017; 18(11): 2334.
[http://dx.doi.org/10.3390/ijms18112334] [PMID: 29113075]
[69]
Murawska-Ciałowicz E, Wiatr M, Ciałowicz M, et al. BDNF impact on biological markers of depression—role of physical exercise and training. Int J Environ Res Public Health 2021; 18(14): 7553.
[http://dx.doi.org/10.3390/ijerph18147553] [PMID: 34300001]
[70]
Yang Y, Jing XP, Zhang SP, et al. High dose zinc supplementation induces hippocampal zinc deficiency and memory impairment with inhibition of BDNF signaling. PLoS One 2013; 8(1): e55384.
[http://dx.doi.org/10.1371/journal.pone.0055384] [PMID: 23383172]
[71]
Famurewa AC, Ufebe OG, Egedigwe CA, Nwankwo OE, Obaje GS. Virgin coconut oil supplementation attenuates acute chemotherapy hepatotoxicity induced by anticancer drug methotrexate via inhibition of oxidative stress in rats. Biomed Pharmacother 2017; 87: 437-42.
[http://dx.doi.org/10.1016/j.biopha.2016.12.123] [PMID: 28068634]
[72]
Aslankoc R, Savran M, Doğuç DK, Sevimli M, Tekin H, Kaynak M. Ameliorating effects of ramelteon on oxidative stress, inflammation, apoptosis, and autophagy markers in methotrexate-induced cerebral toxicity. Iran J Basic Med Sci 2022; 25(10): 1183-9.
[http://dx.doi.org/10.22038/ijbms.2022.62955.13913] [PMID: 36311194]
[73]
Cutolo M, Bisso A, Sulli A, et al. Antiproliferative and antiinflammatory effects of methotrexate on cultured differentiating myeloid monocytic cells (THP-1) but not on synovial macrophages from patients with rheumatoid arthritis. J Rheumatol 2000; 27(11): 2551-7.
[PMID: 11093433]
[74]
Phillips DC, Woollard KJ, Griffiths HR. The anti-inflammatory actions of methotrexate are critically dependent upon the production of reactive oxygen species. Br J Pharmacol 2003; 138(3): 501-11.
[http://dx.doi.org/10.1038/sj.bjp.0705054] [PMID: 12569075]
[75]
Olsen NJ, Spurlock CF III, Aune TM. Methotrexate induces production of IL-1 and IL-6 in the monocytic cell line U937. Arthritis Res Ther 2014; 16(1): R17.
[http://dx.doi.org/10.1186/ar4444] [PMID: 24444433]
[76]
Abdel-Daim MM, Khalifa HA, Abushouk AI, Dkhil MA, Al-Quraishy SA. Diosmin attenuates methotrexate-induced hepatic, renal, and cardiac injury: A biochemical and histopathological study in mice. Oxid Med Cell Longev 2017; 2017: 1-10.
[http://dx.doi.org/10.1155/2017/3281670] [PMID: 28819543]
[77]
Al-Taher AY, Morsy MA, Rifaai RA, Zenhom NM, Abdel-Gaber SA. Paeonol attenuates methotrexate-induced cardiac toxicity in rats by inhibiting oxidative stress and suppressing TLR4-induced NF- κ B inflammatory pathway. Mediators Inflamm 2020; 2020: 1-10.
[http://dx.doi.org/10.1155/2020/8641026] [PMID: 32104151]
[78]
Prasad AS. Zinc is an antioxidant and anti-inflammatory agent: Its role in human health. Front Nutr 2014; 1: 14.
[http://dx.doi.org/10.3389/fnut.2014.00014] [PMID: 25988117]
[79]
Jarosz M, Olbert M, Wyszogrodzka G, Młyniec K, Librowski T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology 2017; 25(1): 11-24.
[http://dx.doi.org/10.1007/s10787-017-0309-4] [PMID: 28083748]
[80]
Marreiro D, Cruz K, Morais J, Beserra J, Severo J, de Oliveira A. Zinc and oxidative stress: Current mechanisms. Antioxidants 2017; 6(2): 24.
[http://dx.doi.org/10.3390/antiox6020024] [PMID: 28353636]
[81]
Welbat JU, Naewla S, Pannangrong W, Sirichoat A, Aranarochana A, Wigmore P. Neuroprotective effects of hesperidin against methotrexate-induced changes in neurogenesis and oxidative stress in the adult rat. Biochem Pharmacol 2020; 178: 114083.
[http://dx.doi.org/10.1016/j.bcp.2020.114083] [PMID: 32522593]
[82]
Ondruschka B, Pohlers D, Sommer G, et al. S100B and NSE as useful postmortem biochemical markers of traumatic brain injury in autopsy cases. J Neurotrauma 2013; 30(22): 1862-71.
[http://dx.doi.org/10.1089/neu.2013.2895] [PMID: 23796187]
[83]
Sahu S, Nag DS, Swain A, Samaddar DP. Biochemical changes in the injured brain. World J Biol Chem 2017; 8(1): 21-31.
[http://dx.doi.org/10.4331/wjbc.v8.i1.21] [PMID: 28289516]
[84]
Haque A, Polcyn R, Matzelle D, Banik NL. New insights into the role of neuron-specific enolase in neuro-inflammation, neurodegeneration, and neuroprotection. Brain Sci 2018; 8(2): 33.
[http://dx.doi.org/10.3390/brainsci8020033] [PMID: 29463007]
[85]
Miao Q, Cai B, Gao X, Su Z, Zhang J. The establishment of neuron-specific enolase reference interval for the healthy population in southwest China. Sci Rep 2020; 10(1): 6332.
[http://dx.doi.org/10.1038/s41598-020-63331-x] [PMID: 32286436]
[86]
Corona C, Masciopinto F, Silvestri E, et al. Dietary zinc supplementation of 3xTg-AD mice increases BDNF levels and prevents cognitive deficits as well as mitochondrial dysfunction. Cell Death Dis 2010; 1(10): e91.
[http://dx.doi.org/10.1038/cddis.2010.73] [PMID: 21368864]
[87]
Liu HY, Gale JR, Reynolds IJ, Weiss JH, Aizenman E. The multifaceted roles of zinc in neuronal mitochondrial dysfunction. Biomedicines 2021; 9(5): 489.
[http://dx.doi.org/10.3390/biomedicines9050489] [PMID: 33946782]
[88]
Duffey CA, Nicholls S, Mantilla CB, Fogarty MJ, Sieck GC. Effect of BDNF on mitochondrial morphology and protein expression in NSC-34 cells. FASEB J 2018; 43: 743-6.

© 2024 Bentham Science Publishers | Privacy Policy