Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

The Catalysts-Based Synthetic Approaches to Quinolines: A Review

Author(s): Shrishti Tripathi, Rajnish Kumar*, Avijit Mazumder, Salahuddin, Neelima Kukreti, Arvind Kumar and Saurabh Singh

Volume 20, Issue 10, 2024

Published on: 24 June, 2024

Page: [921 - 937] Pages: 17

DOI: 10.2174/0115734064315729240610045009

Price: $65

Open Access Journals Promotions 2
Abstract

The most common heterocyclic aromatic molecule with potential uses in industry and medicine is quinoline. Its chemical formula is C9H7N, and it has a distinctive double-ring structure with a pyridine moiety fused with a benzene ring. Various synthetic approaches synthesize quinoline derivatives. These approaches include solvent-free synthetic approach, mechanochemistry, ultrasonic, photolytic synthetic approach, and microwave and catalytic synthetic approaches. One of the important synthetic approaches is a catalyst-based synthetic approach in which different catalysts are used such as silver-based catalysts, titanium-based nanoparticle catalysts, new iridium catalysts, barium-based catalysts, iron-based catalysts, gold-based catalysts, nickel-based catalyst, some metal-based photocatalyst, α-amylase biocatalyst, by using multifunctional metal-organic framework-metal nanoparticle tandem catalyst etc. In the present study, we summarized different catalyst-promoted reactions that have been reported for the synthesis of quinoline. Hopefully, the study will be helpful for the researchers.

Keywords: Heterocycles, catalyst, metal-based catalysts, biocatalyst, synthetic approaches, quinoline.

Next »
Graphical Abstract
[1]
Matada, B.S.; Yernale, N.G. The contemporary synthetic recipes to access versatile quinoline heterocycles. Synth. Commun., 2021, 51(8), 1-18.
[http://dx.doi.org/10.1080/00397911.2021.1876240]
[2]
Amit, C.; Payal, C.; Kuldeep, K.; Mansimran, S.; Poonam, S. A review: Chemistry of antimicrobial and anticancer quinolines. Can. Open Pharm. J., 2014, 1(1), 1-2.
[3]
Shafferiyasudheen, R.; Sagadevan, K. Detection of quinoline liquid using photonic crystal fiber sensor. Int. Conf. Syst. Computat. Automat. Network, 2023, 2023, 5-1.
[http://dx.doi.org/10.1109/ICSCAN58655.2023.10394953]
[4]
Chawley, P.; Suman, A.K.; Jagadevan, S. Occurrence of quinoline in the environment and its advanced treatment technologies. Persistent Pollutants in Water and Advanced Treatment Technology; Springer: Berlin, Germany, 2023.
[http://dx.doi.org/10.1007/978-981-99-2062-4_9]
[5]
Jain, S.; Chandra, V.; Kumar Jain, P.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab. J. Chem., 2019, 12(8), 4920-4946.
[http://dx.doi.org/10.1016/j.arabjc.2016.10.009]
[6]
Kouznetsov, V.; Méndez, L.; Gómez, C. Recent progress in the synthesis of quinolines. Curr. Org. Chem., 2005, 9(2), 141-161.
[http://dx.doi.org/10.2174/1385272053369196]
[7]
Verma, C.; Quraishi, M.A.; Ebenso, E.E. Quinoline and its derivatives as corrosion inhibitors: A review. Surf. Interfaces, 2020, 21, 100634.
[http://dx.doi.org/10.1016/j.surfin.2020.100634]
[8]
Shahabi, D.; Tavakol, H. One-pot synthesis of quinoline derivatives using choline chloride/tin (II) chloride deep eutectic solvent as a green catalyst. J. Mol. Liq., 2016, 220, 324-328.
[http://dx.doi.org/10.1016/j.molliq.2016.04.094]
[9]
Olateju, O.A.; Babalola, C.P.; Olubiyi, O.O.; Kotila, O.A.; Kwasi, D.A.; Oaikhena, A.O.; Okeke, I.N. Quinoline antimalarials increase the antibacterial activity of ampicillin. Front. Microbiol., 2021, 12, 556550.
[http://dx.doi.org/10.3389/fmicb.2021.556550] [PMID: 34149629]
[10]
Duparc, S.; Chalon, S.; Miller, S.; Richardson, N.; Toovey, S. Neurological and psychiatric safety of tafenoquine in Plasmodium vivax relapse prevention: A review. Malar. J., 2020, 19(1), 111.
[http://dx.doi.org/10.1186/s12936-020-03184-x] [PMID: 32169086]
[11]
Das, R.R.; Jaiswal, N.; Dev, N.; Jaiswal, N.; Naik, S.S.; Sankar, J. Efficacy and safety of anti-malarial drugs (chloroquine and hydroxy-chloroquine) in treatment of COVID-19 infection: A systematic review and meta-analysis. Front. Med. (Lausanne), 2020, 7, 482.
[http://dx.doi.org/10.3389/fmed.2020.00482] [PMID: 32850924]
[12]
Weyesa, A.; Mulugeta, E. Recent advances in the synthesis of biologically and pharmaceutically active quinoline and its analogues: A review. RSC Advances, 2020, 10(35), 20784-20793.
[http://dx.doi.org/10.1039/D0RA03763J] [PMID: 35517753]
[13]
Desai, U.V.; Mitragotri, S.D.; Thopate, T.S.; Pore, D.M.; Wadgaonkar, P.P. A highly efficient synthesis of trisubstituted quinolines using sodium hydrogensulfate on silica gel as a reusable catalyst. ARKIVOC, 2006, 15, 204-198.
[14]
Ebenso, E.E.; Kabanda, M.M.; Arslan, T.; Saracoglu, M.; Kandemirli, F.; Murulana, L.C.; Singh, A.K.; Shukla, S.K.; Hammouti, B.; Khaled, K.F.; Quraishi, M.A.; Obot, I.B.; Eddy, N.O. Quantum chemical investigations on quinoline derivatives as effective corrosion inhibitors for mild steel in acidic medium. Int. J. Electrochem. Sci., 2012, 7(6), 5643-5676.
[http://dx.doi.org/10.1016/S1452-3981(23)19650-7]
[15]
O’Loughlin, E.J.; Kehrmeyer, S.R.; Sims, G.K. Isolation, characterization, and substrate utilization of a quinoline-degrading bacterium. Int. Biodeterior. Biodegradation, 1996, 38(2), 107-118.
[http://dx.doi.org/10.1016/S0964-8305(96)00032-7]
[16]
Patel, A.; Patel, S.; Mehta, M.; Patel, Y.; Patel, R.; Shah, D.; Patel, D.; Shah, U.; Patel, M.; Patel, S.; Solanki, N. A review on synthetic investigation for quinoline-recent green approaches. Green Chem. Lett. Rev., 2022, 15(2), 336-371.
[http://dx.doi.org/10.1080/17518253.2022.2064194]
[17]
Skraup, Z.H. Synthetische versuche in der chinolinreihe. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1882, 139-90.
[18]
Ramann, G.A.; Cowen, B.J. Quinoline synthesis by improved Skraup–Doebner–Von Miller reactions utilizing acrolein diethyl acetal. Tetrahedron Lett., 2015, 56(46), 6436-6439.
[http://dx.doi.org/10.1016/j.tetlet.2015.09.145]
[19]
Fallah-Mehrjardi, M. Friedlander Synthesis of poly-substituted quinolines: A mini review. Mini Rev. Org. Chem., 2017, 14(3), 187-196.
[http://dx.doi.org/10.2174/1570193X14666170206124809]
[20]
Ramann, G.; Cowen, B. Recent advances in metal-free quinoline synthesis. Molecules, 2016, 21(8), 986.
[http://dx.doi.org/10.3390/molecules21080986] [PMID: 27483222]
[21]
Elghamry, I.; Al-Faiyz, Y. A simple one-pot synthesis of quinoline-4-carboxylic acids by the Pfitzinger reaction of isatin with enaminones in water. Tetrahedron Lett., 2016, 57(1), 110-112.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.070]
[22]
Tsoung, J.; Bogdan, A.R.; Kantor, S.; Wang, Y.; Charaschanya, M.; Djuric, S.W. Synthesis of fused pyrimidinone and quinolone derivatives in an automated high-temperature and high-pressure flow reactor. J. Org. Chem., 2017, 82(2), 1073-1084.
[http://dx.doi.org/10.1021/acs.joc.6b02520] [PMID: 28001397]
[23]
Cheng, C.C.; Yan, S.J. The Friedländer synthesis of quinolines. Org. React., 2004, 28, 37-201.
[http://dx.doi.org/10.1002/0471264180.or028.02]
[24]
Martinez, R.; Ramon, D.J.; Yus, M. Transition-metal-free indirect friedlander synthesis of quinolines from alcohols. J. Org. Chem., 2008, 73(24), 9778-9780.
[http://dx.doi.org/10.1021/jo801678n]
[25]
Cho, C.S.; Ren, W.X. A recyclable palladium-catalyzed modified Friedländer quinoline synthesis. J. Organomet. Chem., 2007, 692(19), 4182-4186.
[http://dx.doi.org/10.1016/j.jorganchem.2007.06.022]
[26]
Vander Mierde, H.; Van Der Voort, P.; De Vos, D.; Verpoort, F. A ruthenium‐catalyzed approach to the Friedländer Quinoline Synthesis. Eur. J. Org. Chem., 2008, 2008(9), 1625-1631.
[http://dx.doi.org/10.1002/ejoc.200701001]
[27]
Cho, C.S.; Ren, W.X.; Yoon, N.S. A recyclable copper catalysis in modified Friedländer quinoline synthesis. J. Mol. Catal. Chem., 2009, 299(1-2), 117-120.
[http://dx.doi.org/10.1016/j.molcata.2008.10.024]
[28]
Chen, B.W.J.; Chng, L.L.; Yang, J.; Wei, Y.; Yang, J.; Ying, J.Y. Palladium‐based nanocatalyst for one‐pot synthesis of polysubstituted quinolines. ChemCatChem, 2013, 5(1), 277-283.
[http://dx.doi.org/10.1002/cctc.201200496]
[29]
Xu, X.; Zhang, X.; Liu, W.; Zhao, Q.; Wang, Z.; Yu, L.; Shi, F. Synthesis of 2-substituted quinolines from alcohols. Tetrahedron Lett., 2015, 56(24), 3790-3792.
[http://dx.doi.org/10.1016/j.tetlet.2015.04.070]
[30]
Xie, L.Y.; Peng, S.; Jiang, L.L.; Peng, X.; Xia, W.; Yu, X.; Wang, X.X.; Cao, Z.; He, W.M. AgBF 4 -catalyzed deoxygenative C2-amination of quinoline N -oxides with isothiocyanates. Org. Chem. Front., 2019, 6(2), 167-171.
[http://dx.doi.org/10.1039/C8QO01128A]
[31]
Kumar, R.; Kumar, I.; Sharma, R.; Sharma, U. Catalyst and solvent-free alkylation of quinoline N-oxides with olefins: A direct access to quinoline-substituted α-hydroxy carboxylic derivatives. Org. Biomol. Chem., 2016, 14(9), 2613-2617.
[http://dx.doi.org/10.1039/C5OB02600H] [PMID: 26846299]
[32]
An, Y.; Zheng, D.; Wu, J. An unexpected copper(II)-catalyzed three-component reaction of quinazoline 3-oxide, alkylidenecyclopropane, and water. Chem. Commun. (Camb.), 2014, 50(65), 9165-9167.
[http://dx.doi.org/10.1039/C4CC04341C] [PMID: 24988940]
[33]
Agasar, M.; Patil, M.R.; Keri, R.S. Titanium-based nanoparticles: A novel, facile and efficient catalytic system for one-pot synthesis of quinoline derivatives. Chem. Data Collections, 2018, 17-18, 178-186.
[http://dx.doi.org/10.1016/j.cdc.2018.08.001]
[34]
Kala, K.; Gupta, S.; Bhat, V.T.; Sasidharan, M.; Selvam, P.; Malini, T.P. TiO2 (P25) nanoparticle catalyzed C-alkylation and quinoline synthesis via the borrowing hydrogen method. New J. Chem., 2023, 47(18), 8751-8758.
[http://dx.doi.org/10.1039/D3NJ00460K]
[35]
Majumder, S.; Gipson, K.R.; Odom, A.L. A multicomponent coupling sequence for direct access to substituted quinolines. Org. Lett., 2009, 11(20), 4720-4723.
[http://dx.doi.org/10.1021/ol901855b] [PMID: 19754043]
[36]
Ruch, S.; Irrgang, T.; Kempe, R. New iridium catalysts for the selective alkylation of amines by alcohols under mild conditions and for the synthesis of quinolines by acceptor-less dehydrogenative condensation. Chemistry, 2014, 20(41), 13279-13285.
[http://dx.doi.org/10.1002/chem.201402952] [PMID: 25186522]
[37]
Shui, H.; Zhong, Y.; Luo, N.; Luo, R.; Ouyang, L. Iridium-catalyzed acceptorless dehydrogenative coupling of 2-aminoarylmethanols with amides or nitriles to synthesize quinazolines. Synthesis, 2022, 54(12), 2876-2884.
[http://dx.doi.org/10.1055/a-1755-4700]
[38]
He, Y.M.; Fan, Q.H. Advances in transfer hydrogenation of carbonyl compounds in water. ChemCatChem, 2015, 7(3), 398-400.
[http://dx.doi.org/10.1002/cctc.201402883]
[39]
Yang, Z.; Zhu, Z.; Luo, R.; Qiu, X.; Liu, J.; Yang, J.K.; Tang, W. Iridium-catalyzed highly efficient chemoselective reduction of aldehydes in water using formic acid as the hydrogen source. Green Chem., 2017, 19(14), 3296-3301.
[http://dx.doi.org/10.1039/C7GC01289F]
[40]
Kühl, O.; Palm, G. Imidazolium salts from amino acids—a new route to chiral zwitterionic carbene precursors? Tetrahedron Asymmetry, 2010, 21(4), 393-397.
[http://dx.doi.org/10.1016/j.tetasy.2010.02.015]
[41]
Albert-Soriano, M.; Trillo, P.; Soler, T.; Pastor, I.M. Versatile barium and calcium imidazolium‐dicarboxylate heterogeneous catalysts in quinoline synthesis. Eur. J. Org. Chem., 2017, 2017(43), 6375-6381.
[http://dx.doi.org/10.1002/ejoc.201700990]
[42]
Trillo, P.; Pastor, I.M. Iron‐based imidazolium salts as versatile catalysts for the synthesis of quinolines and 2‐ and 4‐allylanilines by allylic substitution of alcohols. Adv. Synth. Catal., 2016, 358(18), 2929-2939.
[http://dx.doi.org/10.1002/adsc.201600315]
[43]
Ko, N.H.; Lee, J.S.; Huh, E.S.; Lee, H.; Jung, K.D.; Kim, H.S.; Cheong, M. Extractive desulfurization using Fe-containing ionic liquids. Energy Fuels, 2008, 22(3), 1687-1690.
[http://dx.doi.org/10.1021/ef7007369]
[44]
Li, H.; Zhu, W.; Wang, Y.; Zhang, J.; Lu, J.; Yan, Y. Deep oxidative desulfurization of fuels in redox ionic liquids based on iron chloride. Green Chem., 2009, 11(6), 810-815.
[http://dx.doi.org/10.1039/b901127g]
[45]
Jana, U.; Biswas, S.; Maiti, S. Iron(III)‐catalyzed addition of benzylic alcohols to aryl alkynes – a new synthesis of substituted aryl ketones. Eur. J. Org. Chem., 2008, 2008(34), 5798-5804.
[http://dx.doi.org/10.1002/ejoc.200800713]
[46]
Rueping, M.; Nachtsheim, B.J. A review of new developments in the Friedel–Crafts alkylation – From green chemistry to asymmetric catalysis. Beilstein J. Org. Chem., 2010, 6(1), 6.
[http://dx.doi.org/10.3762/bjoc.6.6] [PMID: 20485588]
[47]
Cao, K.; Zhang, F.M.; Tu, Y.Q.; Zhuo, X.T.; Fan, C.A. Iron(III)-catalyzed and air-mediated tandem reaction of aldehydes, alkynes and amines: An efficient approach to substituted quinolines. Chemistry, 2009, 15(26), 6332-6334.
[http://dx.doi.org/10.1002/chem.200900875] [PMID: 19472236]
[48]
Banjare, S.K.; Leifert, D.; Weidlich, F.; Daniliuc, C.G.; Alasmary, F.A.; Studer, A. Access to polyheterocyclic compounds through Iron(II)-mediated radical cascade cyclization utilizing 2-ethynylbenzaldehydes and aryl isonitriles. Org. Lett., 2023, 25(34), 6424-6428.
[http://dx.doi.org/10.1021/acs.orglett.3c02448] [PMID: 37610878]
[49]
Lu, J.; Bai, Y.; Wang, Z.; Yang, B.; Li, W. Ferric chloride hexahydrate: A convenient reagent for the oxidation of hantzsch 1, 4-dihydropyridines. Synth. Commun., 2001, 31(17), 2625-2630.
[http://dx.doi.org/10.1081/SCC-100105388]
[50]
Lu, J. Iron (III)-catalyzed synthesis of dihydropyrimidinones. Improved conditions for the Biginelli reaction. Synlett, 2000, 2000(1), 63-64.
[http://dx.doi.org/10.1055/s-2000-6469]
[51]
Mahajan, S.; Sharma, B.; Kapoor, K.K. A solvent-free one step conversion of ketones to amides via Beckmann rearrangement catalysed by FeCl3·6H2O in presence of hydroxylamine hydrochloride. Tetrahedron Lett., 2015, 56(14), 1915-1918.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.110]
[52]
Tasqeeruddin, S.; Asiri, Y.I.; Shaheen, S. An environmentally benign, simple and proficient synthesis of quinoline derivatives catalyzed by FeCl3.6H2O as a green and readily available catalyst. Green Chem. Lett. Rev., 2021, 14(1), 119-127.
[http://dx.doi.org/10.1080/17518253.2020.1869840]
[53]
Shee, S.; Ganguli, K.; Jana, K.; Kundu, S. Cobalt complex catalyzed atom-economical synthesis of quinoxaline, quinoline and 2-alkylaminoquinoline derivatives. Chem. Commun. (Camb.), 2018, 54(50), 6883-6886.
[http://dx.doi.org/10.1039/C8CC02366B] [PMID: 29790492]
[54]
Singh, A.; Maji, A.; Joshi, M.; Choudhury, A.R.; Ghosh, K. Designed pincer ligand supported Co(II)-based catalysts for dehydrogenative activation of alcohols: Studies on N -alkylation of amines, α-alkylation of ketones and synthesis of quinolines. Dalton Trans., 2021, 50(24), 8567-8587.
[http://dx.doi.org/10.1039/D0DT03748F] [PMID: 34075925]
[55]
Xiao, F.; Chen, Y.; Liu, Y.; Wang, J. Sequential catalytic process: Synthesis of quinoline derivatives by AuCl3/CuBr-catalyzed three-component reaction of aldehydes, amines, and alkynes. Tetrahedron, 2008, 64(12), 2755-2761.
[http://dx.doi.org/10.1016/j.tet.2008.01.046]
[56]
Bains, A.K.; Singh, V.; Adhikari, D. Homogeneous nickel-catalyzed sustainable synthesis of quinoline and quinoxaline under aerobic conditions. J. Org. Chem., 2020, 85(23), 14971-14979.
[http://dx.doi.org/10.1021/acs.joc.0c01819] [PMID: 33174416]
[57]
Das, S.; Maiti, D.; De Sarkar, S. Synthesis of polysubstituted quinolines from α-2-aminoaryl alcohols via nickel-catalyzed dehydrogenative coupling. J. Org. Chem., 2018, 83(4), 2309-2316.
[http://dx.doi.org/10.1021/acs.joc.7b03198] [PMID: 29345932]
[58]
Parua, S.; Sikari, R.; Sinha, S.; Das, S.; Chakraborty, G.; Paul, N.D. A nickel catalyzed acceptorless dehydrogenative approach to quinolines. Org. Biomol. Chem., 2018, 16(2), 274-284.
[http://dx.doi.org/10.1039/C7OB02670F] [PMID: 29242865]
[59]
Bains, A.K.; Kundu, A.; Yadav, S.; Adhikari, D. Borrowing hydrogen-mediated N-alkylation reactions by a well-defined homogeneous nickel catalyst. ACS Catal., 2019, 9(10), 9051-9059.
[http://dx.doi.org/10.1021/acscatal.9b02977]
[60]
Motokura, K. Mg–Al hydrotalcite-based catalysts for one-pot synthesis of quinoline derivatives. Tetrahedron Green Chem, 2023, 1, 100004.
[http://dx.doi.org/10.1016/j.tgchem.2023.100004]
[61]
Kaneda, K.; Ebitani, K.; Mizugaki, T.; Mori, K. Design of high-performance heterogeneous metal catalysts for green and sustainable chemistry. Bull. Chem. Soc. Jpn., 2006, 79(7), 981-1016.
[http://dx.doi.org/10.1246/bcsj.79.981]
[62]
Saha, N.; Patel, K.I.; Maulik, A.; Chakraborti, A.K. Aqueous-mediated synthesis. Bioactive Heterocycles., 2024, 192, 183.
[http://dx.doi.org/10.1515/9783110985627]
[63]
Singh, S.; Choudhury, A.R.; Ghosh, K. Facile synthesis of quinolines and N-alkylation reactions catalyzed by ruthenium(II) pincer type complexes: Reaction mechanism and evidences for ruthenium hydride intermediate. Mol. Catal., 2023, 549, 113424.
[http://dx.doi.org/10.1016/j.mcat.2023.113424]
[64]
Harikrishna, S.; Robert, A.R.; Ganja, H.; Maddila, S.; Jonnalagadda, S.B. A green, facile and recyclable Mn3O4/MWCNT nano-catalyst for the synthesis of quinolinesvia one-pot multicomponent reactions. Sustain. Chem. Pharm., 2020, 16, 100265.
[http://dx.doi.org/10.1016/j.scp.2020.100265]
[65]
Teegardin, K.; Day, J.I.; Chan, J. Advances in photocatalysis: A microreview of visible light mediated ruthenium and iridium catalyzed organic transformations. Org. Proc. Res. Dev., 2016, 20(7), 1156-1163.
[http://dx.doi.org/10.1021/acs.oprd.6b00101]
[66]
An, X.D.; Yu, S. Visible-light-promoted and one-pot synthesis of phenanthridines and quinolines from aldehydes and O-acyl hydroxylamine. Org. Lett., 2015, 17(11), 2692-2695.
[http://dx.doi.org/10.1021/acs.orglett.5b01096] [PMID: 25964987]
[67]
Wang, Q.; Huang, J.; Zhou, L. Synthesis of quinolines by visible‐light induced radical reaction of vinyl azides and α‐carbonyl benzyl bromides. Adv. Synth. Catal., 2015, 357(11), 2479-2484.
[http://dx.doi.org/10.1002/adsc.201500141]
[68]
Yuan, Y.; Dong, W.; Gao, X.; Gao, H.; Xie, X.; Zhang, Z. Visible-light-induced radical cascade cyclization: Synthesis of the ABCD ring cores of camptothecins. J. Org. Chem., 2018, 83(5), 2840-2846.
[http://dx.doi.org/10.1021/acs.joc.7b03283] [PMID: 29411608]
[69]
Hennessey, S.; González-Gómez, R.; McCarthy, K.; Burke, C.S.; Le Houérou, C.; Sarangi, N.K.; McArdle, P.; Keyes, T.E.; Cucinotta, F.; Farràs, P. Enhanced photostability and photoactivity of ruthenium polypyridyl-based photocatalysts by covalently anchoring onto reduced graphene oxide. ACS Omega, 2024, 9(12), 13872-13882.
[http://dx.doi.org/10.1021/acsomega.3c08800] [PMID: 38559923]
[70]
Harikrishna, S.; Gangu, K.K.; Robert, A.R.; Ganja, H.; Kerru, N.; Maddila, S.; Jonnalagadda, S.B. An ecofriendly and reusable catalyst RuO2/MWCNT in the green synthesis of sulfonyl-quinolines. Process Saf. Environ. Prot., 2022, 159, 911-917.
[http://dx.doi.org/10.1016/j.psep.2022.01.054]
[71]
Mandal, S.; Bhuyan, S.; Jana, S.; Hossain, J.; Chhetri, K.; Roy, B.G. Efficient visible light mediated synthesis of quinolin-2(1 H)-ones from quinoline N -oxides. Green Chem., 2021, 23(14), 5049-5055.
[http://dx.doi.org/10.1039/D1GC01460A]
[72]
Wang, S.J.; Wang, Z.; Tang, Y.; Chen, J.; Zhou, L. Asymmetric synthesis of quinoline-naphthalene atropisomers by central-to-axial chirality conversion. Org. Lett., 2020, 22(22), 8894-8898.
[http://dx.doi.org/10.1021/acs.orglett.0c03285] [PMID: 33124830]
[73]
Guo, Q.S.; Du, D.M.; Xu, J. The development of double axially chiral phosphoric acids and their catalytic transfer hydrogenation of quinolines. Angew. Chem. Int. Ed., 2008, 47(4), 759-762.
[http://dx.doi.org/10.1002/anie.200703925] [PMID: 18181258]
[74]
Godino-Ojer, M.; Morales-Torres, S.; Pérez-Mayoral, E.; Maldonado-Hódar, F.J. Enhanced catalytic performance of ZnO/carbon materials in the green synthesis of poly-substituted quinolines. J. Environ. Chem. Eng., 2022, 10(1), 106879.
[http://dx.doi.org/10.1016/j.jece.2021.106879]
[75]
Ghouse, S.; Sreenivasulu, C.; Kishore, D.R.; Satyanarayana, G. Recent developments by zinc based reagents/catalysts promoted organic transformations. Tetrahedron, 2022, 105, 132580.
[http://dx.doi.org/10.1016/j.tet.2021.132580]
[76]
Ameta, C.; Vyas, Y.; Chaubisa, P.; Amet, K.L. Synthesis of Quinolines, Isoquinolines, and Quinolones Using Various Nanocatalysts. InNanocatalysis; CRC Press: Boca Raton, Florida, 2022, pp. 147-176.
[77]
Vettukattil, U.; Govindan, A.; Yousuf, N.; Alex, S.; Krishnapillai, S. Synthesis of quinoline and polyhydroquinoline derivatives using phloroglucinol cored amino functionalized dendritic polymer as catalyst. ChemistrySelect, 2022, 7(27), e202201250.
[http://dx.doi.org/10.1002/slct.202201250]
[78]
Patel, D.B.; Rajani, D.P.; Rajani, S.D.; Patel, H.D. A green synthesis of quinoline‐4‐carboxylic derivatives using p ‐toluenesulfonic acid as an efficient organocatalyst under microwave irradiation and their docking, molecular dynamics, ADME‐Tox and biological evaluation. J. Heterocycl. Chem., 2020, 57(4), 1524-1544.
[http://dx.doi.org/10.1002/jhet.3848]
[79]
Khaligh, N.G.; Mihankhah, T.; Johan, M.R. Synthesis of quinoline derivatives via the Friedländer annulation using a sulfonic acid functionalized liquid acid as dual solvent-catalyst. Polycycl. Aromat. Compd., 2020, 40(4), 1223-1237.
[http://dx.doi.org/10.1080/10406638.2018.1538058]
[80]
Li, L.H.; Niu, Z.J.; Liang, Y.M. Organocatalyzed synthesis of functionalized quinolines. Chem. Asian J., 2020, 15(2), 231-241.
[http://dx.doi.org/10.1002/asia.201901380] [PMID: 31799792]
[81]
Babaei, P.; Safaei-Ghomi, J. Engineered N-doped graphene quantum dots/CoFe2O4 spherical composites as a robust and retrievable catalyst: Fabrication, characterization, and catalytic performance investigation in microwave-assisted synthesis of quinoline-3-carbonitrile derivatives. RSC Advances, 2021, 11(55), 34724-34734.
[http://dx.doi.org/10.1039/D1RA05739A] [PMID: 35494730]
[82]
Naghshbandi, Z.; Arsalani, N.; Zakerhamidi, M.S.; Geckeler, K.E. A novel synthesis of magnetic and photoluminescent graphene quantum dots/MFe2O4 (M = Ni, Co) nanocomposites for catalytic application. Appl. Surf. Sci., 2018, 443, 484-491.
[http://dx.doi.org/10.1016/j.apsusc.2018.02.283]
[83]
Wei, X.; Li, Y.; Peng, H.; Gao, D.; Ou, Y.; Yang, Y.; Hu, J.; Zhang, Y.; Xiao, P. A novel functional material of Co3O4/Fe2O3 nanocubes derived from a MOF precursor for high-performance electrochemical energy storage and conversion application. Chem. Eng. J., 2019, 355, 336-340.
[http://dx.doi.org/10.1016/j.cej.2018.08.009]
[84]
Barman, M.K.; Jana, A.; Maji, B. Phosphine‐free NNN‐manganese complex catalyzed α‐alkylation of ketones with primary alcohols and Friedländer Quinoline Synthesis. Adv. Synth. Catal., 2018, 360(17), 3233-3238.
[http://dx.doi.org/10.1002/adsc.201800380]
[85]
Das, K.; Mondal, A.; Srimani, D. Phosphine free Mn-complex catalysed dehydrogenative C–C and C–heteroatom bond formation: A sustainable approach to synthesize quinoxaline, pyrazine, benzothiazole and quinoline derivatives. Chem. Commun. (Camb.), 2018, 54(75), 10582-10585.
[http://dx.doi.org/10.1039/C8CC05877F] [PMID: 30167623]
[86]
Chai, H.; Tan, W.; Lu, Y.; Zhang, G.; Ma, J. Sustainable synthesis of quinolines (pyridines) catalyzed by a cheap metal Mn(I)‐NN complex catalyst. Appl. Organomet. Chem., 2020, 34(8), e5685.
[http://dx.doi.org/10.1002/aoc.5685]
[87]
He, T.; Zeng, Q.Q.; Yang, D.C.; He, Y.H.; Guan, Z. Biocatalytic one-pot three-component synthesis of 3,3′-disubstituted oxindoles and spirooxindole pyrans using α-amylase from hog pancreas. RSC Advances, 2015, 5(47), 37843-37852.
[http://dx.doi.org/10.1039/C4RA16825A]
[88]
Huang, Q.; Zhao, M.; Yang, Y.; Niu, Y.N.; Xia, X.F. Visible-light-induced and copper-catalyzed oxidative cyclization of substituted o -aminophenylacetylene for the synthesis of quinoline and indole derivatives. Org. Chem. Front., 2021, 8(21), 5988-5993.
[http://dx.doi.org/10.1039/D1QO00914A]
[89]
Sharma, R.K.; Dutta, S.; Sharma, S. Quinoline-2-carboimine copper complex immobilized on amine functionalized silica coated magnetite nanoparticles: A novel and magnetically retrievable catalyst for the synthesis of carbamates via C–H activation of formamides. Dalton Trans., 2015, 44(3), 1303-1316.
[http://dx.doi.org/10.1039/C4DT03236E] [PMID: 25417959]
[90]
Reddy, A.C.S.; Anbarasan, P. Copper catalyzed oxidative coupling of ortho-vinylanilines with N-tosylhydrazones: Efficient synthesis of polysubstituted quinoline derivatives. J. Catal., 2018, 363, 102-108.
[http://dx.doi.org/10.1016/j.jcat.2018.04.005]
[91]
Chen, J.; Zhang, B.; Qi, L.; Pei, Y.; Nie, R.; Heintz, P.; Luan, X.; Bao, Z.; Yang, Q.; Ren, Q.; Zhang, Z.; Huang, W. Facile fabrication of hierarchical MOF–Metal nanoparticle tandem catalysts for the synthesis of bioactive molecules. ACS Appl. Mater. Interfaces, 2020, 12(20), 23002-23009.
[http://dx.doi.org/10.1021/acsami.0c05344] [PMID: 32338862]
[92]
Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science, 2013, 341(6149), 1230444.
[http://dx.doi.org/10.1126/science.1230444] [PMID: 23990564]
[93]
Huang, Y.B.; Liang, J.; Wang, X.S.; Cao, R. Multifunctional metal–organic framework catalysts: Synergistic catalysis and tandem reactions. Chem. Soc. Rev., 2017, 46(1), 126-157.
[http://dx.doi.org/10.1039/C6CS00250A] [PMID: 27841411]
[94]
Liu, D.; Wan, J.; Pang, G.; Tang, Z. Hollow metal–organic‐framework micro/nanostructures and their derivatives: Emerging multifunctional materials. Adv. Mater., 2019, 31(38), 1803291.
[http://dx.doi.org/10.1002/adma.201803291] [PMID: 30548351]
[95]
Yuan, K.; Song, T.; Wang, D.; Zhang, X.; Gao, X.; Zou, Y.; Dong, H.; Tang, Z.; Hu, W. Effective and selective catalysts for cinnamaldehyde hydrogenation: Hydrophobic hybrids of metal–organic frameworks, metal nanoparticles, and micro‐ and mesoporous polymers. Angew. Chem. Int. Ed., 2018, 57(20), 5708-5713.
[http://dx.doi.org/10.1002/anie.201801289] [PMID: 29509302]
[96]
Zhao, M.; Yuan, K.; Wang, Y.; Li, G.; Guo, J.; Gu, L.; Hu, W.; Zhao, H.; Tang, Z. Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature, 2016, 539(7627), 76-80.
[http://dx.doi.org/10.1038/nature19763] [PMID: 27706142]
[97]
Zhao, M.; Deng, K.; He, L.; Liu, Y.; Li, G.; Zhao, H.; Tang, Z. Core-shell palladium nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions. J. Am. Chem. Soc., 2014, 136(5), 1738-1741.
[http://dx.doi.org/10.1021/ja411468e] [PMID: 24437922]
[98]
Das, A.; Anbu, N.; Varalakshmi, P.; Dhakshinamoorthy, A.; Biswas, S. A hydrazine functionalized UiO-66(Hf) metal–organic framework for the synthesis of quinolines via Friedländer condensation. New J. Chem., 2020, 44(26), 10982-10988.
[http://dx.doi.org/10.1039/D0NJ01891K]
[99]
Ghosh, S.; Biswas, S. A functionalized UiO-66 metal-organic framework acting as a fluorescent based selective sensor of hydrazine in aqueous medium. Microporous Mesoporous Mater., 2022, 329, 111552.
[http://dx.doi.org/10.1016/j.micromeso.2021.111552]
[100]
Dhakshinamoorthy, A.; Santiago-Portillo, A.; Asiri, A.M.; Garcia, H. Engineering UiO‐66 metal organic framework for heterogeneous catalysis. ChemCatChem, 2019, 11(3), 899-923.
[http://dx.doi.org/10.1002/cctc.201801452]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy