Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Crosstalk Between Cancer-associated Fibroblasts and Myeloid Cells Shapes the Heterogeneous Microenvironment of Gastric Cancer

Author(s): Zhiwei Peng, Can Fang, Zhiwei Tong, Qiufan Rao, Zihao Ren and Kongwang Hu*

Volume 25, Issue 5, 2024

Published on: 11 June, 2024

Page: [390 - 411] Pages: 22

DOI: 10.2174/0113892029300608240531111743

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Targeted therapies have improved the clinical outcomes of most patients with cancer. However, the heterogeneity of gastric cancer remains a major hurdle for precision treatment. Further investigations into tumor microenvironment heterogeneity are required to resolve these problems.

Methods: In this study, bioinformatic analyses, including metabolism analysis, pathway enrichment, differentiation trajectory inference, regulatory network construction, and survival analysis, were applied to gain a comprehensive understanding of tumor microenvironment biology within gastric cancer using single-cell RNA-seq and public datasets and experiments were carried out to confirm the conclusions of these analyses.

Results: We profiled heterogeneous single-cell atlases and identified eight cell populations with differential expression patterns. We identified two cancer-associated fibroblasts (CAFs) subtypes, with particular emphasis on the role of inflammatory cancer-associated fibroblasts (iCAFs) in EMT and lipid metabolic crosstalk within the tumor microenvironment. Notably, we detected two differentiation states of iCAFs that existed in different tissues with discrepant expression of genes involved in immuno-inflammation or ECM remodeling. Moreover, investigation of tumor-infiltrating myeloid cells has revealed the functional diversity of myeloid cell lineages in gastric cancer. Of which a proliferative cell lineage named C1QC+MKI67+TAMs was recognized with high immunosuppressive capacities, suggesting it has immune suppression and cell proliferation functions in the tumor niche. Finally, we explored regulatory networks based on ligand-receptor pairs and found crucial pro-tumor crosstalk between CAFs and myeloid cells in the tumor microenvironment (TME).

Conclusion: These findings provide insights for future cancer treatments and drug discovery.

Keywords: Single-cell sequencing, gastric cancer, cancer-associated fibroblasts, myeloid cells, tumor microenvironment, ligand-receptor pairs.

Graphical Abstract
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Sundar, R.; Liu, D.H.W.; Hutchins, G.G.A.; Slaney, H.L.; Silva, A.N.S.; Oosting, J.; Hayden, J.D.; Hewitt, L.C.; Ng, C.C.Y.; Mangalvedhekar, A.; Ng, S.B.; Tan, I.B.H.; Tan, P.; Grabsch, H.I. Spatial profiling of gastric cancer patient-matched primary and locoregional metastases reveals principles of tumour dissemination. Gut, 2021, 70(10), 1823-1832.
[http://dx.doi.org/10.1136/gutjnl-2020-320805] [PMID: 33229445]
[3]
Hinshaw, D.C.; Shevde, L.A. The tumor microenvironment innately modulates cancer progression. Cancer Res., 2019, 79(18), 4557-4566.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3962] [PMID: 31350295]
[4]
Bejarano, L.; Jordāo, M.J.C.; Joyce, J.A. Therapeutic targeting of the tumor microenvironment. Cancer Discov., 2021, 11(4), 933-959.
[http://dx.doi.org/10.1158/2159-8290.CD-20-1808] [PMID: 33811125]
[5]
Jin, M.Z.; Jin, W.L. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct. Target. Ther., 2020, 5(1), 166.
[http://dx.doi.org/10.1038/s41392-020-00280-x] [PMID: 32843638]
[6]
Chen, X.; Song, E. Turning foes to friends: Targeting cancer-associated fibroblasts. Nat. Rev. Drug Discov., 2019, 18(2), 99-115.
[http://dx.doi.org/10.1038/s41573-018-0004-1] [PMID: 30470818]
[7]
Arandkar, S.; Furth, N.; Elisha, Y.; Nataraj, N.B.; van der Kuip, H.; Yarden, Y.; Aulitzky, W.; Ulitsky, I.; Geiger, B.; Oren, M. Altered p53 functionality in cancer-associated fibroblasts contributes to their cancer-supporting features. Proc. Natl. Acad. Sci. USA, 2018, 115(25), 6410-6415.
[http://dx.doi.org/10.1073/pnas.1719076115] [PMID: 29866855]
[8]
Herrera, M.; Berral-González, A.; López-Cade, I.; Galindo-Pumariño, C.; Bueno-Fortes, S.; Martín-Merino, M.; Carrato, A.; Ocaña, A.; De La Pinta, C.; López-Alfonso, A.; Peña, C.; García-Barberán, V.; De Las Rivas, J. Cancer-associated fibroblast-derived gene signatures determine prognosis in colon cancer patients. Mol. Cancer, 2021, 20(1), 73.
[http://dx.doi.org/10.1186/s12943-021-01367-x] [PMID: 33926453]
[9]
Mao, X.; Xu, J.; Wang, W.; Liang, C.; Hua, J.; Liu, J.; Zhang, B.; Meng, Q.; Yu, X.; Shi, S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol. Cancer, 2021, 20(1), 131.
[http://dx.doi.org/10.1186/s12943-021-01428-1] [PMID: 34635121]
[10]
Song, M.; He, J.; Pan, Q.Z.; Yang, J.; Zhao, J.; Zhang, Y.J.; Huang, Y.; Tang, Y.; Wang, Q.; He, J.; Gu, J.; Li, Y.; Chen, S.; Zeng, J.; Zhou, Z.Q.; Yang, C.; Han, Y.; Chen, H.; Xiang, T.; Weng, D.S.; Xia, J.C. Cancer-associated fibroblast-mediated cellular crosstalk supports hepatocellular carcinoma progression. Hepatology, 2021, 73(5), 1717-1735.
[http://dx.doi.org/10.1002/hep.31792] [PMID: 33682185]
[11]
Peng, Z.; Tong, Z.; Ren, Z.; Ye, M.; Hu, K. Cancer-associated fibroblasts and its derived exosomes: A new perspective for reshaping the tumor microenvironment. Mol. Med., 2023, 29(1), 66.
[http://dx.doi.org/10.1186/s10020-023-00665-y] [PMID: 37217855]
[12]
Lei, Y.; Tang, R.; Xu, J.; Wang, W.; Zhang, B.; Liu, J.; Yu, X.; Shi, S. Applications of single-cell sequencing in cancer research: Progress and perspectives. J. Hematol. Oncol., 2021, 14(1), 91.
[http://dx.doi.org/10.1186/s13045-021-01105-2] [PMID: 34108022]
[13]
Tavassoly, I.; Goldfarb, J.; Iyengar, R. Systems biology primer: The basic methods and approaches. Essays Biochem., 2018, 62(4), 487-500.
[http://dx.doi.org/10.1042/EBC20180003] [PMID: 30287586]
[14]
Jin, S.; Guerrero-Juarez, C.F.; Zhang, L.; Chang, I.; Ramos, R.; Kuan, C.H.; Myung, P.; Plikus, M.V.; Nie, Q. Inference and analysis of cell-cell communication using CellChat. Nat. Commun., 2021, 12(1), 1088.
[http://dx.doi.org/10.1038/s41467-021-21246-9] [PMID: 33597522]
[15]
Kumar, V.; Ramnarayanan, K.; Sundar, R.; Padmanabhan, N.; Srivastava, S.; Koiwa, M.; Yasuda, T.; Koh, V.; Huang, K.K.; Tay, S.T.; Ho, S.W.T.; Tan, A.L.K.; Ishimoto, T.; Kim, G.; Shabbir, A.; Chen, Q.; Zhang, B.; Xu, S.; Lam, K.P.; Lum, H.Y.J.; Teh, M.; Yong, W.P.; So, J.B.Y.; Tan, P. Single-cell atlas of lineage states, tumor microenvironment, and subtype-specific expression programs in gastric cancer. Cancer Discov., 2022, 12(3), 670-691.
[http://dx.doi.org/10.1158/2159-8290.CD-21-0683] [PMID: 34642171]
[16]
Hao, Y.; Hao, S.; Andersen-Nissen, E.; Mauck, W.M., III; Zheng, S.; Butler, A.; Lee, M.J.; Wilk, A.J.; Darby, C.; Zager, M.; Hoffman, P.; Stoeckius, M.; Papalexi, E.; Mimitou, E.P.; Jain, J.; Srivastava, A.; Stuart, T.; Fleming, L.M.; Yeung, B.; Rogers, A.J.; McElrath, J.M.; Blish, C.A.; Gottardo, R.; Smibert, P.; Satija, R. Integrated analysis of multimodal single-cell data. Cell, 2021, 184(13), 3573-3587.e29.
[http://dx.doi.org/10.1016/j.cell.2021.04.048] [PMID: 34062119]
[17]
Wang, T.; Dang, N.; Tang, G.; Li, Z.; Li, X.; Shi, B.; Xu, Z.; Li, L.; Yang, X.; Xu, C.; Ye, K. Integrating bulk and single-cell RNA sequencing reveals cellular heterogeneity and immune infiltration in hepatocellular carcinoma. Mol. Oncol., 2022, 16(11), 2195-2213.
[http://dx.doi.org/10.1002/1878-0261.13190] [PMID: 35124891]
[18]
Guo, X.; Zhang, Y.; Zheng, L.; Zheng, C.; Song, J.; Zhang, Q.; Kang, B.; Liu, Z.; Jin, L.; Xing, R.; Gao, R.; Zhang, L.; Dong, M.; Hu, X.; Ren, X.; Kirchhoff, D.; Roider, H.G.; Yan, T.; Zhang, Z. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat. Med., 2018, 24(7), 978-985.
[http://dx.doi.org/10.1038/s41591-018-0045-3] [PMID: 29942094]
[19]
Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 2013, 14(1), 7.
[http://dx.doi.org/10.1186/1471-2105-14-7] [PMID: 23323831]
[20]
Foroutan, M.; Bhuva, D.D.; Lyu, R.; Horan, K.; Cursons, J.; Davis, M.J. Single sample scoring of molecular phenotypes. BMC Bioinformatics, 2018, 19(1), 404.
[http://dx.doi.org/10.1186/s12859-018-2435-4] [PMID: 30400809]
[21]
Wu, Y.; Yang, S.; Ma, J.; Chen, Z.; Song, G.; Rao, D.; Cheng, Y.; Huang, S.; Liu, Y.; Jiang, S.; Liu, J.; Huang, X.; Wang, X.; Qiu, S.; Xu, J.; Xi, R.; Bai, F.; Zhou, J.; Fan, J.; Zhang, X.; Gao, Q. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov., 2022, 12(1), 134-153.
[http://dx.doi.org/10.1158/2159-8290.CD-21-0316] [PMID: 34417225]
[22]
DeTomaso, D.; Jones, M.G.; Subramaniam, M.; Ashuach, T.; Ye, C.J.; Yosef, N. Functional interpretation of single cell similarity maps. Nat. Commun., 2019, 10(1), 4376.
[http://dx.doi.org/10.1038/s41467-019-12235-0] [PMID: 31558714]
[23]
Qiu, X.; Mao, Q.; Tang, Y.; Wang, L.; Chawla, R.; Pliner, H.A.; Trapnell, C. Reversed graph embedding resolves complex single- cell trajectories. Nat. Methods, 2017, 14(10), 979-982.
[http://dx.doi.org/10.1038/nmeth.4402] [PMID: 28825705]
[24]
Aran, D.; Looney, A.P.; Liu, L.; Wu, E.; Fong, V.; Hsu, A.; Chak, S.; Naikawadi, R.P.; Wolters, P.J.; Abate, A.R.; Butte, A.J.; Bhattacharya, M. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol., 2019, 20(2), 163-172.
[http://dx.doi.org/10.1038/s41590-018-0276-y] [PMID: 30643263]
[25]
Wang, H.; Gong, P.; Chen, T.; Gao, S.; Wu, Z.; Wang, X.; Li, J.; Marjani, S.L.; Costa, J.; Weissman, S.M.; Qi, F.; Pan, X.; Liu, L. Colorectal cancer stem cell states uncovered by simultaneous single-cell analysis of transcriptome and telomeres. Adv. Sci., 2021, 8(8), 2004320.
[http://dx.doi.org/10.1002/advs.202004320] [PMID: 33898197]
[26]
Zhang, P.; Yang, M.; Zhang, Y.; Xiao, S.; Lai, X.; Tan, A.; Du, S.; Li, S. Dissecting the single-cell transcriptome network underlying gastric premalignant lesions and early gastric cancer. Cell Rep., 2019, 27(6), 1934-1947.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.04.052] [PMID: 31067475]
[27]
Zhang, M.; Hu, S.; Min, M.; Ni, Y.; Lu, Z.; Sun, X.; Wu, J.; Liu, B.; Ying, X.; Liu, Y. Dissecting transcriptional heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing. Gut, 2021, 70(3), 464-475.
[http://dx.doi.org/10.1136/gutjnl-2019-320368] [PMID: 32532891]
[28]
Li, H.; Courtois, E.T.; Sengupta, D.; Tan, Y.; Chen, K.H.; Goh, J.J.L.; Kong, S.L.; Chua, C.; Hon, L.K.; Tan, W.S.; Wong, M.; Choi, P.J.; Wee, L.J.K.; Hillmer, A.M.; Tan, I.B.; Robson, P.; Prabhakar, S. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat. Genet., 2017, 49(5), 708-718.
[http://dx.doi.org/10.1038/ng.3818] [PMID: 28319088]
[29]
Chen, Z.; Zhou, L.; Liu, L.; Hou, Y.; Xiong, M.; Yang, Y.; Hu, J.; Chen, K. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat. Commun., 2020, 11(1), 5077.
[http://dx.doi.org/10.1038/s41467-020-18916-5] [PMID: 33033240]
[30]
Zhang, Y.; Song, J.; Zhao, Z.; Yang, M.; Chen, M.; Liu, C.; Ji, J.; Zhu, D. Single-cell transcriptome analysis reveals tumor immune microenvironment heterogenicity and granulocytes enrichment in colorectal cancer liver metastases. Cancer Lett., 2020, 470, 84-94.
[http://dx.doi.org/10.1016/j.canlet.2019.10.016] [PMID: 31610266]
[31]
Hamilton, P.T.; Anholt, B.R.; Nelson, B.H. Tumour immunotherapy: Lessons from predator–prey theory. Nat. Rev. Immunol., 2022, 22(12), 765-775.
[http://dx.doi.org/10.1038/s41577-022-00719-y] [PMID: 35513493]
[32]
El-Kenawi, A.; Hänggi, K.; Ruffell, B. The immune microenvironment and cancer metastasis. Cold Spring Harb. Perspect. Med., 2020, 10(4), a037424.
[http://dx.doi.org/10.1101/cshperspect.a037424] [PMID: 31501262]
[33]
Suhail, Y.; Cain, M.P.; Vanaja, K.; Kurywchak, P.A.; Levchenko, A.; Kalluri, R.; Kshitiz Systems biology of cancer metastasis. Cell Syst., 2019, 9(2), 109-127.
[http://dx.doi.org/10.1016/j.cels.2019.07.003] [PMID: 31465728]
[34]
Han, C.; Liu, T.; Yin, R. Biomarkers for cancer-associated fibroblasts. Biomark. Res., 2020, 8(1), 64.
[http://dx.doi.org/10.1186/s40364-020-00245-w] [PMID: 33292666]
[35]
Elyada, E.; Bolisetty, M.; Laise, P.; Flynn, W.F.; Courtois, E.T.; Burkhart, R.A.; Teinor, J.A.; Belleau, P.; Biffi, G.; Lucito, M.S.; Sivajothi, S.; Armstrong, T.D.; Engle, D.D.; Yu, K.H.; Hao, Y.; Wolfgang, C.L.; Park, Y.; Preall, J.; Jaffee, E.M.; Califano, A.; Robson, P.; Tuveson, D.A. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov., 2019, 9(8), 1102-1123.
[http://dx.doi.org/10.1158/2159-8290.CD-19-0094] [PMID: 31197017]
[36]
Martínez-Reyes, I.; Chandel, N.S. Cancer metabolism: Looking forward. Nat. Rev. Cancer, 2021, 21(10), 669-680.
[http://dx.doi.org/10.1038/s41568-021-00378-6] [PMID: 34272515]
[37]
Gong, J.; Lin, Y.; Zhang, H.; Liu, C.; Cheng, Z.; Yang, X.; Zhang, J.; Xiao, Y.; Sang, N.; Qian, X.; Wang, L.; Cen, X.; Du, X.; Zhao, Y. Reprogramming of lipid metabolism in cancer-associated fibroblasts potentiates migration of colorectal cancer cells. Cell Death Dis., 2020, 11(4), 267.
[http://dx.doi.org/10.1038/s41419-020-2434-z] [PMID: 32327627]
[38]
Song, G.; Xu, S.; Zhang, H.; Wang, Y.; Xiao, C.; Jiang, T.; Wu, L.; Zhang, T.; Sun, X.; Zhong, L.; Zhou, C.; Wang, Z.; Peng, Z.; Chen, J.; Wang, X. TIMP1 is a prognostic marker for the progression and metastasis of colon cancer through FAK-PI3K/AKT and MAPK pathway. J. Exp. Clin. Cancer Res., 2016, 35(1), 148.
[http://dx.doi.org/10.1186/s13046-016-0427-7] [PMID: 27644693]
[39]
Xu, Q.; Chiao, P.; Sun, Y. Amphiregulin in cancer: New insights for translational medicine. Trends Cancer, 2016, 2(3), 111-113.
[http://dx.doi.org/10.1016/j.trecan.2016.02.002] [PMID: 28741529]
[40]
Zhou, Z.; Cui, D.; Sun, M.H.; Huang, J.L.; Deng, Z.; Han, B.M.; Sun, X.W.; Xia, S.J.; Sun, F.; Shi, F. CAFs-derived MFAP5 promotes bladder cancer malignant behavior through NOTCH2/HEY1 signaling. FASEB J., 2020, 34(6), 7970-7988.
[http://dx.doi.org/10.1096/fj.201902659R] [PMID: 32293074]
[41]
Michelis, R.; Milhem, L.; Galouk, E.; Stemer, G.; Aviv, A.; Tadmor, T.; Shehadeh, M.; Shvidel, L.; Barhoum, M.; Braester, A. Increased serum level of alpha-2 macroglobulin and its production by B-lymphocytes in chronic lymphocytic leukemia. Front. Immunol., 2022, 13, 953644.
[http://dx.doi.org/10.3389/fimmu.2022.953644] [PMID: 36119042]
[42]
Yang, H.; Sun, B.; Fan, L.; Ma, W.; Xu, K.; Hall, S.R.R.; Wang, Z.; Schmid, R.A.; Peng, R.W.; Marti, T.M.; Gao, W.; Xu, J.; Yang, W.; Yao, F. Multi-scale integrative analyses identify THBS2 + cancer-associated fibroblasts as a key orchestrator promoting aggressiveness in early-stage lung adenocarcinoma. Theranostics, 2022, 12(7), 3104-3130.
[http://dx.doi.org/10.7150/thno.69590] [PMID: 35547750]
[43]
Zheng, S.; Zou, Y.; Tang, Y.; Yang, A.; Liang, J.Y.; Wu, L.; Tian, W.; Xiao, W.; Xie, X.; Yang, L.; Xie, J.; Wei, W.; Xie, X. Landscape of cancer-associated fibroblasts identifies the secreted biglycan as a protumor and immunosuppressive factor in triple-negative breast cancer. OncoImmunology, 2022, 11(1), 2020984.
[http://dx.doi.org/10.1080/2162402X.2021.2020984] [PMID: 35003899]
[44]
Zhang, L.; Li, Z.; Skrzypczynska, K.M.; Fang, Q.; Zhang, W.; O’Brien, S.A.; He, Y.; Wang, L.; Zhang, Q.; Kim, A.; Gao, R.; Orf, J.; Wang, T.; Sawant, D.; Kang, J.; Bhatt, D.; Lu, D.; Li, C.M.; Rapaport, A.S.; Perez, K.; Ye, Y.; Wang, S.; Hu, X.; Ren, X.; Ouyang, W.; Shen, Z.; Egen, J.G.; Zhang, Z.; Yu, X. Single- cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell, 2020, 181(2), 442-459.e29.
[http://dx.doi.org/10.1016/j.cell.2020.03.048] [PMID: 32302573]
[45]
Brown, C.C.; Gudjonson, H.; Pritykin, Y.; Deep, D.; Lavallée, V.P.; Mendoza, A.; Fromme, R.; Mazutis, L.; Ariyan, C.; Leslie, C.; Pe’er, D.; Rudensky, A.Y. Transcriptional basis of mouse and human dendritic cell heterogeneity. Cell, 2019, 179(4), 846-863.e24.
[http://dx.doi.org/10.1016/j.cell.2019.09.035] [PMID: 31668803]
[46]
Gubin, M.M.; Esaulova, E.; Ward, J.P.; Malkova, O.N.; Runci, D.; Wong, P.; Noguchi, T.; Arthur, C.D.; Meng, W.; Alspach, E.; Medrano, R.F.V.; Fronick, C.; Fehlings, M.; Newell, E.W.; Fulton, R.S.; Sheehan, K.C.F.; Oh, S.T.; Schreiber, R.D.; Artyomov, M.N. High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy. Cell, 2018, 175(4), 1014-1030.e19.
[http://dx.doi.org/10.1016/j.cell.2018.09.030] [PMID: 30343900]
[47]
Zhang, R.; Qi, F.; Zhao, F.; Li, G.; Shao, S.; Zhang, X.; Yuan, L.; Feng, Y. Cancer-associated fibroblasts enhance tumor-associated macrophages enrichment and suppress NK cells function in colorectal cancer. Cell Death Dis., 2019, 10(4), 273.
[http://dx.doi.org/10.1038/s41419-019-1435-2] [PMID: 30894509]
[48]
de Azevedo, R.A.; Shoshan, E.; Whang, S.; Markel, G.; Jaiswal, A.R.; Liu, A.; Curran, M.A.; Travassos, L.R.; Bar-Eli, M. MIF inhibition as a strategy for overcoming resistance to immune checkpoint blockade therapy in melanoma. OncoImmunology, 2020, 9(1), 1846915.
[http://dx.doi.org/10.1080/2162402X.2020.1846915] [PMID: 33344042]
[49]
Moon, H.G.; Kim, S.; Jeong, J.J.; Han, S.S.; Jarjour, N.N.; Lee, H.; Abboud-Werner, S.L.; Chung, S.; Choi, H.S.; Natarajan, V.; Ackerman, S.J.; Christman, J.W.; Park, G.Y. Airway epithelial cell-derived colony stimulating factor-1 promotes allergen sensitization. Immunity, 2018, 49(2), 275-287.e5.
[http://dx.doi.org/10.1016/j.immuni.2018.06.009] [PMID: 30054206]
[50]
Lin, W.; Xu, D.; Austin, C.D.; Caplazi, P.; Senger, K.; Sun, Y.; Jeet, S.; Young, J.; Delarosa, D.; Suto, E.; Huang, Z.; Zhang, J.; Yan, D.; Corzo, C.; Barck, K.; Rajan, S.; Looney, C.; Gandham, V.; Lesch, J.; Liang, W.C.; Mai, E.; Ngu, H.; Ratti, N.; Chen, Y.; Misner, D.; Lin, T.; Danilenko, D.; Katavolos, P.; Doudemont, E.; Uppal, H.; Eastham, J.; Mak, J.; de Almeida, P.E.; Bao, K.; Hadadianpour, A.; Keir, M.; Carano, R.A.D.; Diehl, L.; Xu, M.; Wu, Y.; Weimer, R.M.; DeVoss, J.; Lee, W.P.; Balazs, M.; Walsh, K.; Alatsis, K.R.; Martin, F.; Zarrin, A.A. Function of CSF1 and IL34 in macrophage homeostasis, inflammation, and cancer. Front. Immunol., 2019, 10, 2019.
[http://dx.doi.org/10.3389/fimmu.2019.02019] [PMID: 31552020]
[51]
Li, L.; Zhu, Z.; Zhao, Y.; Zhang, Q.; Wu, X.; Miao, B.; Cao, J.; Fei, S. FN1, SPARC, and SERPINE1 are highly expressed and significantly related to a poor prognosis of gastric adenocarcinoma revealed by microarray and bioinformatics. Sci. Rep., 2019, 9(1), 7827.
[http://dx.doi.org/10.1038/s41598-019-43924-x] [PMID: 31127138]
[52]
Wang, D.; Wang, X.; Si, M.; Yang, J.; Sun, S.; Wu, H.; Cui, S.; Qu, X.; Yu, X. Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. Cancer Lett., 2020, 474, 36-52.
[http://dx.doi.org/10.1016/j.canlet.2020.01.005] [PMID: 31931030]
[53]
Rodriguez, H.; Zenklusen, J.C.; Staudt, L.M.; Doroshow, J.H.; Lowy, D.R. The next horizon in precision oncology: Proteogenomics to inform cancer diagnosis and treatment. Cell, 2021, 184(7), 1661-1670.
[http://dx.doi.org/10.1016/j.cell.2021.02.055] [PMID: 33798439]
[54]
Mateo, J.; Steuten, L.; Aftimos, P.; André, F.; Davies, M.; Garralda, E.; Geissler, J.; Husereau, D.; Martinez-Lopez, I.; Normanno, N.; Reis-Filho, J.S.; Stefani, S.; Thomas, D.M.; Westphalen, C.B.; Voest, E. Delivering precision oncology to patients with cancer. Nat. Med., 2022, 28(4), 658-665.
[http://dx.doi.org/10.1038/s41591-022-01717-2] [PMID: 35440717]
[55]
Sundar, R.; Tan, I.B.H.; Chee, C.E. Negative predictive biomarkers in colorectal cancer: PRESSING ahead. J. Clin. Oncol., 2019, 37(33), 3066-3068.
[http://dx.doi.org/10.1200/JCO.19.01977] [PMID: 31550189]
[56]
Wang, J.; Xu, B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct. Target. Ther., 2019, 4(1), 34.
[http://dx.doi.org/10.1038/s41392-019-0069-2] [PMID: 31637013]
[57]
Sundar, R.; Tan, P. Genomic analyses and precision oncology in gastroesophageal cancer: Forwards or backwards? Cancer Discov., 2018, 8(1), 14-16.
[http://dx.doi.org/10.1158/2159-8290.CD-17-1295] [PMID: 29311223]
[58]
Xiao, Y.; Yu, D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol. Ther., 2021, 221, 107753.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107753] [PMID: 33259885]
[59]
Bader, J.E.; Voss, K.; Rathmell, J.C. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy. Mol. Cell, 2020, 78(6), 1019-1033.
[http://dx.doi.org/10.1016/j.molcel.2020.05.034] [PMID: 32559423]
[60]
Peng, C.; Xu, Y.; Wu, J.; Wu, D.; Zhou, L.; Xia, X. TME-related biomimetic strategies against cancer. Int. J. Nanomedicine, 2024, 19, 109-135.
[http://dx.doi.org/10.2147/IJN.S441135] [PMID: 38192633]
[61]
Jovic, D.; Liang, X.; Zeng, H.; Lin, L.; Xu, F.; Luo, Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin. Transl. Med., 2022, 12(3), e694.
[http://dx.doi.org/10.1002/ctm2.694] [PMID: 35352511]
[62]
Papalexi, E.; Satija, R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat. Rev. Immunol., 2018, 18(1), 35-45.
[http://dx.doi.org/10.1038/nri.2017.76] [PMID: 28787399]
[63]
Deng, G.; Zhang, X.; Chen, Y.; Liang, S.; Liu, S.; Yu, Z.; Lü, M. Single-cell transcriptome sequencing reveals heterogeneity of gastric cancer: Progress and prospects. Front. Oncol., 2023, 13, 1074268.
[http://dx.doi.org/10.3389/fonc.2023.1074268] [PMID: 37305583]
[64]
Greten, F.R.; Grivennikov, S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity, 2019, 51(1), 27-41.
[http://dx.doi.org/10.1016/j.immuni.2019.06.025] [PMID: 31315034]
[65]
Sahai, E.; Astsaturov, I.; Cukierman, E.; DeNardo, D.G.; Egeblad, M.; Evans, R.M.; Fearon, D.; Greten, F.R.; Hingorani, S.R.; Hunter, T.; Hynes, R.O.; Jain, R.K.; Janowitz, T.; Jorgensen, C.; Kimmelman, A.C.; Kolonin, M.G.; Maki, R.G.; Powers, R.S.; Puré, E.; Ramirez, D.C.; Scherz-Shouval, R.; Sherman, M.H.; Stewart, S.; Tlsty, T.D.; Tuveson, D.A.; Watt, F.M.; Weaver, V.; Weeraratna, A.T.; Werb, Z. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer, 2020, 20(3), 174-186.
[http://dx.doi.org/10.1038/s41568-019-0238-1] [PMID: 31980749]
[66]
Park, D.; Sahai, E.; Rullan, A. SnapShot: Cancer-associated fibroblasts. Cell, 2020, 181(2), 486-486.e1.
[http://dx.doi.org/10.1016/j.cell.2020.03.013] [PMID: 32302576]
[67]
Brechbuhl, H.M.; Finlay-Schultz, J.; Yamamoto, T.M.; Gillen, A.E.; Cittelly, D.M.; Tan, A.C.; Sams, S.B.; Pillai, M.M.; Elias, A.D.; Robinson, W.A.; Sartorius, C.A.; Kabos, P. Fibroblast subtypes regulate responsiveness of luminal breast cancer to estrogen. Clin. Cancer Res., 2017, 23(7), 1710-1721.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2851] [PMID: 27702820]
[68]
Fanhchaksai, K.; Okada, F.; Nagai, N.; Pothacharoen, P.; Kongtawelert, P.; Hatano, S.; Makino, S.; Nakamura, T.; Watanabe, H. Host stromal versican is essential for cancer-associated fibroblast function to inhibit cancer growth. Int. J. Cancer, 2016, 138(3), 630-641.
[http://dx.doi.org/10.1002/ijc.29804] [PMID: 26270355]
[69]
McAndrews, K.M.; Chen, Y.; Darpolor, J.K.; Zheng, X.; Yang, S.; Carstens, J.L.; Li, B.; Wang, H.; Miyake, T.; Correa de Sampaio, P.; Kirtley, M.L.; Natale, M.; Wu, C.C.; Sugimoto, H.; LeBleu, V.S.; Kalluri, R. Identification of functional heterogeneity of carcinoma-associated fibroblasts with distinct il6-mediated therapy resistance in pancreatic cancer. Cancer Discov., 2022, 12(6), 1580-1597.
[http://dx.doi.org/10.1158/2159-8290.CD-20-1484] [PMID: 35348629]
[70]
Sebastian, A.; Hum, N.R.; Martin, K.A.; Gilmore, S.F.; Peran, I.; Byers, S.W.; Wheeler, E.K.; Coleman, M.A.; Loots, G.G. Single- cell transcriptomic analysis of tumor-derived fibroblasts and normal tissue-resident fibroblasts reveals fibroblast heterogeneity in breast cancer. Cancers, 2020, 12(5), 1307.
[http://dx.doi.org/10.3390/cancers12051307] [PMID: 32455670]
[71]
Peng, S.; Chen, D.; Cai, J.; Yuan, Z.; Huang, B.; Li, Y.; Wang, H.; Luo, Q.; Kuang, Y.; Liang, W.; Liu, Z.; Wang, Q.; Cui, Y.; Wang, H.; Liu, X. Enhancing cancer-associated fibroblast fatty acid catabolism within a metabolically challenging tumor microenvironment drives colon cancer peritoneal metastasis. Mol. Oncol., 2021, 15(5), 1391-1411.
[http://dx.doi.org/10.1002/1878-0261.12917] [PMID: 33528867]
[72]
Peng, Z.; Ye, M.; Ding, H.; Feng, Z.; Hu, K. Spatial transcriptomics atlas reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment components in colorectal cancer. J. Transl. Med., 2022, 20(1), 302.
[http://dx.doi.org/10.1186/s12967-022-03510-8] [PMID: 35794563]
[73]
Isella, C.; Terrasi, A.; Bellomo, S.E.; Petti, C.; Galatola, G.; Muratore, A.; Mellano, A.; Senetta, R.; Cassenti, A.; Sonetto, C.; Inghirami, G.; Trusolino, L.; Fekete, Z.; De Ridder, M.; Cassoni, P.; Storme, G.; Bertotti, A.; Medico, E. Stromal contribution to the colorectal cancer transcriptome. Nat. Genet., 2015, 47(4), 312-319.
[http://dx.doi.org/10.1038/ng.3224] [PMID: 25706627]
[74]
Zhang, Q.; He, Y.; Luo, N.; Patel, S.J.; Han, Y.; Gao, R.; Modak, M.; Carotta, S.; Haslinger, C.; Kind, D.; Peet, G.W.; Zhong, G.; Lu, S.; Zhu, W.; Mao, Y.; Xiao, M.; Bergmann, M.; Hu, X.; Kerkar, S.P.; Vogt, A.B.; Pflanz, S.; Liu, K.; Peng, J.; Ren, X.; Zhang, Z. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell, 2019, 179(4), 829-845.e20.
[http://dx.doi.org/10.1016/j.cell.2019.10.003] [PMID: 31675496]
[75]
DeNardo, D.G.; Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol., 2019, 19(6), 369-382.
[http://dx.doi.org/10.1038/s41577-019-0127-6] [PMID: 30718830]
[76]
Zilionis, R.; Engblom, C.; Pfirschke, C.; Savova, V.; Zemmour, D.; Saatcioglu, H.D.; Krishnan, I.; Maroni, G.; Meyerovitz, C.V.; Kerwin, C.M.; Choi, S.; Richards, W.G.; De Rienzo, A.; Tenen, D.G.; Bueno, R.; Levantini, E.; Pittet, M.J.; Klein, A.M. Single- cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity, 2019, 50(5), 1317-1334.e10.
[http://dx.doi.org/10.1016/j.immuni.2019.03.009] [PMID: 30979687]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy