Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Review Article

Macrophages: Balancing Inflammation and Homeostasis in Health and Disease

Author(s): Rabika Ramalingam, Kaliyamurthi Venkatachalam, Modi Kiran Piyushbhai, Prakhar Sharma and Ambika Binesh*

Volume 13, Issue 2, 2024

Published on: 28 May, 2024

Page: [71 - 82] Pages: 12

DOI: 10.2174/0122115501294423240515110210

Price: $65

Abstract

Inflammation is crucial for maintaining tissue homeostasis and responding to insults, yet dysregulated inflammation can lead to various diseases. Macrophages, central to the immune system, play key roles in initiating, regulating, and resolving inflammation. This review provides an overview of macrophage functions, including activation mechanisms, recruitment to inflamed tissues, interactions with other immune cells and mediators, and their roles in phagocytosis, clearance of apoptotic cells and debris, and secretion of anti-inflammatory cytokines. Additionally, it discusses macrophage-induced regulatory T-cell formation, the impact of pro-inflammatory and anti-inflammatory cytokines on macrophage behavior, and the influence of microbial products and pathogen-associated molecular patterns (PAMPs) on macrophage function. The review also identifies targeting macrophages as a promising strategy for managing inflammatory diseases while acknowledging challenges such as macrophage heterogeneity, limitations of in vitro models, and incomplete understanding of regulatory mechanisms. Finally, it suggests areas for further research, including identifying specific macrophage subsets, understanding macrophage plasticity, exploring resolution signaling pathways, and investigating the role of metabolism and microenvironmental cues in macrophage function, aiming to pave the way for more effective macrophage-targeted therapies in inflammatory diseases.

Keywords: Macrophage, inflammation, pro-inflammatory, inflammatory diseases, immune cells, therapies.

Graphical Abstract
[1]
Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 2005; 4(3): 281-6.
[http://dx.doi.org/10.2174/1568010054022024] [PMID: 16101534]
[2]
Binesh A, Devaraj SN, Halagowder D. Atherogenic diet induced lipid accumulation induced NFκB level in heart, liver and brain of Wistar rat and diosgenin as an anti-inflammatory agent. Life Sci 2018; 196(196): 28-37.
[http://dx.doi.org/10.1016/j.lfs.2018.01.012] [PMID: 29339101]
[3]
Jabbour HN, Sales KJ, Catalano RD, Norman JE. Inflammatory pathways in female reproductive health and disease. Reproduction 2009; 138(6): 903-19.
[http://dx.doi.org/10.1530/REP-09-0247] [PMID: 19793840]
[4]
Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018; 9(6): 7204-18.
[http://dx.doi.org/10.18632/oncotarget.23208] [PMID: 29467962]
[5]
Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med 2019; 25(12): 1822-32.
[http://dx.doi.org/10.1038/s41591-019-0675-0] [PMID: 31806905]
[6]
Zasłona Z, Przybranowski S, Wilke C, et al. Resident alveolar macrophages suppress, whereas recruited monocytes promote, allergic lung inflammation in murine models of asthma. J Immunol 2014; 193(8): 4245-53.
[http://dx.doi.org/10.4049/jimmunol.1400580] [PMID: 25225663]
[7]
Bobryshev YV, Ivanova EA, Chistiakov DA, Nikiforov NG, Orekhov AN. Macrophages and their role in atherosclerosis: Pathophysiology and transcriptome analysis. BioMed Res Int 2016; 2016: 1-13.
[http://dx.doi.org/10.1155/2016/9582430] [PMID: 27493969]
[8]
Binesh A, Devaraj SN, Devaraj H. Expression of chemokines in macrophage polarization and downregulation of NFκB in aorta allow macrophage polarization by diosgenin in atherosclerosis. J Biochem Mol Toxicol 2020; 34(2): e22422.
[http://dx.doi.org/10.1002/jbt.22422] [PMID: 31729780]
[9]
Udalova IA, Mantovani A, Feldmann M. Macrophage heterogeneity in the context of rheumatoid arthritis. Nat Rev Rheumatol 2016; 12(8): 472-85.
[http://dx.doi.org/10.1038/nrrheum.2016.91] [PMID: 27383913]
[10]
Ponzoni M, Pastorino F, Di Paolo D, Perri P, Brignole C. Targeting macrophages as a potential therapeutic intervention: Impact on inflammatory diseases and cancer. Int J Mol Sci 2018; 19(7): 1953.
[http://dx.doi.org/10.3390/ijms19071953] [PMID: 29973487]
[11]
Cai S, Zhao M, Zhou B, et al. Mitochondrial dysfunction in macrophages promotes inflammation and suppresses repair after myocardial infarction. J Clin Invest 2023; 133(4): e159498.
[http://dx.doi.org/10.1172/JCI159498] [PMID: 36480284]
[12]
Kim SH, Lee KY, Chang K. The Protective Role of TREM2 in the Heterogenous Population of Macrophages during Post-Myocardial Infarction Inflammation. Int J Mol Sci 2023; 24(6): 5556.
[http://dx.doi.org/10.3390/ijms24065556] [PMID: 36982629]
[13]
Merad M, Martin JC. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat Rev Immunol 2020; 20(6): 355-62.
[http://dx.doi.org/10.1038/s41577-020-0331-4] [PMID: 32376901]
[14]
van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL. [Mononuclear phagocytic system: New classification of macrophages, monocytes and of their cell line]. Bull World Health Organ 1972; 47(5): 651-8.
[PMID: 4540685]
[15]
Park MD, Silvin A, Ginhoux F, Merad M. Macrophages in health and disease. Cell 2022; 185(23): 4259-79.
[http://dx.doi.org/10.1016/j.cell.2022.10.007] [PMID: 36368305]
[16]
Binesh A, Devaraj SN, Halagowder D. Molecular interaction of NFκB and NICD in monocyte–macrophage differentiation is a target for intervention in atherosclerosis. J Cell Physiol 2019; 234(5): 7040-50.
[http://dx.doi.org/10.1002/jcp.27458] [PMID: 30478968]
[17]
Arango Duque G, Descoteaux A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front Immunol 2014; 5: 491.
[http://dx.doi.org/10.3389/fimmu.2014.00491] [PMID: 25339958]
[18]
Thibaut R, Gage MC, Pineda-Torra I, Chabrier G, Venteclef N, Alzaid F. Liver macrophages and inflammation in physiology and physiopathology of non-alcoholic fatty liver disease. FEBS J 2022; 289(11): 3024-57.
[http://dx.doi.org/10.1111/febs.15877] [PMID: 33860630]
[19]
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8(12): 958-69.
[http://dx.doi.org/10.1038/nri2448] [PMID: 19029990]
[20]
Binesh A, Devaraj Sivasitambaram N, Halagowder D. Monocytes treated with ciprofloxacin and oxyLDL express myristate, priming atherosclerosis. J Biochem Mol Toxicol 2020; 34(3): e22442.
[http://dx.doi.org/10.1002/jbt.22442] [PMID: 31926051]
[21]
Guha Ray A, Odum OP, Wiseman D, Weinstock A. The diverse roles of macrophages in metabolic inflammation and its resolution. Front Cell Dev Biol 2023; 11: 1147434.
[http://dx.doi.org/10.3389/fcell.2023.1147434] [PMID: 36994095]
[22]
Comerford I, McColl SR. Mini-review series: Focus on chemokines. Immunol Cell Biol 2011; 89(2): 183-4.
[23]
Muller WA. Getting leukocytes to the site of inflammation. Vet Pathol 2013; 50(1): 7-22.
[http://dx.doi.org/10.1177/0300985812469883] [PMID: 23345459]
[24]
Muller W A. PECAM: Regulating the start of diapedesis.Adhesion Molecules: Function and Inhibition. Berlin, Heidelberg: SpringerLink 2007.
[25]
Miller J, Knorr R, Ferrone M, Houdei R, Carron CP, Dustin ML. Intercellular adhesion molecule-1 dimerization and its consequences for adhesion mediated by lymphocyte function associated-1. J Exp Med 1995; 182(5): 1231-41.
[http://dx.doi.org/10.1084/jem.182.5.1231] [PMID: 7595194]
[26]
Barreiro O, Yáñez-Mó M, Serrador JM, et al. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 2002; 157(7): 1233-45.
[http://dx.doi.org/10.1083/jcb.200112126] [PMID: 12082081]
[27]
Ostermann G, Weber KSC, Zernecke A, Schröder A, Weber C. JAM-1 is a ligand of the β2 integrin LFA-1 involved in transendothelial migration of leukocytes. Nat Immunol 2002; 3(2): 151-8.
[http://dx.doi.org/10.1038/ni755] [PMID: 11812992]
[28]
Mamdouh Z, Chen X, Pierini LM, Maxfield FR, Muller WA. Targeted recycling of PECAM from endothelial surface-connected compartments during diapedesis. Nature 2003; 421(6924): 748-53.
[http://dx.doi.org/10.1038/nature01300] [PMID: 12610627]
[29]
Schenkel AR, Mamdouh Z, Chen X, Liebman RM, Muller WA. CD99 plays a major role in the migration of monocytes through endothelial junctions. Nat Immunol 2002; 3(2): 143-50.
[http://dx.doi.org/10.1038/ni749] [PMID: 11812991]
[30]
Jian Y, Zhou X, Shan W, et al. Crosstalk between macrophages and cardiac cells after myocardial infarction. Cell Commun Signal 2023; 21(1): 109.
[http://dx.doi.org/10.1186/s12964-023-01105-4] [PMID: 37170235]
[31]
Hilhorst M, Shirai T, Berry G, Goronzy JÃJ, Weyand CM. T cell-macrophage interactions and granuloma formation in vasculitis. Front Immunol 2014; 5: 432.
[http://dx.doi.org/10.3389/fimmu.2014.00432] [PMID: 25309534]
[32]
Khera TK, Copland DA, Boldison J, et al. Tumour necrosis factor-mediated macrophage activation in the target organ is critical for clinical manifestation of uveitis. Clin Exp Immunol 2012; 168(2): 165-77.
[http://dx.doi.org/10.1111/j.1365-2249.2012.04567.x] [PMID: 22471277]
[33]
Binesh A. Decades-long involvement of signalling pathways in cardiovascular research using zebrafish model and its global trends. Rev Aquacult 2021; 13(1): 556-66.
[http://dx.doi.org/10.1111/raq.12486]
[34]
Scott MJ, Hoth JJ, Stagner MK, Gardner SA, Peyton JC, Cheadle WG. CD40–CD154 interactions between macrophages and natural killer cells during sepsis are critical for macrophage activation and are not interferon gamma dependent. Clin Exp Immunol 2004; 137(3): 469-77.
[http://dx.doi.org/10.1111/j.1365-2249.2004.02547.x] [PMID: 15320895]
[35]
Prame Kumar K, Nicholls AJ, Wong CHY. Partners in crime: Neutrophils and monocytes/macrophages in inflammation and disease. Cell Tissue Res 2018; 371(3): 551-65.
[http://dx.doi.org/10.1007/s00441-017-2753-2] [PMID: 29387942]
[36]
Ross EA, Devitt A, Johnson JR. Macrophages: The good, the bad, and the gluttony. Front Immunol 2021; 12: 708186.
[http://dx.doi.org/10.3389/fimmu.2021.708186] [PMID: 34456917]
[37]
Chen S, Saeed AF, Liu Q. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther 2023; 8(1): 207.
[http://dx.doi.org/10.1038/s41392-023-01452-1]
[38]
Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 1999; 17(1): 593-623.
[http://dx.doi.org/10.1146/annurev.immunol.17.1.593] [PMID: 10358769]
[39]
Rabinovitch M. Professional and non-professional phagocytes: An introduction. Trends Cell Biol 1995; 5(3): 85-7.
[http://dx.doi.org/10.1016/S0962-8924(00)88955-2] [PMID: 14732160]
[40]
Roos A, Xu W, Castellano G, et al. Mini-review: A pivotal role for innate immunity in the clearance of apoptotic cells. Eur J Immunol 2004; 34(4): 921-9.
[http://dx.doi.org/10.1002/eji.200424904] [PMID: 15048702]
[41]
Rot A, von Andrian UH. Chemokines in innate and adaptive host defense: Basic chemokinese grammar for immune cells. Annu Rev Immunol 2004; 22(1): 891-928.
[http://dx.doi.org/10.1146/annurev.immunol.22.012703.104543] [PMID: 15032599]
[42]
Takeda K, Kaisho T, Akira S. Toll-Like Receptors. Annu Rev Immunol 2003; 21(1): 335-76.
[http://dx.doi.org/10.1146/annurev.immunol.21.120601.141126] [PMID: 12524386]
[43]
Letterio JJ, Roberts AB. Regulation of immune responses by TGF-β. Annu Rev Immunol 1998; 16(1): 137-61.
[http://dx.doi.org/10.1146/annurev.immunol.16.1.137] [PMID: 9597127]
[44]
Wynn TA. IL-13 effector functions. Annu Rev Immunol 2003; 21(1): 425-56.
[http://dx.doi.org/10.1146/annurev.immunol.21.120601.141142] [PMID: 12615888]
[45]
Pastrana J L, Sha X, Virtue A, et al. Regulatory T cells and atherosclerosis. J Clin Exp Cardiolog 2012; 2012(Suppl 12): 2.
[46]
Buckley CD, Gilroy DW, Serhan CN. Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity 2014; 40(3): 315-27.
[http://dx.doi.org/10.1016/j.immuni.2014.02.009] [PMID: 24656045]
[47]
Vassalli P. The pathophysiology of tumor necrosis factors. Annu Rev Immunol 1992; 10(1): 411-52.
[http://dx.doi.org/10.1146/annurev.iy.10.040192.002211] [PMID: 1590993]
[48]
Hurst SM, Wilkinson TS, McLoughlin RM, et al. Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 2001; 14(6): 705-14.
[http://dx.doi.org/10.1016/S1074-7613(01)00151-0] [PMID: 11420041]
[49]
Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et Biophysica Acta [BBA]-. Mol Cell Res 2011; 1813(5): 878-88.
[50]
Wang KS, Frank DA, Ritz J. Interleukin-2 enhances the response of natural killer cells to interleukin-12 through up-regulation of the interleukin-12 receptor and STAT4. Blood 2000; 95(10): 3183-90.
[http://dx.doi.org/10.1182/blood.V95.10.3183] [PMID: 10807786]
[51]
Munoz C, Carlet J, Fitting C, Misset B, Blériot JP, Cavaillon JM. Dysregulation of in vitro cytokine production by monocytes during sepsis. J Clin Invest 1991; 88(5): 1747-54.
[http://dx.doi.org/10.1172/JCI115493] [PMID: 1939659]
[52]
Hart PH, Vitti GF, Burgess DR, Whitty GA, Piccoli DS, Hamilton JA. Potential antiinflammatory effects of interleukin 4: Suppression of human monocyte tumor necrosis factor alpha, interleukin 1, and prostaglandin E2. Proc Natl Acad Sci USA 1989; 86(10): 3803-7.
[http://dx.doi.org/10.1073/pnas.86.10.3803] [PMID: 2786204]
[53]
Xing Z, Gauldie J, Cox G, et al. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Invest 1998; 101(2): 311-20.
[http://dx.doi.org/10.1172/JCI1368] [PMID: 9435302]
[54]
Opal SM, DePalo VA. Anti-Inflammatory Cytokines. Chest 2000; 117(4): 1162-72.
[http://dx.doi.org/10.1378/chest.117.4.1162] [PMID: 10767254]
[55]
De Waal Malefyt R, Figdor CG, Huijbens R, et al. Effects of IL-13 on phenotype, cytokine production, and cytotoxic function of human monocytes. Comparison with IL-4 and modulation by IFN-gamma or IL-10. J Immunol 1993; 151(11): 6370-81.
[56]
Bianchi ME. DAMPs, PAMPs and alarmins: All we need to know about danger. J Leukoc Biol 2007; 81(1): 1-5.
[http://dx.doi.org/10.1189/jlb.0306164] [PMID: 17032697]
[57]
Erridge C. The roles of pathogen-associated molecular patterns in atherosclerosis. Trends Cardiovasc Med 2008; 18(2): 52-6.
[http://dx.doi.org/10.1016/j.tcm.2007.12.003] [PMID: 18308195]
[58]
Cao F, Castrillo A, Tontonoz P, Re F, Byrne GI. Chlamydia pneumoniae--induced macrophage foam cell formation is mediated by Toll-like receptor 2. Infect Immun 2007; 75(2): 753-9.
[http://dx.doi.org/10.1128/IAI.01386-06] [PMID: 17145941]
[59]
Takeda K, Akira S. TLR signaling pathways. Semin Immunol 2004; 16(1): 3-9.
[http://dx.doi.org/10.1016/j.smim.2003.10.003]
[60]
Webster JI, Tonelli L, Sternberg EM. Neuroendocrine regulation of immunity. Annu Rev Immunol 2002; 20(1): 125-63.
[http://dx.doi.org/10.1146/annurev.immunol.20.082401.104914] [PMID: 11861600]
[61]
Olsen NJ, Stein CM. New drugs for rheumatoid arthritis. N Engl J Med 2004; 350(21): 2167-79.
[http://dx.doi.org/10.1056/NEJMra032906] [PMID: 15152062]
[62]
Fleischmann RM, Schechtman J, Bennett R, et al. Anakinra, a recombinant human interleukin-1 receptor antagonist (r-metHuIL-1ra), in patients with rheumatoid arthritis: A large, international, multicenter, placebo-controlled trial. Arthritis Rheum 2003; 48(4): 927-34.
[http://dx.doi.org/10.1002/art.10870] [PMID: 12687534]
[63]
Andón FT, Digifico E, Maeda A, et al. Targeting tumor associated macrophages: The new challenge for nanomedicine. Semin Immunol 2017; 34: 103-13.
[http://dx.doi.org/10.1016/j.smim.2017.09.004]
[64]
Song M, Liu T, Shi C, Zhang X, Chen X. Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia. ACS Nano 2016; 10(1): 633-47.
[http://dx.doi.org/10.1021/acsnano.5b06779] [PMID: 26650065]
[65]
Zhao H, Wu L, Yan G, et al. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6(1): 263.
[http://dx.doi.org/10.1038/s41392-021-00658-5] [PMID: 34248142]
[66]
Zhao X, Chen J, Sun H, Zhang Y, Zou D. New insights into fibrosis from the ECM degradation perspective: The macrophage-MMP-ECM interaction. Cell Biosci 2022; 12(1): 117.
[http://dx.doi.org/10.1186/s13578-022-00856-w] [PMID: 35897082]
[67]
Yu Y, Yue Z, Xu M, et al. Macrophages play a key role in tissue repair and regeneration. PeerJ 2022; 10: e14053.
[http://dx.doi.org/10.7717/peerj.14053] [PMID: 36196399]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy