Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Electrochemistry

Improving the Photoelectrochemical Response of Pure TiO2 Nanotube Array by Changing Anodization Voltage in Preparation Process

Author(s): Shaogao Chen, Ruanchi Xu, Zhao Xia, Xingwen Zheng* and Yujun Si*

Volume 4, Issue 3, 2024

Published on: 28 May, 2024

Page: [214 - 221] Pages: 8

DOI: 10.2174/0122102981299201240523111734

Price: $65

Open Access Journals Promotions 2
Abstract

Introduction: Enhancing the photoelectrochemical response of TiO2 nanotube arrays (TNA) is crucial to improve the efficiency of solar energy utilization. In this work, TNA was prepared electrochemically by anodization at single voltages of 20 V, 30 V and 40 V as well as a special two-step voltage of 30 V-20 V, 30 V-40 V, respectively. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the morphology and crystalline structure of the sample.

Methods: The photoelectrochemical response was measured by electrochemical potentiostatic technique. The results show TNA evenly aligns with increasing the anodization voltage.

Results: However, there is TiO2 that does not form TNA and is dispersed as fragments on TNA surface at a higher voltage, which adversely affects TNA’s photoelectrochemical properties.

Conclusion: During the process of anodization, the oxidation current changes due to the switch in voltage. A two-step voltage method enhances pure TNA's photoelectrochemical response to visible light.

Keywords: TiO2 nanotube arrays, two-step voltage, anodic oxidization, photoelectrochemical response, surface cleanliness, solar energy.

« Previous
Graphical Abstract
[1]
Zhao, H.; Yuan, Z.Y. Progress and perspectives for solar‐driven water electrolysis to produce green hydrogen. Adv. Energy Mater., 2023, 13(16), 2300254.
[http://dx.doi.org/10.1002/aenm.202300254]
[2]
Yu, J.; Cong, S.; Song, Y.; Teng, W. Construction of oxygen vacancy-rich MoO3-x and NiFe-LDH p-n heterojunction for enhanced carrier separation to promote photoelectrochemical oxidation of pollutants and hydrogen precipitation. Appl. Surf. Sci., 2024, 645, 158852.
[http://dx.doi.org/10.1016/j.apsusc.2023.158852]
[3]
Sun, X.; Jiang, S.; Huang, H.; Li, H.; Jia, B.; Ma, T. Solar energy catalysis. Angew. Chem. Int. Ed., 2022, 61(29), e202204880.
[http://dx.doi.org/10.1002/anie.202204880] [PMID: 35471594]
[4]
Hota, P.; Das, A.; Maiti, D.K. A short review on generation of green fuel hydrogen through water splitting. Int. J. Hydrogen Energy, 2023, 48(2), 523-541.
[http://dx.doi.org/10.1016/j.ijhydene.2022.09.264]
[5]
Yang, F.; Wang, P.; Hao, J.; Qu, J.; Cai, Y.; Yang, X.; Li, C.M.; Hu, J. Ultrasound-assisted piezoelectric photocatalysis: An effective strategy for enhancing hydrogen evolution from water splitting. Nano Energy, 2023, 118, 108993.
[http://dx.doi.org/10.1016/j.nanoen.2023.108993]
[6]
Fan, B.; Ding, L.; Yu, Z.; Jiang, R.; Hou, Y.; Li, S.; Chen, J. The built-in electric field and spin-pinning effect in BiVO4/Fe0.4Co0.6Se2/Co(Fe)OxHy for enhanced photoelectrochemical water oxidation. Chem. Eng. J., 2023, 473, 145134.
[http://dx.doi.org/10.1016/j.cej.2023.145134]
[7]
Zhou, J.; Cheng, H.; Cheng, J.; Wang, L.; Xu, H. The emergence of high‐performance conjugated polymer/inorganic semiconductor hybrid photoelectrodes for solar‐driven photoelectrochemical water splitting. Small Methods, 2024, 8(2), 2300418.
[http://dx.doi.org/10.1002/smtd.202300418] [PMID: 37421184]
[8]
Chen, S.; Liu, T.; Zheng, Z.; Ishaq, M.; Liang, G.; Fan, P.; Chen, T.; Tang, J. Recent progress and perspectives on Sb2Se3-based photocathodes for solar hydrogen production via photoelectrochemical water splitting; J. Energy Chem, 2022, pp. 67508-67523.
[http://dx.doi.org/10.1016/j.jechem.2021.08.062]
[9]
Zi, Y.; Hu, Y.; Pu, J.; Wang, M.; Huang, W. Recent progress in interface engineering of nanostructures for photoelectrochemical energy harvesting applications. Small, 2023, 19(19), 2208274.
[http://dx.doi.org/10.1002/smll.202208274] [PMID: 36776020]
[10]
Zhao, X.; Liu, Q.; Li, X.; Ji, H.; Shen, Z. Two-dimensional g-C3N4 nanosheets-based photo-catalysts for typical sustainable processes. Chin. Chem. Lett., 2023, 34(11), 108306.
[http://dx.doi.org/10.1016/j.cclet.2023.108306]
[11]
Shi, W.; Cao, L.; Shi, Y.; Chen, Z.; Cai, Y.; Guo, F.; Du, X. Environmentally friendly supermolecule self-assembly preparation of S-doped hollow porous tubular g-C3N4 for boosted photocatalytic H2 production. Ceram. Int., 2023, 49(8), 11989-11998.
[http://dx.doi.org/10.1016/j.ceramint.2022.12.049]
[12]
Gong, D.; Guo, J.; Wang, F.; Zhang, J.; Song, S.; Feng, B.; Zhang, X.; Zhang, W. Green construction of metal- and additive-free citrus peel-derived carbon dot/g-C3N4 photocatalysts for the high-performance photocatalytic decomposition of sunset yellow. Food Chem., 2023, 425, 136470.
[http://dx.doi.org/10.1016/j.foodchem.2023.136470] [PMID: 37269639]
[13]
Li, Y.; Zhuang, C.; Qiu, S.; Gao, J.; Zhou, Q.; Sun, Z.; Kang, Z.; Han, X. Cs-Cu-Cl perovskite quantum dots for photocatalytic H2 evolution with super-high stability. Appl. Catal. B, 2023, 337, 122881.
[http://dx.doi.org/10.1016/j.apcatb.2023.122881]
[14]
Zhong, Y.; Li, C.; Yang, F.; Guan, L.; Jin, S. Covalent pyrimidine frameworks via a tandem polycondensation method for photocatalytic hydrogen production and proton conduction. Small, 2023, 19(14), 2204515.
[http://dx.doi.org/10.1002/smll.202204515] [PMID: 36635041]
[15]
Zhang, H.; Zhao, H.; Zhai, S.; Zhao, R.; Wang, J.; Cheng, X.; Shiran, H.S.; Larter, S.; Kibria, M.G.; Hu, J. Electron-enriched Lewis acid-base sites on red carbon nitride for simultaneous hydrogen production and glucose isomerization. Applied Catalysis B: Environ., 2022, 316(5), 121647.
[http://dx.doi.org/10.1016/j.apcatb.2022.121647]
[16]
Zhang, G.; Guan, Z.; Yang, J.; Li, Q.; Zhou, Y.; Zou, Z. Metal sulfides for photocatalytic hydrogen production: Current development and future challenges. Sol. RRL, 2022, 6(10), 2200587.
[http://dx.doi.org/10.1002/solr.202200587]
[17]
Kaur, G.; Negi, P.; Konwar, R.J.; Kumar, H.; Devi, N.; Kaur, G. Himani; Kaur, M.; Sharma, R.; Sati, P.C.; Kumar, V.; Sharma, P.; Singh, J.P.; Yadav, A.N. Tailored TiO2 nanostructures for designing of highly efficient dye sensitized solar cells: A review. Nano-Struct. Nano-Obj., 2023, 36, 101056.
[http://dx.doi.org/10.1016/j.nanoso.2023.101056]
[18]
Wang, K.; Chen, S.; Huo, G.; Chen, G.; Ye, Q.; Zhang, Y.; Lin, W.; Su, C.; Huang, Z. Photovoltaics and its magnetic-field promotion effect in dye-sensitized solar cells with BiFeO3 + TiO2 composite photoanodes. Sol. Energy, 2022, 242, 184-190.
[http://dx.doi.org/10.1016/j.solener.2022.07.019]
[19]
Alizadeh, A.; Shariatinia, Z. Auspicious energy conversion performance of dye-sensitized solar cells based on Gd2O3-impregnated SmTiO3 perovskite/TiO2 nanocomposite photoelectrodes. Electrochim. Acta, 2023, 450, 142280.
[http://dx.doi.org/10.1016/j.electacta.2023.142280]
[20]
Ali, M.; Vellanki, B.P.; Shoaib, M.; Kazmi, A.A. Occurrence of Phthalates in common effluent treatment plants and removal by using Nano Titania-Graphene based photo-catalyst for tertiary treated effluent. J. Hazard. Mat.Adv., 2022, 8, 100192.
[http://dx.doi.org/10.1016/j.hazadv.2022.100192]
[21]
Xu, Q.; Bai, Z.; Ma, J.; Huang, M.; Qiu, R.; Wu, J. Interface template synthesis of zein-based amorphous TiO2 composite microcapsules with enhanced photo-catalysis. Colloids Surf. A Physicochem. Eng. Asp., 2021, 630, 127534.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127534]
[22]
Merdoud, R.; Aoudjit, F.; Mouni, L.; Ranade, V.V. Degradation of methyl orange using hydrodynamic Cavitation, H2O2, and photo-catalysis with TiO2-Coated glass Fibers: Key operating parameters and synergistic effects. Ultrason. Sonochem., 2024, 103, 106772.
[http://dx.doi.org/10.1016/j.ultsonch.2024.106772]
[23]
Zhang, D.; Yu, S.; Wang, X.; Huang, J.; Pan, W.; Zhang, J.; Meteku, B.E.; Zeng, J. UV illumination-enhanced ultrasensitive ammonia gas sensor based on (001)TiO2/MXene heterostructure for food spoilage detection. J. Hazard. Mater., 2022, 423(Pt B), 127160.
[http://dx.doi.org/10.1016/j.jhazmat.2021.127160] [PMID: 34537639 ]
[24]
Wu, K.; Debliquy, M.; Zhang, C. Room temperature gas sensors based on Ce doped TiO2 nanocrystals for highly sensitive NH3 detection. Chem. Eng. J., 2022, 444, 136449.
[http://dx.doi.org/10.1016/j.cej.2022.136449]
[25]
Navakoteswara Rao, V.; Kedhareswara Sairam, P.; Kim, M.D.; Rezakazemi, M.; Aminabhavi, T.M.; Ahn, C.W.; Yang, J.M. CdS/TiO2 nano hybrid heterostructured materials for superior hydrogen production and gas sensor applications. J. Environ. Manage., 2023, 340, 117895.
[http://dx.doi.org/10.1016/j.jenvman.2023.117895] [PMID: 37121008]
[26]
Mintcheva, N.; Srinivasan, P.; Rayappan, J.B.B.; Kuchmizhak, A.A.; Gurbatov, S.; Kulinich, S.A. Room-temperature gas sensing of laser-modified anatase TiO2 decorated with Au nanoparticles. Appl. Surf. Sci., 2020, 507, 145169.
[http://dx.doi.org/10.1016/j.apsusc.2019.145169]
[27]
Wang, Y.; Chen, Y-X.; Barakat, T.; Wang, T-M.; Krief, A.; Zeng, Y-J.; Laboureur, M.; Fusaro, L.; Liao, H-G.; Su, B-L. Synergistic effects of carbon doping and coating of TiO2 with exceptional photocurrent enhancement for high performance H2 production from water splitting; J; Energy Chem, 2021, pp. 56141-56151.
[http://dx.doi.org/10.1016/j.jechem.2020.08.002]
[28]
Sawal, M.H.; Jalil, A.A.; Khusnun, N.F.; Hassan, N.S.; Bahari, M.B. A review of recent modification strategies of TiO2-based photoanodes for efficient photoelectrochemical water splitting performance. Electrochim. Acta, 2023, 467, 143142.
[http://dx.doi.org/10.1016/j.electacta.2023.143142]
[29]
Li, W.; Zhang, H.; Hong, M.; Zhang, L.; Feng, X.; Shi, M.; Hu, W.; Mu, S. Defective RuO2/TiO2 nano-heterostructure advances hydrogen production by electrochemical water splitting. Chem. Eng. J., 2022, 431, 134072.
[http://dx.doi.org/10.1016/j.cej.2021.134072]
[30]
Kumar, N.; Alam, K.M.; Vrushabendrakumar, D.; Shetty, A.; Garcia, J.; Chaulagain, N.; Shankar, K. CO2 photoreduction activity enhancement and unexpected observation of carbon monoxide adsorbates on the surface of TiO2 nanotube arrays synthesized in formamide electrolytes. ACS Appl. Mater. Interfaces, 2023, acsami.3c12368. .
[http://dx.doi.org/10.1021/acsami.3c12368] [PMID: 38038676]
[31]
Wu, Z.; Zhao, J.; Yin, Z.; Wang, X.; Li, Z.; Wang, X. Highly sensitive photoelectrochemical detection of glucose based on BiOBr/TiO2 nanotube array p-n heterojunction nanocomposites. Sens. Actuators B Chem., 2020, 312(1), 127978.
[http://dx.doi.org/10.1016/j.snb.2020.127978]
[32]
Li, F.; Liu, G.; Liu, F.; Wu, J.; Yang, S. Synergetic effect of CQD and oxygen vacancy to TiO2 photocatalyst for boosting visible photocatalytic NO removal. J. Hazard. Mater., 2023, 452, 131237.
[http://dx.doi.org/10.1016/j.jhazmat.2023.131237] [PMID: 36948124]
[33]
Wang, S.; Zhang, Z.; Huo, W.; Zhang, X.; Fang, F.; Xie, Z.; Jiang, J. Single-crystal-like black Zr-TiO2 nanotube array film: An efficient photocatalyst for fast reduction of Cr(VI). Chem. Eng. J., 2021, 403, 126331.
[http://dx.doi.org/10.1016/j.cej.2020.126331]
[34]
Wang, Q.; Zhu, S.; Zhao, S.; Li, C.; Wang, R.; Cao, D.; Liu, G. Construction of Bi-assisted modified CdS/TiO2 nanotube arrays with ternary S-scheme heterojunction for photocatalytic wastewater treatment and hydrogen production. Fuel, 2022, 322, 124163.
[http://dx.doi.org/10.1016/j.fuel.2022.124163]
[35]
Wang, S.; Zhang, Z.; Huo, W.; Zhu, K.; Zhang, X.; Zhou, X.; Fang, F.; Xie, Z.; Jiang, J. Preferentially oriented Ag-TiO2 nanotube array film: An efficient visible-light-driven photocatalyst. J. Hazard. Mater., 2020, 399, 123016.
[http://dx.doi.org/10.1016/j.jhazmat.2020.123016] [PMID: 32535517]
[36]
Zhou, S.; Liu, S.; Su, K.; Jia, K. Graphite carbon nitride coupled S-doped hydrogenated TiO2 nanotube arrays with improved photoelectrochemical performance. J. Electroanal. Chem., 2020, 862, 114008.
[http://dx.doi.org/10.1016/j.jelechem.2020.114008]
[37]
Wang, Q.; Cai, J.; Biesold-McGee, G.V.; Huang, J.; Ng, Y.H.; Sun, H.; Wang, J.; Lai, Y.; Lin, Z. Silk fibroin-derived nitrogen-doped carbon quantum dots anchored on TiO2 nanotube arrays for heterogeneous photocatalytic degradation and water splitting. Nano Energy, 2020, 78, 105313.
[http://dx.doi.org/10.1016/j.nanoen.2020.105313]
[38]
Kumar, P.; Kar, P.; Manuel, A.P.; Zeng, S.; Thakur, U.K.; Alam, K.M.; Zhang, Y.; Kisslinger, R.; Cui, K.; Bernard, G.M.; Michaelis, V.K.; Shankar, K. Noble metal free, visible light driven photocatalysis using TiO2 nanotube arrays sensitized by P‐Doped C3N4 quantum dots. Adv. Opt. Mater., 2020, 8(4), 1901275.
[http://dx.doi.org/10.1002/adom.201901275]
[39]
Rekeb, L.; Hamadou, L.; Kadri, A.; Benbrahim, N.; Chainet, E. Highly broadband plasmonic Cu film modified Cu2O/TiO2 nanotube arrays for efficient photocatalytic performance. Int. J. Hydrogen Energy, 2019, 44(21), 10541-10553.
[http://dx.doi.org/10.1016/j.ijhydene.2019.02.188]
[40]
Yue, Y.; Zhang, P.; Wang, W.; Cai, Y.; Tan, F.; Wang, X.; Qiao, X.; Wong, P.K. Enhanced dark adsorption and visible-light-driven photocatalytic properties of narrower-band-gap Cu2S decorated Cu2O nanocomposites for efficient removal of organic pollutants. J. Hazard. Mater., 2020, 384, 121302.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121302] [PMID: 31581016]
[41]
Kao, J.C.; Chou, J.P.; Chen, P.J.; Lo, Y.C. Using adatoms to tune the band structures of Cu2O surfaces for photocatalytic applications. Mat. Tod. Phys., 2023, 38, 101218.
[http://dx.doi.org/10.1016/j.mtphys.2023.101218]
[42]
Yang, L.; Wang, R.; Zhou, N.; Jiang, L.; Liu, H.; He, Q.; Deng, C.; Chu, D.; Zhang, M.; Sun, Z. Construction of p-n heterostructured BiOI/TiO2 nanosheets arrays for improved photoelectrochemical water splitting performance. Appl. Surf. Sci., 2022, 601, 154277.
[http://dx.doi.org/10.1016/j.apsusc.2022.154277]
[43]
Cao, B.; He, D.; Rao, F.; Hassan, Q.U.; Cai, X.; Liu, L.; Xue, F.; Zhu, G. Constructing BiOI/CeO2 p-n heterojunction with enhanced NOx photo-oxidative removal under visible light irradiation. J. Alloys Compd., 2023, 934, 167962.
[http://dx.doi.org/10.1016/j.jallcom.2022.167962]
[44]
Wang, Y.; Wang, M.; Liu, J.; Wang, L.; Pang, H.; Su, Y.; Pan, J.; Xue, Z.; Peng, Y. BiOI/Bi2MoO6 p-n junction to enhance visible light photocatalytic activity toward environmental remediation. Inorg. Chem., 2023, 62(23), 9158-9167.
[http://dx.doi.org/10.1021/acs.inorgchem.3c01012] [PMID: 37243623]
[45]
Li, X.; Wang, X.; Nan, Y.; Sun, Y.; Xu, H.; Chi, L.; Huang, Y.; Duan, J.; Hou, B. Effect of Co3O4/TiO2 heterojunction photoanode with enhanced photocathodic protection on 304 stainless steel under visible light. Colloids Surf. A Physicochem. Eng. Asp., 2023, 664, 131150.
[http://dx.doi.org/10.1016/j.colsurfa.2023.131150]
[46]
Hezam, A.; Alkanad, K.; Bajiri, M.A.; Strunk, J.; Takahashi, K.; Drmosh, Q.A.; Al-Zaqri, N.; Krishnappagowda, L.N. 2D/1D MoS2/TiO2 heterostructure photocatalyst with a switchable CO2 reduction product. Small Methods, 2023, 7(1), 2201103.
[http://dx.doi.org/10.1002/smtd.202201103] [PMID: 36408777]
[47]
Liu, Y.; Zheng, X.; Yang, Y.; Li, J.; Liu, W.; Shen, Y.; Tian, X. Photocatalytic hydrogen evolution using ternary‐metal‐sulfide/TiO2 heterojunction photocatalysts. ChemCatChem, 2022, 14(5), e202101439.
[http://dx.doi.org/10.1002/cctc.202101439]
[48]
Zhao, X.; Niu, W.; Zhang, H.; Dai, X.; Wei, S.; Yang, L. Effects of interlayer coupling and electric field on the electronic properties of PtSe2/ZrSe2 van der Waals heterojunctions. Appl. Surf. Sci., 2020, 510, 145316.
[http://dx.doi.org/10.1016/j.apsusc.2020.145316]
[49]
Qiao, H.; Li, Z.; Huang, Z.; Ren, X.; Kang, J.; Qiu, M.; Liu, Y.; Qi, X.; Zhong, J.; Zhang, H. Self-powered photodetectors based on 0D/2D mixed dimensional heterojunction with black phosphorus quantum dots as hole accepters. Appl. Mater. Today, 2020, 20, 100765.
[http://dx.doi.org/10.1016/j.apmt.2020.100765]
[50]
Hao, P.; Chen, Z.; Yan, Y.; Shi, W.; Guo, F. Recent advances, application and prospect in g-C3N4-based S-scheme heterojunction photocatalysts. Separ. Purif. Tech., 2024, 330, 125302.
[http://dx.doi.org/10.1016/j.seppur.2023.125302]
[51]
Kong, N.; Du, H.; Li, Z.; Lu, T.; Xia, S.; Tang, Z.; Song, S. Nano heterojunction of double MOFs for improved CO2 photocatalytic reduction performance. Colloids Surf. A Physicochem. Eng. Asp., 2023, 663, 131005.
[http://dx.doi.org/10.1016/j.colsurfa.2023.131005]
[52]
Qian, Q.; Lin, Y.; Xiong, Z.; Su, P.; Liao, D.; Dai, Q.; Chen, L.; Feng, D. Internal anodization of porous Ti to fabricate immobilized TiO2 nanotubes with a high specific surface area. Electrochem. Commun., 2022, 135, 107201.
[http://dx.doi.org/10.1016/j.elecom.2022.107201]
[53]
Peng, K.; Liu, L.; Zhang, J.; Ma, J.; Liu, Y. The relationship between the growth rate of anodic TiO2 nanotubes, the fluoride concentration and the electronic current. Electrochem. Commun., 2023, 148, 107457.
[http://dx.doi.org/10.1016/j.elecom.2023.107457]
[54]
Puga, M.L.; Venturini, J.; ten Caten, C.S.; Bergmann, C.P. Influencing parameters in the electrochemical anodization of TiO2 nanotubes: Systematic review and meta-analysis. Ceram. Int., 2022, 48(14), 19513-19526.
[http://dx.doi.org/10.1016/j.ceramint.2022.04.059]
[55]
Bhasin, V.; Halankar, K.K.; Biswas, A.; Ghosh, S.K.; Sarkar, S.K.; Jha, S.N.; Bhattacharyya, D. Improvement of high current performance of Li ion batteries with TiO2 thin film anodes by transition metal doping. J. Alloys Compd., 2023, 942, 169118.
[http://dx.doi.org/10.1016/j.jallcom.2023.169118]
[56]
Wang, L.; Lin, C.; Yang, G.; Wang, N.; Yan, W. SnO2 nanosheets grown on in-situ formed N-doped branched TiO2/C nanofibers as binder-free anodes for sodium-ion storage. Electrochim. Acta, 2022, 411, 140049.
[http://dx.doi.org/10.1016/j.electacta.2022.140049]
[57]
Jiang, L.; Zhang, J.; Chen, B.; Zhang, S.; Zhang, Z.; Wan, W.; Song, Y. Morphological comparison and growth mechanism of TiO2 nanotubes in HBF4 and NH4F electrolytes. Electrochem. Commun., 2022, 135, 107200.
[http://dx.doi.org/10.1016/j.elecom.2022.107200]
[58]
Yilmaz, O.; Ebeoglugil, M.F.; Dalmis, R.; Dikici, T. Effect of anodizing time on the structural color and photocatalytic properties of the TiO2 films formed by electrochemical method. Mater. Sci. Semicond. Process., 2023, 167, 107768.
[http://dx.doi.org/10.1016/j.mssp.2023.107768]
[59]
Li, P.; Dai, S.; Dai, D.; Zou, Z.; Wang, R.; Zhu, P.; Liang, K.; Ge, F.; Huang, F. Influence of the microstructure of sputtered Ti films on the anodization toward TiO2 nanotube arrays. Chem. Phys. Lett., 2023, 826, 140675.
[http://dx.doi.org/10.1016/j.cplett.2023.140675]
[60]
Broens, M.I.; Ramos Cervantes, W.; Asenjo Collao, A.M.; Iglesias, R.A.; Teijelo, M.L.; Linarez Pérez, O.E. TiO2 nanotube arrays grown in ethylene glycol-based media containing fluoride: Understanding the effect of early anodization stages on the morphology. J. Electroanal. Chem., 2023, 935, 117314.
[http://dx.doi.org/10.1016/j.jelechem.2023.117314]
[61]
Chen, X.; Kure-Chu, S.Z.; Liu, J.; Matsubara, T.; Sakurai, Y.; Hihara, T.; Lee, S.H.; Osada, M.; Okido, M. Tuning the structures and conductivity of nanoporous TiO2—TiO films through anodizing electrolytes as LIB anodes with ultra-high capacity and excellent cycling performance. J. Energy Storage, 2023, 73, 109231.
[http://dx.doi.org/10.1016/j.est.2023.109231]
[62]
Hou, X.; Lund, P.D.; Li, Y. Controlling anodization time to monitor film thickness, phase composition and crystal orientation during anodic growth of TiO2 nanotubes. Electrochem. Commun., 2022, 134, 107168.
[http://dx.doi.org/10.1016/j.elecom.2021.107168]
[63]
Winiarski, J.; Tylus, W.; Pawlyta, M.; Szczygieł, B. Titanium anodization in deep eutectic solvents: The effect of anodizing time on the morphology and structure of anodic layers. Appl. Surf. Sci., 2022, 577, 151892.
[http://dx.doi.org/10.1016/j.apsusc.2021.151892]
[64]
Mao, H.; Sun, Y.; Li, H.; Wu, S.; Liu, D.; Li, H.; Li, S.; Ma, T. Synergy of Pd2+/S2− ‐Doped TiO2 Supported on 2‐Methylimidazolium‐Functionalized Polypyrrole/Graphene Oxide for Enhanced Nitrogen Electrooxidation. Adv. Mater., 2024, 36(16), 2313155.
[http://dx.doi.org/10.1002/adma.202313155] [PMID: 38228320]
[65]
Paul, D.; Aamir, L.; Aslam, A.; Rathore, D. p-/n-Type Switching in the Ag/BTO/TiO2 nanocomposite as a gas sensor toward ethanol, liquefied petroleum gas, and ammonia. Langmuir, 2023, 39(33), 11879-11887.
[http://dx.doi.org/10.1021/acs.langmuir.3c01687] [PMID: 37562969]
[66]
Herrera, W.; Vera, J.; Hermosilla, E.; Diaz, M.; Tortella, G.R.; Dos Reis, R.A.; Seabra, A.B.; Diez, M.C.; Rubilar, O. The catalytic role of superparamagnetic iron oxide nanoparticles as a support material for tio2 and zno on chlorpyrifos photodegradation in an aqueous solution. Nanomaterials (Basel), 2024, 14(3), 299.
[http://dx.doi.org/10.3390/nano14030299] [PMID: 38334570]
[67]
Sapoletova, N.A.; Kushnir, S.E.; Ulyanov, A.N.; Valeev, R.G.; Boytsova, O.V.; Roslyakov, I.V.; Napolskii, K.S. Effect of post-treatment on photocatalytic activity of anodic titania photonic crystals. Opt. Mater., 2023, 144, 114350.
[http://dx.doi.org/10.1016/j.optmat.2023.114350]
[68]
Montakhab, E.; Rashchi, F.; Sheibani, S. Enhanced photocatalytic activity of TiO2 nanotubes decorated with Ag nanoparticles by simultaneous electrochemical deposition and reduction processes. Appl. Surf. Sci., 2023, 615, 156332.
[http://dx.doi.org/10.1016/j.apsusc.2023.156332]
[69]
Liu, Z.; Zhao, F.; Liu, X.; Fu, Y.; Song, Y.; Wang, P.; Zhang, X.; Wang, G.; Ma, H. Unlocking a Type-II CoO@BiVO4 heterostructure for wastewater purification. Langmuir, 2024, 40(2), 1348-1357.
[http://dx.doi.org/10.1021/acs.langmuir.3c02969] [PMID: 38176059]
[70]
Wollandt, T.; Mangel, S.; Kussmann, J.; Leon, C.C.; Scavuzzo, A.; Ochsenfeld, C.; Kern, K.; Jung, S.J. Charging and electric field effects on hydrogen molecules physisorbed on graphene. J. Phys. Chem. C, 2023, 127(8), 4326-4333.
[http://dx.doi.org/10.1021/acs.jpcc.2c08215]
[71]
Zhang, J.; Jia, K.; Huang, Y.; Liu, X.; Xu, Q.; Wang, W.; Zhang, R.; Liu, B.; Zheng, L.; Chen, H.; Gao, P.; Meng, S.; Lin, L.; Peng, H.; Liu, Z. Intrinsic wettability in pristine graphene. Adv. Mater., 2022, 34(6), 2103620.
[http://dx.doi.org/10.1002/adma.202103620] [PMID: 34808008]
[72]
Chang, C.M.; Wu, C.Y.; Huang, C.W. Photoresponse of large-area atomically thin β-Ga2O3 and GaN materials via liquid metal print synthesized. Appl. Surf. Sci., 2024, 649, 159131.
[http://dx.doi.org/10.1016/j.apsusc.2023.159131]
[73]
Lin, C.; Dong, C.; Kim, S.; Lu, Y.; Wang, Y.; Yu, Z.; Gu, Y.; Gu, Z.; Lee, D.K.; Zhang, K.; Park, J.H. Photo‐electrochemical glycerol conversion over a mie scattering effect enhanced porous BiVO 4 Photoanode. Adv. Mater., 2023, 35(15), 2209955.
[http://dx.doi.org/10.1002/adma.202209955] [PMID: 36692193]
[74]
Zheng, D.; Chen, M.; Chen, Y.; Gao, W. In-situ preparation of hollow CdCoS2 heterojunction with enhanced photocurrent response for highly photoelectrochemical sensing of organophosphorus pesticides. Anal. Chim. Acta, 2022, 1212, 339913.
[http://dx.doi.org/10.1016/j.aca.2022.339913] [PMID: 35623791]
[75]
Derelli, D.; Caddeo, F.; Frank, K.; Krötzsch, K.; Ewerhardt, P.; Krüger, M.; Medicus, S.; Klemeyer, L.; Skiba, M.; Ruhmlieb, C.; Gutowski, O.; Dippel, A.C.; Parak, W.J.; Nickel, B.; Koziej, D. Photodegradation of CuBi2O4 films evidenced by fast formation of metallic bi using operando surface‐sensitive x‐ray scattering. Angew. Chem. Int. Ed., 2023, 62(43), e202307948.
[http://dx.doi.org/10.1002/anie.202307948] [PMID: 37635657]
[76]
Yang, Z.; Zhao, L.; Zhang, S.; Zhao, X. Ferroelectric-enhanced BiVO4-BiFeO3 photoelectrocatalysis for efficient, stable and large-current-density oxygen evolution. Appl. Mater. Today, 2022, 26, 101374.
[http://dx.doi.org/10.1016/j.apmt.2022.101374]
[77]
Liang, G.; Li, Z.; Ishaq, M.; Zheng, Z.; Su, Z.; Ma, H.; Zhang, X.; Fan, P.; Chen, S. Charge separation enhancement enables record photocurrent density in Cu2 ZnSn(S,Se)4 photocathodes for efficient solar hydrogen production. Adv. Energy Mater., 2023, 13(19), 2300215.
[http://dx.doi.org/10.1002/aenm.202300215]
[78]
Li, Y.; Mei, Q.; Liu, Z.; Hu, X.; Zhou, Z.; Huang, J.; Bai, B.; Liu, H.; Ding, F.; Wang, Q. Fluorine-doped iron oxyhydroxide cocatalyst: promotion on the WO3 photoanode conducted photoelectrochemical water splitting. Appl. Catal. B, 2022, 304, 120995.
[http://dx.doi.org/10.1016/j.apcatb.2021.120995]
[79]
Han, T.; Cao, X.; Sun, K.; Peng, Q.; Ye, C.; Huang, A.; Cheong, W.C.; Chen, Z.; Lin, R.; Zhao, D.; Tan, X.; Zhuang, Z.; Chen, C.; Wang, D.; Li, Y. Anion-exchange-mediated internal electric field for boosting photogenerated carrier separation and utilization. Nat. Commun., 2021, 12(1), 4952.
[http://dx.doi.org/10.1038/s41467-021-25261-8] [PMID: 34400649]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy