Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

Cardioprotective Effects of Exercise: The Role of Irisin and Exosome

Author(s): Yuehuan Wang, Yi Yang* and Yanjuan Song

Volume 22, Issue 5, 2024

Published on: 28 May, 2024

Page: [316 - 334] Pages: 19

DOI: 10.2174/0115701611285736240516101803

Price: $65

Open Access Journals Promotions 2
Abstract

Exercise is an effective measure for preventing and treating cardiovascular diseases, although the exact molecular mechanism remains unknown. Previous studies have shown that both irisin and exosomes can improve the course of cardiovascular disease independently. Therefore, it is speculated that the cardiovascular protective effect of exercise is also related to its ability to regulate the concentrations of irisin and exosomes in the circulatory system. In this review, the potential synergistic interactions between irisin and exosomes are examined, as well as the underlying mechanisms including the AMPK/PI3K/AKT pathway, the TGFβ1/Smad2/3 pathway, the PI3K/AKT/VEGF pathway, and the PTEN/PINK1/Parkin pathway are examined. This paper provides evidence to propose that exercise promotes the release of exosomes enriched with irisin, miR-486-5p and miR-342-5p from skeletal muscles, which results in the activation protective networks in the cardiovascular system. Moreover, the potential synergistic effect in exosomal cargo can provide new ideas for clinical research of exercise mimics.

Keywords: Exercise, cardiovascular disease, exosome, irisin, microRNAs, protective networks.

Graphical Abstract
[1]
Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics—2023 update: A report from the American heart association. Circulation 2023; 147(8): e93-e621.
[http://dx.doi.org/10.1161/CIR.0000000000001123] [PMID: 36695182]
[2]
Sattar N, Gill JMR, Alazawi W. Improving prevention strategies for cardiometabolic disease. Nat Med 2020; 26(3): 320-5.
[http://dx.doi.org/10.1038/s41591-020-0786-7] [PMID: 32152584]
[3]
Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics—2022 update: A report from the American heart association. Circulation 2022; 145(8): e153-639.
[http://dx.doi.org/10.1161/CIR.0000000000001052] [PMID: 35078371]
[4]
Gogiraju R, Bochenek ML, Schäfer K. Angiogenic endothelial cell signaling in cardiac hypertrophy and heart failure. Front Cardiovasc Med 2019; 6: 20.
[http://dx.doi.org/10.3389/fcvm.2019.00020] [PMID: 30895179]
[5]
Zhang H, Wu X, Liang J, Kirberger M, Chen N. Irisin, an exercise-induced bioactive peptide beneficial for health promotion during aging process. Ageing Res Rev 2022; 80: 101680.
[http://dx.doi.org/10.1016/j.arr.2022.101680] [PMID: 35793739]
[6]
Bao JF, She QY, Hu PP, Jia N, Li A. Irisin, a fascinating field in our times. Trends Endocrinol Metab 2022; 33(9): 601-13.
[http://dx.doi.org/10.1016/j.tem.2022.06.003] [PMID: 35872067]
[7]
Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol 2014; 29: 116-25.
[http://dx.doi.org/10.1016/j.ceb.2014.05.004] [PMID: 24959705]
[8]
Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 2013; 17(2): 162-84.
[http://dx.doi.org/10.1016/j.cmet.2012.12.012] [PMID: 23395166]
[9]
Benatti FB, Pedersen BK. Exercise as an anti-inflammatory therapy for rheumatic diseases—myokine regulation. Nat Rev Rheumatol 2015; 11(2): 86-97.
[http://dx.doi.org/10.1038/nrrheum.2014.193] [PMID: 25422002]
[10]
Pedersen BK. Physical activity and muscle–brain crosstalk. Nat Rev Endocrinol 2019; 15(7): 383-92.
[http://dx.doi.org/10.1038/s41574-019-0174-x] [PMID: 30837717]
[11]
Pedersen BK, Febbraio MA. Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nat Rev Endocrinol 2012; 8(8): 457-65.
[http://dx.doi.org/10.1038/nrendo.2012.49] [PMID: 22473333]
[12]
Kim H, Wrann CD, Jedrychowski M, et al. Irisin mediates effects on bone and fat via αV integrin receptors. Cell 2018; 175(7): 1756-1768.e17.
[http://dx.doi.org/10.1016/j.cell.2018.10.025] [PMID: 30550785]
[13]
Boström P, Wu J, Jedrychowski MP, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012; 481(7382): 463-8.
[http://dx.doi.org/10.1038/nature10777] [PMID: 22237023]
[14]
Askari H, Rajani SF, Poorebrahim M, Aminjan HH, Abdollahi RE, Abdollahi M. A glance at the therapeutic potential of irisin against diseases involving inflammation, oxidative stress, and apoptosis: An introductory review. Pharmacol Res 2018; 129: 44-55.
[http://dx.doi.org/10.1016/j.phrs.2018.01.012] [PMID: 29414191]
[15]
Roca-Rivada A, Castelao C, Senin LL, et al. FNDC5/irisin is not only a myokine but also an adipokine. PLoS One 2013; 8(4): e60563.
[http://dx.doi.org/10.1371/journal.pone.0060563] [PMID: 23593248]
[16]
Seo DY, Bae JH, Kim TN, Kwak HB, Kha PT, Han J. Exercise-induced circulating irisin level is correlated with improved cardiac function in rats. Int J Environ Res Public Health 2020; 17(11): 3863.
[http://dx.doi.org/10.3390/ijerph17113863] [PMID: 32485990]
[17]
Hassaan PS, Nassar SZ, Issa Y, Zahran N. Irisin vs. treadmill exercise in post myocardial infarction cardiac rehabilitation in rats. Arch Med Res 2019; 50(2): 44-54.
[http://dx.doi.org/10.1016/j.arcmed.2019.05.009] [PMID: 31349953]
[18]
Lin C, Guo Y, Xia Y, et al. FNDC5/Irisin attenuates diabetic cardiomyopathy in a type 2 diabetes mouse model by activation of integrin αV/β5-AKT signaling and reduction of oxidative/nitrosative stress. J Mol Cell Cardiol 2021; 160: 27-41.
[http://dx.doi.org/10.1016/j.yjmcc.2021.06.013] [PMID: 34224725]
[19]
Zhang X, Hu C, Kong CY, et al. FNDC5 alleviates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via activating AKT. Cell Death Differ 2020; 27(2): 540-55.
[http://dx.doi.org/10.1038/s41418-019-0372-z] [PMID: 31209361]
[20]
Yu Q, Kou W, Xu X, et al. FNDC5/Irisin inhibits pathological cardiac hypertrophy. Clin Sci (Lond) 2019; 133(5): 611-27.
[http://dx.doi.org/10.1042/CS20190016] [PMID: 30782608]
[21]
Bashar SM, sherbeiny SESM, Boraie MZ. Correlation between the blood level of irisin and the severity of acute myocardial infarction in exercise-trained rats. J Basic Clin Physiol Pharmacol 2018; 30(1): 59-71.
[http://dx.doi.org/10.1515/jbcpp-2018-0090] [PMID: 30265651]
[22]
Wang H, Zhao YT, Zhang S, et al. Irisin plays a pivotal role to protect the heart against ischemia and reperfusion injury. J Cell Physiol 2017; 232(12): 3775-85.
[http://dx.doi.org/10.1002/jcp.25857] [PMID: 28181692]
[23]
Ma C, Ding H, Deng Y, Liu H, Xiong X, Yang Y. Irisin: A new code uncover the relationship of skeletal muscle and cardiovascular health during exercise. Front Physiol 2021; 12: 620608.
[http://dx.doi.org/10.3389/fphys.2021.620608] [PMID: 33597894]
[24]
Park MJ, Kim DI, Choi JH, Heo YR, Park SH. New role of irisin in hepatocytes: The protective effect of hepatic steatosis in vitro. Cell Signal 2015; 27(9): 1831-9.
[http://dx.doi.org/10.1016/j.cellsig.2015.04.010] [PMID: 25917316]
[25]
Wrann CD, White JP, Salogiannnis J, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab 2013; 18(5): 649-59.
[http://dx.doi.org/10.1016/j.cmet.2013.09.008] [PMID: 24120943]
[26]
Colaianni G, Cuscito C, Mongelli T, et al. Irisin enhances osteoblast differentiation in vitro. Int J Endocrinol 2014; 2014: 1-8.
[http://dx.doi.org/10.1155/2014/902186] [PMID: 24723951]
[27]
Mazur-Bialy AI, Pocheć E, Zarawski M. Anti-inflammatory properties of irisin, mediator of physical activity, are connected with TLR4/MyD88 signaling pathway activation. Int J Mol Sci 2017; 18(4): 701.
[http://dx.doi.org/10.3390/ijms18040701] [PMID: 28346354]
[28]
Versari D, Daghini E, Virdis A, Ghiadoni L, Taddei S. Endothelium-dependent contractions and endothelial dysfunction in human hypertension. Br J Pharmacol 2009; 157(4): 527-36.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00240.x] [PMID: 19630832]
[29]
Marchesi C, Paradis P, Schiffrin EL. Role of the renin–angiotensin system in vascular inflammation. Trends Pharmacol Sci 2008; 29(7): 367-74.
[http://dx.doi.org/10.1016/j.tips.2008.05.003] [PMID: 18579222]
[30]
Fu J, Han Y, Wang J, et al. Irisin lowers blood pressure by improvement of endothelial dysfunction via AMPK-Akt-eNOS-NO pathway in the spontaneously hypertensive rat. J Am Heart Assoc 2016; 5(11): e003433.
[http://dx.doi.org/10.1161/JAHA.116.003433] [PMID: 27912206]
[31]
Pan J, Zhang H, Lin H, et al. Irisin ameliorates doxorubicin-induced cardiac perivascular fibrosis through inhibiting endothelial-to-mesenchymal transition by regulating ROS accumulation and autophagy disorder in endothelial cells. Redox Biol 2021; 46: 102120.
[http://dx.doi.org/10.1016/j.redox.2021.102120] [PMID: 34479089]
[32]
Touyz RM, Alves-Lopes R, Rios FJ, et al. Vascular smooth muscle contraction in hypertension. Cardiovasc Res 2018; 114(4): 529-39.
[http://dx.doi.org/10.1093/cvr/cvy023] [PMID: 29394331]
[33]
Xie C, Zhang Y, Tran TDN, et al. Irisin controls growth, intracellular ca2+ signals, and mitochondrial thermogenesis in cardiomyoblasts. PLoS One 2015; 10(8): e0136816.
[http://dx.doi.org/10.1371/journal.pone.0136816] [PMID: 26305684]
[34]
Soehnlein O, Libby P. Targeting inflammation in atherosclerosis — From experimental insights to the clinic. Nat Rev Drug Discov 2021; 20(8): 589-610.
[http://dx.doi.org/10.1038/s41573-021-00198-1] [PMID: 33976384]
[35]
Lu J, Xiang G, Liu M, Mei W, Xiang L, Dong J. Irisin protects against endothelial injury and ameliorates atherosclerosis in apolipoprotein E-Null diabetic mice. Atherosclerosis 2015; 243(2): 438-48.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.10.020] [PMID: 26520898]
[36]
Zhang Y, Mu Q, Zhou Z, et al. Protective effect of irisin on atherosclerosis via suppressing oxidized low density lipoprotein induced vascular inflammation and endothelial dysfunction. PLoS One 2016; 11(6): e0158038.
[http://dx.doi.org/10.1371/journal.pone.0158038] [PMID: 27355581]
[37]
Yin C, Hu W, Wang M, Lv W, Jia T, Xiao Y. Irisin as a mediator between obesity and vascular inflammation in Chinese children and adolescents. Nutr Metab Cardiovasc Dis 2020; 30(2): 320-9.
[http://dx.doi.org/10.1016/j.numecd.2019.09.025] [PMID: 31740239]
[38]
Cheng ZB, Huang L, Xiao X, et al. Irisin in atherosclerosis. Clin Chim Acta 2021; 522: 158-66.
[http://dx.doi.org/10.1016/j.cca.2021.08.022] [PMID: 34425103]
[39]
Shimba Y, Togawa H, Senoo N, et al. Skeletal muscle-specific PGC-1α overexpression suppresses atherosclerosis in apolipoprotein E-knockout mice. Sci Rep 2019; 9(1): 4077.
[http://dx.doi.org/10.1038/s41598-019-40643-1] [PMID: 30858489]
[40]
Kelly DP. Medicine. Irisin, light my fire. Science 2012; 336(6077): 42-3.
[http://dx.doi.org/10.1126/science.1221688] [PMID: 22491843]
[41]
Jedrychowski MP, Wrann CD, Paulo JA, et al. Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metab 2015; 22(4): 734-40.
[http://dx.doi.org/10.1016/j.cmet.2015.08.001] [PMID: 26278051]
[42]
Jia J, Yu F, Wei WP, et al. Relationship between circulating irisin levels and overweight/obesity: A meta-analysis. World J Clin Cases 2019; 7(12): 1444-55.
[http://dx.doi.org/10.12998/wjcc.v7.i12.1444] [PMID: 31363472]
[43]
Jiang S, Piao L, Ma EB, Ha H, Huh JY. Associations of circulating irisin with FNDC5 expression in fat and muscle in type 1 and type 2 diabetic mice. Biomolecules 2021; 11(2): 322.
[http://dx.doi.org/10.3390/biom11020322] [PMID: 33672565]
[44]
Zhou S, Tang W, Wang X, et al. Relationship between serum irisin level, all-cause mortality, and cardiovascular mortality in peritoneal dialysis patients. Kidney Blood Press Res 2023; 49(1): 38-47.
[http://dx.doi.org/10.1159/000535582] [PMID: 38043511]
[45]
Luo M, Luo S, Xue Y, et al. Aerobic exercise inhibits renal EMT by promoting irisin expression in SHR. iScience 2023; 26(2): 105990.
[http://dx.doi.org/10.1016/j.isci.2023.105990] [PMID: 36798442]
[46]
Li H, Qin S, Liang Q, et al. Exercise training enhances myocardial mitophagy and improves cardiac function via Irisin/FNDC5-PINK1/parkin pathway in MI mice. Biomedicines 2021; 9(6): 701.
[http://dx.doi.org/10.3390/biomedicines9060701] [PMID: 34205641]
[47]
Cialowicz ME, Wolanski P, Jagiello ZJ, et al. Effect of HIIT with tabata protocol on serum irisin, physical performance, and body composition in men. Int J Environ Res Public Health 2020; 17(10): 3589.
[http://dx.doi.org/10.3390/ijerph17103589] [PMID: 32443802]
[48]
Jawzal KH, Alkass SY, Hassan AB, Abdulah DM. The effectiveness of military physical exercise on irisin concentrations and oxidative stress among male healthy volunteers. Horm Mol Biol Clin Investig 2020; 41(3): 20200007.
[http://dx.doi.org/10.1515/hmbci-2020-0007] [PMID: 32989959]
[49]
De la Saldaña TVA, Sámano GMÁ, Pérez GFJ, et al. Fasting insulin and alanine amino transferase, but not FGF21, were independent parameters related with irisin increment after intensive aerobic exercising. Rev Invest Clin 2019; 71(2): 133-40.
[http://dx.doi.org/10.24875/RIC.18002764] [PMID: 31056592]
[50]
Jürimäe J, Purge P, Remmel L, et al. Changes in irisin, inflammatory cytokines and aerobic capacity in response to three weeks of supervised sprint interval training in older men. J Sports Med Phys Fitness 2022; 63(1): 162-9.
[http://dx.doi.org/10.23736/S0022-4707.22.13949-6] [PMID: 35686866]
[51]
Rashti B, Mehrabani J, Damirchi A, Babaei P. The influence of concurrent training intensity on serum irisin and abdominal fat in postmenopausal women. Przegl Menopauz 2019; 18(3): 166-73.
[http://dx.doi.org/10.5114/pm.2019.90810] [PMID: 31975984]
[52]
Niaki GA, Saeidi A, Ahmadian M, et al. The combination of exercise training and supplementation increase serum irisin levels in postmenopausal women. Integr Med Res 2018; 7: 44-52.
[http://dx.doi.org/10.1016/j.imr.2018.01.007] [PMID: 29629290]
[53]
Amanat S, Sinaei E, Panji M, et al. A randomized controlled trial on the effects of 12 weeks of aerobic, resistance, and combined exercises training on the serum levels of nesfatin-1, irisin-1 and HOMA-IR. Front Physiol 2020; 11: 562895.
[http://dx.doi.org/10.3389/fphys.2020.562895] [PMID: 33178035]
[54]
Dünnwald T, Melmer A, Gatterer H, et al. Supervised short-term high-intensity training on plasma irisin concentrations in type 2 diabetic patients. Int J Sports Med 2019; 40(3): 158-64.
[http://dx.doi.org/10.1055/a-0828-8047] [PMID: 30703846]
[55]
Rad MM, Bijeh N, Hosseini ASR, Saeb RA. The effect of two concurrent exercise modalities on serum concentrations of FGF21, irisin, follistatin, and myostatin in men with type 2 diabetes mellitus. Arch Physiol Biochem 2023; 129(2): 424-33.
[http://dx.doi.org/10.1080/13813455.2020.1829649] [PMID: 33044849]
[56]
Belviranlı M, Okudan N. Exercise training increases cardiac, hepatic and circulating levels of brain-derived neurotrophic factor and irisin in young and aged rats. Horm Mol Biol Clin Investig 2018; 36(3): 20180053.
[http://dx.doi.org/10.1515/hmbci-2018-0053] [PMID: 30367793]
[57]
Abdi A, Mehrabani J, Nordvall M, Wong A, Fallah A, Bagheri R. Effects of concurrent training on irisin and fibronectin type-III domain containing 5 (FNDC5) expression in visceral adipose tissue in type-2 diabetic rats. Arch Physiol Biochem 2022; 128(3): 651-6.
[http://dx.doi.org/10.1080/13813455.2020.1716018] [PMID: 31979994]
[58]
Amri J, Parastesh M, Sadegh M, Latifi SA, Alaee M. High-intensity interval training improved fasting blood glucose and lipid profiles in type 2 diabetic rats more than endurance training; possible involvement of irisin and betatrophin. Physiol Int 2019; 106(3): 213-24.
[http://dx.doi.org/10.1556/2060.106.2019.24] [PMID: 31578075]
[59]
Pang M, Yang J, Rao J, et al. Time-dependent changes in increased levels of plasma irisin and muscle PGC-1<i>α</i> and FNDC5 after exercise in mice. Tohoku J Exp Med 2018; 244(2): 93-103.
[http://dx.doi.org/10.1620/tjem.244.93] [PMID: 29415899]
[60]
Li J, Yi X, Li T, et al. Effects of exercise and dietary intervention on muscle, adipose tissue, and blood IRISIN levels in obese male mice and their relationship with the beigeization of white adipose tissue. Endocr Connect 2022; 11(3): e210625.
[http://dx.doi.org/10.1530/EC-21-0625] [PMID: 35148278]
[61]
Kazeminasab F, Marandi SM, Ghaedi K, Safaeinejad Z, Esfarjani F, Nasr-Esfahani MH. A comparative study on the effects of high-fat diet and endurance training on the PGC-1α-FNDC5/irisin pathway in obese and nonobese male C57BL/6 mice. Appl Physiol Nutr Metab 2018; 43(7): 651-62.
[http://dx.doi.org/10.1139/apnm-2017-0614] [PMID: 29365291]
[62]
Wu F, Li Z, Cai M, et al. Aerobic exercise alleviates oxidative stress-induced apoptosis in kidneys of myocardial infarction mice by inhibiting ALCAT1 and activating FNDC5/Irisin signaling pathway. Free Radic Biol Med 2020; 158: 171-80.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.06.038] [PMID: 32726688]
[63]
Özbay S, Ulupınar S, Şebin E, Altınkaynak K. Acute and chronic effects of aerobic exercise on serum irisin, adropin, and cholesterol levels in the winter season: Indoor training versus outdoor training. Chin J Physiol 2020; 63(1): 21-6.
[http://dx.doi.org/10.4103/CJP.CJP_84_19] [PMID: 32056983]
[64]
Dundar A, Kocahan S, Sahin L. Associations of apelin, leptin, irisin, ghrelin, insulin, glucose levels, and lipid parameters with physical activity during eight weeks of regular exercise training. Arch Physiol Biochem 2021; 127(4): 291-5.
[http://dx.doi.org/10.1080/13813455.2019.1635622] [PMID: 31290696]
[65]
Théry C, Zitvogel L, Amigorena S. Exosomes: Composition, biogenesis and function. Nat Rev Immunol 2002; 2(8): 569-79.
[http://dx.doi.org/10.1038/nri855] [PMID: 12154376]
[66]
Song Y, Zhang C, Zhang J, et al. Localized injection of miRNA-21-enriched extracellular vesicles effectively restores cardiac function after myocardial infarction. Theranostics 2019; 9(8): 2346-60.
[http://dx.doi.org/10.7150/thno.29945] [PMID: 31149048]
[67]
Sun XH, Wang X, Zhang Y, Hui J. Exosomes of bone-marrow stromal cells inhibit cardiomyocyte apoptosis under ischemic and hypoxic conditions via miR-486-5p targeting the PTEN/PI3K/AKT signaling pathway. Thromb Res 2019; 177: 23-32.
[http://dx.doi.org/10.1016/j.thromres.2019.02.002] [PMID: 30844685]
[68]
Zheng S, Gong M, Chen J. Extracellular vesicles enriched with miR-150 released by macrophages regulates the TP53-IGF-1 axis to alleviate myocardial infarction. Am J Physiol Heart Circ Physiol 2021; 320(3): H969-79.
[http://dx.doi.org/10.1152/ajpheart.00304.2020] [PMID: 33164579]
[69]
Tikhomirov R, O’Donnell RB, Catapano F, et al. Exosomes: From potential culprits to new therapeutic promise in the setting of cardiac fibrosis. Cells 2020; 9(3): 592.
[http://dx.doi.org/10.3390/cells9030592] [PMID: 32131460]
[70]
Xiong YY, Gong ZT, Tang RJ, Yang YJ. The pivotal roles of exosomes derived from endogenous immune cells and exogenous stem cells in myocardial repair after acute myocardial infarction. Theranostics 2021; 11(3): 1046-58.
[http://dx.doi.org/10.7150/thno.53326] [PMID: 33391520]
[71]
Li Q, Xu Y, Lv K, et al. Small extracellular vesicles containing miR-486-5p promote angiogenesis after myocardial infarction in mice and nonhuman primates. Sci Transl Med 2021; 13(584): eabb0202.
[http://dx.doi.org/10.1126/scitranslmed.abb0202] [PMID: 33692129]
[72]
Bouchareychas L, Duong P, Covarrubias S, et al. Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via microRNA cargo. Cell Rep 2020; 32(2): 107881.
[http://dx.doi.org/10.1016/j.celrep.2020.107881] [PMID: 32668250]
[73]
Gao H, Yu Z, Li Y, Wang X. miR-100-5p in human umbilical cord mesenchymal stem cell-derived exosomes mediates eosinophilic inflammation to alleviate atherosclerosis via the FZD5/Wnt/β-catenin pathway. Acta Biochim Biophys Sin 2021; 53(9): 1166-76.
[http://dx.doi.org/10.1093/abbs/gmab093] [PMID: 34254638]
[74]
Yao Y, Sun W, Sun Q, et al. Platelet-derived exosomal microRNA-25-3p inhibits coronary vascular endothelial cell inflammation through Adam10 via the NF-κB signaling pathway in ApoE−/− mice. Front Immunol 2019; 10: 2205.
[http://dx.doi.org/10.3389/fimmu.2019.02205] [PMID: 31632389]
[75]
Nederveen JP, Warnier G, Di Carlo A, Nilsson MI, Tarnopolsky MA. Extracellular vesicles and exosomes: Insights from exercise science. Front Physiol 2021; 11: 604274.
[http://dx.doi.org/10.3389/fphys.2020.604274] [PMID: 33597890]
[76]
Garner RT, Weiss JA, Nie Y, et al. Effects of obesity and acute resistance exercise on skeletal muscle angiogenic communication pathways. Exp Physiol 2022; 107(8): 906-18.
[http://dx.doi.org/10.1113/EP090152] [PMID: 35561231]
[77]
Castaño C, Mirasierra M, Vallejo M, Novials A, Párrizas M. Delivery of muscle-derived exosomal miRNAs induced by HIIT improves insulin sensitivity through down-regulation of hepatic FoxO1 in mice. Proc Natl Acad Sci 2020; 117(48): 30335-43.
[http://dx.doi.org/10.1073/pnas.2016112117] [PMID: 33199621]
[78]
Warnier G, De Groote E, Delcorte O, et al. Effects of a 6-wk sprint interval training protocol at different altitudes on circulating extracellular vesicles. Med Sci Sports Exerc 2023; 55(1): 46-54.
[http://dx.doi.org/10.1249/MSS.0000000000003031] [PMID: 36069865]
[79]
Liu H, Wu B, Shi X, et al. Aerobic exercise-induced circulating extracellular vesicle combined decellularized dermal matrix hydrogel facilitates diabetic wound healing by promoting angiogenesis. Front Bioeng Biotechnol 2022; 10: 903779.
[http://dx.doi.org/10.3389/fbioe.2022.903779] [PMID: 36082169]
[80]
Wang D, Zhang X, Li Y, et al. Exercise-induced browning of white adipose tissue and improving skeletal muscle insulin sensitivity in obese/non-obese growing mice: Do not neglect exosomal miR-27a. Front Nutr 2022; 9: 940673.
[http://dx.doi.org/10.3389/fnut.2022.940673] [PMID: 35782940]
[81]
Garner RT, Solfest JS, Nie Y, Kuang S, Stout J, Gavin TP. Multivesicular body and exosome pathway responses to acute exercise. Exp Physiol 2020; 105(3): 511-21.
[http://dx.doi.org/10.1113/EP088017] [PMID: 31917487]
[82]
Safdar A, Tarnopolsky MA. Exosomes as mediators of the systemic adaptations to endurance exercise. Cold Spring Harb Perspect Med 2018; 8(3): a029827.
[http://dx.doi.org/10.1101/cshperspect.a029827] [PMID: 28490541]
[83]
Maggio S, Canonico B, Ceccaroli P, et al. Modulation of the circulating extracellular vesicles in response to different exercise regimens and study of their inflammatory effects. Int J Mol Sci 2023; 24(3): 3039.
[http://dx.doi.org/10.3390/ijms24033039] [PMID: 36769362]
[84]
Hou Z, Qin X, Hu Y, et al. Longterm exercise-derived exosomal miR-342-5p. Circ Res 2019; 124(9): 1386-400.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.314635] [PMID: 30879399]
[85]
Vechetti IJ Jr, Peck BD, Wen Y, et al. Mechanical overload-induced muscle-derived extracellular vesicles promote adipose tissue lipolysis. FASEB J 2021; 35(6): e21644.
[http://dx.doi.org/10.1096/fj.202100242R] [PMID: 34033143]
[86]
Conkright WR, Beckner ME, Sahu A, et al. Men and women display distinct extracellular vesicle biomarker signatures in response to military operational stress. J Appl Physiol 2022; 132(5): 1125-36.
[http://dx.doi.org/10.1152/japplphysiol.00664.2021] [PMID: 35297690]
[87]
Conkright WR, Beckner ME, Sterczala AJ, et al. Resistance exercise differentially alters extracellular vesicle size and subpopulation characteristics in healthy men and women: An observational cohort study. Physiol Genomics 2022; 54(9): 350-9.
[http://dx.doi.org/10.1152/physiolgenomics.00171.2021] [PMID: 35816651]
[88]
Annibalini G, Contarelli S, Lucertini F, et al. Muscle and systemic molecular responses to a single flywheel based iso-inertial training session in resistance-trained men. Front Physiol 2019; 10: 554.
[http://dx.doi.org/10.3389/fphys.2019.00554] [PMID: 31143128]
[89]
Telles GD, Libardi CA, Conceição MS, et al. Time course of skeletal muscle miRNA expression after resistance, high-intensity interval, and concurrent exercise. Med Sci Sports Exerc 2021; 53(8): 1708-18.
[http://dx.doi.org/10.1249/MSS.0000000000002632] [PMID: 33731656]
[90]
Abdelsaid K, Sudhahar V, Harris RA, et al. Exercise improves angiogenic function of circulating exosomes in type 2 diabetes: Role of exosomal SOD3. FASEB J 2022; 36(3): e22177.
[http://dx.doi.org/10.1096/fj.202101323R] [PMID: 35142393]
[91]
Sullivan BP, Nie Y, Evans S, et al. Obesity and exercise training alter inflammatory pathway skeletal muscle small extracellular vesicle microRNAs. Exp Physiol 2022; 107(5): 462-75.
[http://dx.doi.org/10.1113/EP090062] [PMID: 35293040]
[92]
Rigamonti AE, Bollati V, Pergoli L, et al. Effects of an acute bout of exercise on circulating extracellular vesicles: Tissue-, sex-, and BMI-related differences. Int J Obes 2020; 44(5): 1108-18.
[http://dx.doi.org/10.1038/s41366-019-0460-7] [PMID: 31578459]
[93]
Chong MC, Silva A, James PF, Wu SSX, Howitt J. Exercise increases the release of NAMPT in extracellular vesicles and alters NAD+ activity in recipient cells. Aging Cell 2022; 21(7): e13647.
[http://dx.doi.org/10.1111/acel.13647] [PMID: 35661560]
[94]
Estébanez B, Visavadiya N, de Paz J, et al. Resistance training diminishes the expression of exosome CD63 protein without modification of plasma miR-146a-5p and cfDNA in the elderly. Nutrients 2021; 13(2): 665.
[http://dx.doi.org/10.3390/nu13020665] [PMID: 33669497]
[95]
Yin X, Zhao Y, Zheng YL, et al. Time-course responses of muscle-specific MicroRNAs following acute uphill or downhill exercise in sprague-dawley rats. Front Physiol 2019; 10: 1275.
[http://dx.doi.org/10.3389/fphys.2019.01275] [PMID: 31632302]
[96]
Bertoldi K, Cechinel LR, Schallenberger B, et al. Circulating extracellular vesicles in the aging process: impact of aerobic exercise. Mol Cell Biochem 2018; 440(1-2): 115-25.
[http://dx.doi.org/10.1007/s11010-017-3160-4] [PMID: 28819811]
[97]
Ma C, Wang J, Liu H, et al. Moderate exercise enhances endothelial progenitor cell exosomes release and function. Med Sci Sports Exerc 2018; 50(10): 2024-32.
[http://dx.doi.org/10.1249/MSS.0000000000001672] [PMID: 30222687]
[98]
de Mendonça M, Rocha KC, de Sousa É, Pereira BMV, Oyama LM, Rodrigues AC. Aerobic exercise training regulates serum extracellular vesicle miRNAs linked to obesity to promote their beneficial effects in mice. Am J Physiol Endocrinol Metab 2020; 319(3): E579-91.
[http://dx.doi.org/10.1152/ajpendo.00172.2020] [PMID: 32744099]
[99]
Oliveira GP Jr, Porto WF, Palu CC, et al. Effects of acute aerobic exercise on rats serum extracellular vesicles diameter, concentration and small RNAs content. Front Physiol 2018; 9: 532.
[http://dx.doi.org/10.3389/fphys.2018.00532] [PMID: 29881354]
[100]
Apostolopoulou M, Mastrototaro L, Hartwig S, et al. Metabolic responsiveness to training depends on insulin sensitivity and protein content of exosomes in insulin-resistant males. Sci Adv 2021; 7(41): eabi9551.
[http://dx.doi.org/10.1126/sciadv.abi9551] [PMID: 34623918]
[101]
Estébanez B, Jiménez-Pavón D, Huang CJ, Cuevas MJ, Gallego GJ. Effects of exercise on exosome release and cargo in in vivo and ex vivo models: A systematic review. J Cell Physiol 2021; 236(5): 3336-53.
[http://dx.doi.org/10.1002/jcp.30094] [PMID: 33037627]
[102]
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020; 367(6478): eaau6977.
[http://dx.doi.org/10.1126/science.aau6977] [PMID: 32029601]
[103]
Darkwah S, Park EJ, Myint PK, et al. Potential roles of muscle-derived extracellular vesicles in remodeling cellular microenvironment: Proposed implications of the exercise-induced myokine, Irisin. Front Cell Dev Biol 2021; 9: 634853.
[http://dx.doi.org/10.3389/fcell.2021.634853] [PMID: 33614663]
[104]
Zhang Y, Kim JS, Wang TZ, et al. Potential role of exercise induced extracellular vesicles in prostate cancer suppression. Front Oncol 2021; 11: 746040.
[http://dx.doi.org/10.3389/fonc.2021.746040] [PMID: 34595123]
[105]
Wu D, Cao W, Xiang D, Hu YP, Luo B, Chen P. Exercise induces tissue hypoxia and HIF-1α redistribution in the small intestine. J Sport Health Sci 2020; 9(1): 82-9.
[http://dx.doi.org/10.1016/j.jshs.2019.05.002] [PMID: 31921483]
[106]
Huang Z, Wu S, Kong F, et al. Micro RNA -21 protects against cardiac hypoxia/reoxygenation injury by inhibiting excessive autophagy in H9c2 cells via the Akt/ MTOR pathway. J Cell Mol Med 2017; 21(3): 467-74.
[http://dx.doi.org/10.1111/jcmm.12990] [PMID: 27680680]
[107]
Li RL, Wu SS, Wu Y, et al. Irisin alleviates pressure overload-induced cardiac hypertrophy by inducing protective autophagy via mTOR-independent activation of the AMPK-ULK1 pathway. J Mol Cell Cardiol 2018; 121: 242-55.
[http://dx.doi.org/10.1016/j.yjmcc.2018.07.250] [PMID: 30053525]
[108]
Li R, Wang X, Wu S, et al. Irisin ameliorates angiotensin II-induced cardiomyocyte apoptosis through autophagy. J Cell Physiol 2019; 234(10): 17578-88.
[http://dx.doi.org/10.1002/jcp.28382] [PMID: 30793300]
[109]
Li Q, Zhang M, Zhao Y, Dong M. Irisin protects against LPS-stressed cardiac damage through inhibiting inflammation, apoptosis, and pyroptosis. Shock 2021; 56(6): 1009-18.
[http://dx.doi.org/10.1097/SHK.0000000000001775] [PMID: 34779800]
[110]
Hu C, Zhang X, Hu M, et al. Fibronectin type III domain-containing 5 improves aging-related cardiac dysfunction in mice. Aging Cell 2022; 21(3): e13556.
[http://dx.doi.org/10.1111/acel.13556] [PMID: 35166002]
[111]
Li W, Qiu X, Jiang H, Zhi Y, Fu J, Liu J. Ulinastatin inhibits the inflammation of LPS-induced acute lung injury in mice via regulation of AMPK/NF-κB pathway. Int Immunopharmacol 2015; 29(2): 560-7.
[http://dx.doi.org/10.1016/j.intimp.2015.09.028] [PMID: 26481965]
[112]
Peng Q, Wang X, Wu K, Liu K, Wang S, Chen X. Irisin attenuates H2O2-induced apoptosis in cardiomyocytes via microRNA-19b/AKT/mTOR signaling pathway. Int J Clin Exp Pathol 2017; 10(7): 7707-17.
[PMID: 31966617]
[113]
Rabiee F, Lachinani L, Ghaedi S, Nasr-Esfahani MH, Megraw TL, Ghaedi K. New insights into the cellular activities of Fndc5/Irisin and its signaling pathways. Cell Biosci 2020; 10(1): 51.
[http://dx.doi.org/10.1186/s13578-020-00413-3] [PMID: 32257109]
[114]
Wang R, Kumar B, Doud EH, et al. Skeletal muscle-specific overexpression of miR-486 limits mammary tumor-induced skeletal muscle functional limitations. Mol Ther Nucleic Acids 2022; 28: 231-48.
[http://dx.doi.org/10.1016/j.omtn.2022.03.009] [PMID: 35402076]
[115]
Worby CA, Dixon JE. PTEN. Annu Rev Biochem 2014; 83(1): 641-69.
[http://dx.doi.org/10.1146/annurev-biochem-082411-113907] [PMID: 24905788]
[116]
Zhu H, Wang X, Sun Y, et al. MicroRNA-486-5p targeting PTEN protects against coronary microembolization-induced cardiomyocyte apoptosis in rats by activating the PI3K/AKT pathway. Eur J Pharmacol 2019; 855: 244-51.
[http://dx.doi.org/10.1016/j.ejphar.2019.03.045] [PMID: 31075240]
[117]
Ilisso CP, Delle Cave D, Mosca L, et al. S-Adenosylmethionine regulates apoptosis and autophagy in MCF-7 breast cancer cells through the modulation of specific microRNAs. Cancer Cell Int 2018; 18(1): 197.
[http://dx.doi.org/10.1186/s12935-018-0697-6] [PMID: 30533999]
[118]
Grimm TM, Dierdorf NI, Betz K, Paone C, Hauck CR. PPM1F controls integrin activity via a conserved phospho-switch. J Cell Biol 2020; 219(12): e202001057.
[http://dx.doi.org/10.1083/jcb.202001057] [PMID: 33119040]
[119]
Ahmadi R, Heidarian E, Fadaei R, Moradi N, Malek M, Fallah S. miR-342-5p expression levels in coronary artery disease patients and its association with inflammatory cytokines. Clin Lab 2018; 64(04/2018): 603-9.
[http://dx.doi.org/10.7754/Clin.Lab.2017.171208] [PMID: 29739089]
[120]
Yue R, Zheng Z, Luo Y, et al. NLRP3-mediated pyroptosis aggravates pressure overload-induced cardiac hypertrophy, fibrosis, and dysfunction in mice: cardioprotective role of irisin. Cell Death Discov 2021; 7(1): 50.
[http://dx.doi.org/10.1038/s41420-021-00434-y] [PMID: 33723236]
[121]
Zhang WJ, Chen SJ, Zhou SC, Wu SZ, Wang H. Inflammasomes and fibrosis. Front Immunol 2021; 12: 643149.
[http://dx.doi.org/10.3389/fimmu.2021.643149] [PMID: 34177893]
[122]
Deng J, Zhang N, Wang Y, et al. FNDC5/irisin improves the therapeutic efficacy of bone marrow-derived mesenchymal stem cells for myocardial infarction. Stem Cell Res Ther 2020; 11(1): 228.
[http://dx.doi.org/10.1186/s13287-020-01746-z] [PMID: 32522253]
[123]
Liu X, Mujahid H, Rong B, et al. Irisin inhibits high glucose-induced endothelial-to-mesenchymal transition and exerts a dose-dependent bidirectional effect on diabetic cardiomyopathy. J Cell Mol Med 2018; 22(2): 808-22.
[http://dx.doi.org/10.1111/jcmm.13360] [PMID: 29063670]
[124]
Ge ZD, Lian Q, Mao X, Xia Z. Current status and challenges of NRF2 as a potential therapeutic target for diabetic cardiomyopathy. Int Heart J 2019; 60(3): 512-20.
[http://dx.doi.org/10.1536/ihj.18-476] [PMID: 30971629]
[125]
Chen RR, Fan XH, Chen G, et al. Irisin attenuates angiotensin II-induced cardiac fibrosis via Nrf2 mediated inhibition of ROS/ TGFβ1/Smad2/3 signaling axis. Chem Biol Interact 2019; 302: 11-21.
[http://dx.doi.org/10.1016/j.cbi.2019.01.031] [PMID: 30703374]
[126]
Liang E, Liu X, Du Z, Yang R, Zhao Y. Andrographolide ameliorates diabetic cardiomyopathy in mice by blockage of oxidative damage and NF- κ B-mediated inflammation. Oxid Med Cell Longev 2018; 2018: 1-13.
[http://dx.doi.org/10.1155/2018/9086747] [PMID: 30046380]
[127]
Takahashi-Niki K, Niki T, Ariga ISMM, Ariga H. Transcriptional regulation of DJ-1. Adv Exp Med Biol 2017; 1037: 89-95.
[http://dx.doi.org/10.1007/978-981-10-6583-5_7] [PMID: 29147905]
[128]
Chen H, Lv L, Liang R, et al. MIR -486 improves fibrotic activity in myocardial infarction by targeting SRSF3 / P21-MEDIATED cardiac myofibroblast senescence. J Cell Mol Med 2022; 26(20): 5135-49.
[http://dx.doi.org/10.1111/jcmm.17539] [PMID: 36117396]
[129]
Ji X, Wu B, Fan J, et al. The anti-fibrotic effects and mechanisms of MicroRNA-486-5p in pulmonary fibrosis. Sci Rep 2015; 5(1): 14131.
[http://dx.doi.org/10.1038/srep14131] [PMID: 26370615]
[130]
Xiao Y. MiR-486-5p inhibits the hyperproliferation and production of collagen in hypertrophic scar fibroblasts via IGF1/PI3K/AKT pathway. J Dermatolog Treat 2021; 32(8): 973-82.
[http://dx.doi.org/10.1080/09546634.2020.1728210] [PMID: 32079424]
[131]
Wei P, Xie Y, Abel PW, et al. Transforming growth factor (TGF)-β1-induced miR-133a inhibits myofibroblast differentiation and pulmonary fibrosis. Cell Death Dis 2019; 10(9): 670.
[http://dx.doi.org/10.1038/s41419-019-1873-x] [PMID: 31511493]
[132]
Chi L, Xiao Y, Zhu L, et al. microRNA-155 attenuates profibrotic effects of transforming growth factor-beta on human lung fibroblasts. J Biol Regul Homeost Agents 2019; 33(5): 1415-24.
[http://dx.doi.org/10.23812/19-41A] [PMID: 31556264]
[133]
Zhang Q, Ye H, Xiang F, et al. miR-18a-5p inhibits sub-pleural pulmonary fibrosis by targeting TGF-β receptor II. Mol Ther 2017; 25(3): 728-38.
[http://dx.doi.org/10.1016/j.ymthe.2016.12.017] [PMID: 28131417]
[134]
Kong QR, Ji DM, Li FR, Sun HY, Wang QX. MicroRNA-221 promotes myocardial apoptosis caused by myocardial ischemia-reperfusion by down-regulating PTEN. Eur Rev Med Pharmacol Sci 2019; 23(9): 3967-75.
[http://dx.doi.org/10.26355/eurrev_201905_17826] [PMID: 31115025]
[135]
Qu NY, Zhang ZH, Zhang XX, Xie WW, Niu XQ. Microvesicles containing microRNA-216a secreted by tubular epithelial cells participate in renal interstitial fibrosis through activating PTEN/AKT pathway. Eur Rev Med Pharmacol Sci 2019; 23(15): 6629-36.
[http://dx.doi.org/10.26355/eurrev_201908_18552] [PMID: 31378905]
[136]
Shen K, Jia Y, Wang X, et al. Exosomes from adipose-derived stem cells alleviate the inflammation and oxidative stress via regulating Nrf2/HO-1 axis in macrophages. Free Radic Biol Med 2021; 165: 54-66.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.01.023] [PMID: 33476797]
[137]
Liu Y, Song JW, Lin JY, Miao R, Zhong JC. Roles of MicroRNA-122 in cardiovascular fibrosis and related diseases. Cardiovasc Toxicol 2020; 20(5): 463-73.
[http://dx.doi.org/10.1007/s12012-020-09603-4] [PMID: 32856216]
[138]
Song H, Wu F, Zhang Y, et al. Irisin promotes human umbilical vein endothelial cell proliferation through the ERK signaling pathway and partly suppresses high glucose-induced apoptosis. PLoS One 2014; 9(10): e110273.
[http://dx.doi.org/10.1371/journal.pone.0110273] [PMID: 25338001]
[139]
Yang F, Wang Z, Li B, et al. Irisin enhances angiogenesis of mesenchymal stem cells to promote cardiac function in myocardial infarction via PI3k/Akt activation. Int J Stem Cells 2021; 14(4): 455-64.
[http://dx.doi.org/10.15283/ijsc21005] [PMID: 34456190]
[140]
Chen J, Li K, Shao J, et al. Irisin suppresses nicotine-mediated atherosclerosis by attenuating endothelial cell migration, proliferation, cell cycle arrest, and cell senescence. Front Cardiovasc Med 2022; 9: 851603.
[http://dx.doi.org/10.3389/fcvm.2022.851603] [PMID: 35463776]
[141]
Oranger A, Zerlotin R, Buccoliero C, et al. Irisin modulates inflammatory, angiogenic, and osteogenic factors during fracture healing. Int J Mol Sci 2023; 24(3): 1809.
[http://dx.doi.org/10.3390/ijms24031809] [PMID: 36768133]
[142]
Liao Q, Qu S, Tang L, et al. Irisin exerts a therapeutic effect against myocardial infarction via promoting angiogenesis. Acta Pharmacol Sin 2019; 40(10): 1314-21.
[http://dx.doi.org/10.1038/s41401-019-0230-z] [PMID: 31061533]
[143]
Zhou B, Qiu Y, Wu N, et al. FNDC5 attenuates oxidative stress and NLRP3 inflammasome activation in vascular smooth muscle cells via activating the AMPK-SIRT1 signal pathway. Oxid Med Cell Longev 2020; 2020: 1-15.
[http://dx.doi.org/10.1155/2020/6384803] [PMID: 32509148]
[144]
Bi J, Zhang J, Ren Y, et al. Exercise hormone irisin mitigates endothelial barrier dysfunction and microvascular leakage–related diseases. JCI Insight 2020; 5(13): e136277.
[http://dx.doi.org/10.1172/jci.insight.136277] [PMID: 32516137]
[145]
Meng S, Cao JT, Zhang B, Zhou Q, Shen CX, Wang CQ. Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. J Mol Cell Cardiol 2012; 53(1): 64-72.
[http://dx.doi.org/10.1016/j.yjmcc.2012.04.003] [PMID: 22525256]
[146]
Qu Q, Wang L, Bing W, et al. miRNA-126-3p carried by human umbilical cord mesenchymal stem cell enhances endothelial function through exosome-mediated mechanisms in vitro and attenuates vein graft neointimal formation in vivo. Stem Cell Res Ther 2020; 11(1): 464.
[http://dx.doi.org/10.1186/s13287-020-01978-z] [PMID: 33138861]
[147]
Viñas JL, Burger D, Zimpelmann J, et al. Transfer of microRNA-486-5p from human endothelial colony forming cell–derived exosomes reduces ischemic kidney injury. Kidney Int 2016; 90(6): 1238-50.
[http://dx.doi.org/10.1016/j.kint.2016.07.015] [PMID: 27650731]
[148]
Kong Y, Li Y, Luo Y, et al. circNFIB1 inhibits lymphangiogenesis and lymphatic metastasis via the miR-486-5p/PIK3R1/VEGF-C axis in pancreatic cancer. Mol Cancer 2020; 19(1): 82.
[http://dx.doi.org/10.1186/s12943-020-01205-6] [PMID: 32366257]
[149]
Shen Z, Wang W, Chen J, et al. Small extracellular vesicles of hypoxic endothelial cells regulate the therapeutic potential of adipose-derived mesenchymal stem cells via miR-486-5p/PTEN in a limb ischemia model. J Nanobiotechnology 2022; 20(1): 422.
[http://dx.doi.org/10.1186/s12951-022-01632-1] [PMID: 36153544]
[150]
Wu Y, Jiang T, Hua J, et al. PINK1/Parkin-mediated mitophagy in cardiovascular disease: From pathogenesis to novel therapy. Int J Cardiol 2022; 361: 61-9.
[http://dx.doi.org/10.1016/j.ijcard.2022.05.025] [PMID: 35594994]
[151]
Chistiakov DA, Shkurat TP, Melnichenko AA, Grechko AV, Orekhov AN. The role of mitochondrial dysfunction in cardiovascular disease: A brief review. Ann Med 2018; 50(2): 121-7.
[http://dx.doi.org/10.1080/07853890.2017.1417631] [PMID: 29237304]
[152]
Nah J, Miyamoto S, Sadoshima J. Mitophagy as a protective mechanism against myocardial stress. Compr Physiol 2017; 7(4): 1407-24.
[http://dx.doi.org/10.1002/cphy.c170005] [PMID: 28915329]
[153]
Li G, Jian Z, Wang H, Xu L, Zhang T, Song J. Irisin promotes osteogenesis by modulating oxidative stress and mitophagy through SIRT3 signaling under diabetic conditions. Oxid Med Cell Longev 2022; 2022: 1-21.
[http://dx.doi.org/10.1155/2022/3319056] [PMID: 36262283]
[154]
Cao G, Yang C, Jin Z, et al. FNDC5/irisin reduces ferroptosis and improves mitochondrial dysfunction in hypoxic cardiomyocytes by Nrf2/HO-1 axis. Cell Biol Int 2022; 46(5): 723-36.
[http://dx.doi.org/10.1002/cbin.11763] [PMID: 35032153]
[155]
Tan Y, Ouyang H, Xiao X, Zhong J, Dong M. Irisin ameliorates septic cardiomyopathy via inhibiting DRP1-related mitochondrial fission and normalizing the JNK-LATS2 signaling pathway. Cell Stress Chaperones 2019; 24(3): 595-608.
[http://dx.doi.org/10.1007/s12192-019-00992-2] [PMID: 30993599]
[156]
Xin T, Lu C. Irisin activates Opa1-induced mitophagy to protect cardiomyocytes against apoptosis following myocardial infarction. Aging 2020; 12(5): 4474-88.
[http://dx.doi.org/10.18632/aging.102899] [PMID: 32155590]
[157]
Ji Y, Leng Y, Lei S, et al. The mitochondria-targeted antioxidant MitoQ ameliorates myocardial ischemia–reperfusion injury by enhancing PINK1/Parkin-mediated mitophagy in type 2 diabetic rats. Cell Stress Chaperones 2022; 27(4): 353-67.
[http://dx.doi.org/10.1007/s12192-022-01273-1] [PMID: 35426609]
[158]
Xiong W, Hua J, Liu Z, et al. PTEN induced putative kinase 1 (PINK1) alleviates angiotensin II-induced cardiac injury by ameliorating mitochondrial dysfunction. Int J Cardiol 2018; 266: 198-205.
[http://dx.doi.org/10.1016/j.ijcard.2018.03.054] [PMID: 29887448]
[159]
Imberechts D, Kinnart I, Wauters F, et al. DJ-1 is an essential downstream mediator in PINK1/parkin-dependent mitophagy. Brain 2022; 145(12): 4368-84.
[http://dx.doi.org/10.1093/brain/awac313] [PMID: 36039535]
[160]
Gureev AP, Shaforostova EA, Popov VN. Regulation of mitochondrial biogenesis as a way for active longevity: Interaction between the Nrf2 and PGC-1α signaling pathways. Front Genet 2019; 10: 435.
[http://dx.doi.org/10.3389/fgene.2019.00435] [PMID: 31139208]
[161]
Picca A, Guerra F, Calvani R, et al. Mitochondrial dysfunction and aging: Insights from the analysis of extracellular vesicles. Int J Mol Sci 2019; 20(4): 805.
[http://dx.doi.org/10.3390/ijms20040805] [PMID: 30781825]
[162]
Yu M, Wang D, Chen X, Zhong D, Luo J. BMSCs-derived mitochondria improve osteoarthritis by ameliorating mitochondrial dysfunction and promoting mitochondrial biogenesis in chondrocytes. Stem Cell Rev Rep 2022; 18(8): 3092-111.
[http://dx.doi.org/10.1007/s12015-022-10436-7] [PMID: 35943688]
[163]
Li N, Shu J, Yang X, Wei W, Yan A. Exosomes derived from M2 microglia cells attenuates neuronal impairment and mitochondrial dysfunction in alzheimer’s disease through the PINK1/parkin pathway. Front Cell Neurosci 2022; 16: 874102.
[http://dx.doi.org/10.3389/fncel.2022.874102] [PMID: 35573832]
[164]
Tao L, Huang X, Xu M, Yang L, Hua F. MiR-144 protects the heart from hyperglycemia-induced injury by regulating mitochondrial biogenesis and cardiomyocyte apoptosis. FASEB J 2020; 34(2): 2173-97.
[http://dx.doi.org/10.1096/fj.201901838R] [PMID: 31907983]
[165]
Li Y, Wang J, Chen S, et al. miR-137 boosts the neuroprotective effect of endothelial progenitor cell-derived exosomes in oxyhemoglobin-treated SH-SY5Y cells partially via COX2/PGE2 pathway. Stem Cell Res Ther 2020; 11(1): 330.
[http://dx.doi.org/10.1186/s13287-020-01836-y] [PMID: 33100224]
[166]
Tekkeşin Aİ, Hayıroğlu Mİ, Çinier G, et al. Lifestyle intervention using mobile technology and smart devices in patients with high cardiovascular risk: A pragmatic randomised clinical trial. Atherosclerosis 2021; 319: 21-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.12.020] [PMID: 33465658]
[167]
Hayıroğlu Mİ, Çınar T, Hayıroğlu CS, Şaylık F, Uzun M, Tekkeşin Aİ. The role of smart devices and mobile application on the change in peak VO 2 in patients with high cardiovascular risk: A sub-study of the LIGHT randomised clinical trial. Acta Cardiol 2023; 78(9): 1000-5.
[http://dx.doi.org/10.1080/00015385.2023.2223005] [PMID: 37318090]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy