Generic placeholder image

Current Spectroscopy and Chromatography

Editor-in-Chief

ISSN (Print): 2950-4910
ISSN (Online): 2950-4902

Book Reviews

Book Review: Applications of Ion Exchange Materials in Biomedical Industries

Author(s): G. Kausalya Sasikumar, T. Daniel Thangadurai*, Putrakumar Balla, T.K. Anusree Gangadharan, Ramya Krishna Pothu and Rajender Boddula*

Volume 10, 2024

Published on: 23 May, 2024

Article ID: e230524230252 Pages: 6

DOI: 10.2174/0122132406283610240506052415

Open Access Journals Promotions 2
Abstract

The book titled “Applications of Ion Exchange Materials in Biomedical Industries,” edited by Inamuddin, was published by Springer in 2019. The book has 235 pages, and the print version has ISBN 978-3-030-06081-7. The eBook version has ISBN 978-3-030-06082-4 and is available at https://doi.org/10.1007/978-3-030-06082-4. Ion exchange chromatography has become increasingly popular in recent years due to its use in various industries, including biotechnology, pharmaceuticals, agriculture, and the environment. The book "Applications of Ion Exchange Materials in Biomedical Industries," edited by Inamuddin and published by Springer in 2019, covers the use of ion exchange materials in biomedical applications. The book outlines the principles of ion exchange chromatography (IEC), a crucial technology used to separate ionic chemicals through ion exclusion and partition. It also covers IEC in separating, purifying, identifying, and extracting substances, such as amino acids, morphine, nucleotides, nucleosides, sorbitol, vitamins, purines, and pyrimidines. This book review will be useful to researchers, industrialists, medical professionals, and engineers in understanding the concept and applications of ion exchange materials.

Keywords: Ion exchange chromatography, ion exclusion, ion partition, ionic exchange materials, pharmaceutical analysis, biomedical applications.

[1]
Singh, C.; Sharma, C.S.; Kamble, P.R. Amino acid analysis using ion-exchange chromatography: A review. Int. J. Pharmacogn., 2014, 3, 3559-3567.
[2]
Bhattacharyya, L.; Rohrer, J.S. Applications of ion chromatography in the analysis of pharmaceutical and biological products; Wiley: London, 2012.
[3]
Levison, P.R. Large-scale ion-exchange column chromatography of proteins. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2003, 790(1-2), 17-33.
[http://dx.doi.org/10.1016/S1570-0232(03)00087-4] [PMID: 12767318]
[4]
Csapo, J.; Albert, C.; Loki, K.; Kiss, C.Z. Separation and determination of the amino acids by ion exchange column chromatography applying postcolumn derivatization. Acta Univ. Sapientiae Aliment., 2008, 1, 5-29.
[5]
Ding, Y; Yu, H; Mou, S. Direct determination of free amino acids and sugars in green tea by anion-exchange chromatography with integrated pulsed amperometric detection. J Chromatogr A., 2002, 982(2), 237-244.6.
[6]
Yu, H.; Ding, Y.S.; Mou, S.F.; Jandik, P.; Cheng, J. Simultaneous determination of amino acids and carbohydrates by anion-exchange chromatography with integrated pulsed amperometric detection. J. Chromatogr. A, 2002, 966(1-2), 89-97.
[http://dx.doi.org/10.1016/S0021-9673(02)00739-2] [PMID: 12214708]
[7]
Eş, I.; Vieira, J.D.G.; Amaral, A.C. Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl. Microbiol. Biotechnol., 2015, 99(5), 2065-2082.
[http://dx.doi.org/10.1007/s00253-015-6390-y] [PMID: 25616529]
[8]
DiCosimo, R.; McAuliffe, J.; Poulose, A.J.; Bohlmann, G. Industrial use of immobilized enzymes. Chem. Soc. Rev., 2013, 42(15), 6437-6474.
[http://dx.doi.org/10.1039/c3cs35506c] [PMID: 23436023]
[9]
Vaz, R.P.; Filho, E.X.F. Ion exchange chromatography for enzyme immobilization. In: Applications of Ion Exchange Materials in Biomedical Industries; namuddin, , Ed.; Springer: Cham, 2019.
[http://dx.doi.org/10.1007/978-3-030-06082-4_2]
[10]
Leresche, J.E.; Meyer, H.P. Chemocatalysis and biocatalysis (biotransformation): Some thoughts of a chemist and a biotechnologist. Org. Process Res. Dev., 2006, 10(3), 572-580.
[http://dx.doi.org/10.1021/op0600308]
[11]
Wang, L.; Wei, L.; Chen, Y.; Jiang, R. Specific and reversible immobilization of NADH oxidase on functionalized carbon nanotubes. J. Biotechnol., 2010, 150(1), 57-63.
[http://dx.doi.org/10.1016/j.jbiotec.2010.07.005] [PMID: 20630484]
[12]
Fan, J.; Luo, J.; Wan, Y. Membrane chromatography for fast enzyme purification, immobilization and catalysis: A renewable biocatalytic membrane. J. Membr. Sci., 2017, 538, 68-76.
[http://dx.doi.org/10.1016/j.memsci.2017.05.053]
[13]
Ribeiro, R.R.; Vitolo, M. Anion exchange resin as support for invertase immobilization. J Basic App Pharm Sci., 2005, 26, 175-179.
[14]
Vaz, R.P.; de Souza Moreira, L.R.; Filho, F.E.X. An overview of holocellulose-degrading enzyme immobilization for use in bioethanol production. J. Mol. Catal., B Enzym., 2016, 133, 127-135.
[http://dx.doi.org/10.1016/j.molcatb.2016.08.006]
[15]
Andersen, G.; Christrup, L.; Sjøgren, P. Relationships among morphine metabolism, pain and side effects during long-term treatment: An update. J. Pain Symptom Manage., 2003, 25(1), 74-91.
[http://dx.doi.org/10.1016/S0885-3924(02)00531-6] [PMID: 12565191]
[16]
Barnes, A.J.; Kim, I.; Schepers, R.; Moolchan, E.T.; Wilson, L.; Cooper, G.; Reid, C.; Hand, C.; Huestis, M.A. Sensitivity, specificity, and efficiency in detecting opiates in oral fluid with the Cozart Opiate Microplate EIA and GC-MS following controlled codeine administration. J. Anal. Toxicol., 2003, 27(7), 402-406.
[http://dx.doi.org/10.1093/jat/27.7.402] [PMID: 14606992]
[17]
Wasels, R.; Belleville, F. Gas chromatographic-mass spectrometric procedures used for the identification and determination of morphine, codeine and 6-monoacetylmorphine. J. Chromatogr. A, 1994, 674(1-2), 225-234.
[http://dx.doi.org/10.1016/0021-9673(94)85227-8] [PMID: 8075772]
[18]
Kolaei, M.; Dashtian, K.; Rafiee, Z.; Ghaedi, M. Ultrasonic-assisted magnetic solid phase extraction of morphine in urine samples by new imprinted polymer-supported on MWCNT-Fe3O4-NPs: Central composite design optimization. Ultrason. Sonochem., 2016, 33, 240-248.
[http://dx.doi.org/10.1016/j.ultsonch.2016.05.003] [PMID: 27245975]
[19]
Atta, NF; Hassan, HK; Galal, A Rapid and simple electrochemical detection of morphine on graphene-palladium-hybrid-modified glassy carbon electrode. Anal Bioanal Chem., 2014, 406, 6933-6942.23.
[http://dx.doi.org/10.1007/s00216-014-7999-x]
[20]
Zaslansky, R.; Schramm, C.; Stein, C.; Güthoff, C.; Westhausen, S.A.M. Topical application of morphine for wound healing and analgesia in patients with oral lichen planus: A randomized, double-blind, placebo-controlled study. Clin. Oral Investig., 2018, 22(1), 305-311.
[http://dx.doi.org/10.1007/s00784-017-2112-4] [PMID: 28353022]
[21]
Riu, J.; Barceló, D. Application of capillary electrophoresis in environmental analysis. In: Techniques and Instrumentation in Analytical Chemistry; Elsevier, 2000; 21, pp. 739-787.
[22]
De, S.; Choudhary, R.; Madhuri, R. Determination of morphine in urine. In: Applications of Ion Exchange Materials in Biomedical Industries, 1st ed; Springer, 2019; pp. 29-70.
[http://dx.doi.org/10.1007/978-3-030-06082-4_3]
[23]
Friedman, M. Chemistry, nutrition, and microbiology of D-amino acids. J. Agric. Food Chem., 1999, 47(9), 3457-3479.
[http://dx.doi.org/10.1021/jf990080u] [PMID: 10552672]
[24]
Konya, Y.; Bamba, T.; Fukusaki, E. Extra-facile chiral separation of amino acid enantiomers by LC-TOFMS analysis. J. Biosci. Bioeng., 2016, 121(3), 349-353.
[http://dx.doi.org/10.1016/j.jbiosc.2015.06.017] [PMID: 26321292]
[25]
Majhi, K.C.; Karfa, P.; Madhuri, R. Chromatographic separation of amino acids. In: Applications of Ion Exchange Materials in Biomedical Industries, 1st ed; Springer, 2019; pp. 71-118.28.
[http://dx.doi.org/10.1007/978-3-030-06082-4_4]
[26]
Skog, D.A.; Holler, F.T.; Neiman, T.A. Principles of instrumental analysis; 5th ed; Harcourt Brace College Publisher: Orlando, 1998, pp. 790-, 906, 947.
[27]
Kostova, A.; Bart, H. Preparative chromatographic separation of amino acid racemic mixturesI. Adsorption isotherms. Separ. Purif. Tech., 2007, 54(3), 340-348.
[http://dx.doi.org/10.1016/j.seppur.2006.10.005]
[28]
Huang, X.Y.; Pei, D.; Liu, J.F.; Di, D.L. A review on chiral separation by counter-current chromatography: Development, applications and future outlook. J. Chromatogr. A, 2018, 1531, 1-12.
[http://dx.doi.org/10.1016/j.chroma.2017.10.073] [PMID: 29173957]
[29]
Sherma, J.; Fried, B. Handbook of Thin-Layer Chromatography, 3rd ed; Lafayette College: Easton, Pennsylvania, U.S.A, 2005.
[30]
Jorgenson, J.W.; Lukacs, K.D. Zone electrophoresis in open-tubular glass capillaries. Anal. Chem., 1981, 53(8), 1298-1302.
[http://dx.doi.org/10.1021/ac00231a037]
[31]
Derayea, S.M.; Ahmed, H.M. Applications of ion-exchange chromatography in pharmaceutical analysis. In: Applications of Ion Exchange Materials in Biomedical Industries; Inamuddin; Springer: Cham, 2019.
[http://dx.doi.org/10.1007/978-3-030-06082-4_5]
[32]
Long, Z.; Wang, C.; Guo, Z.; Zhang, X.; Nordahl, L.; Liang, X. Strong cation exchange column allow for symmetrical peak shape and increased sample loading in the separation of basic compounds. J. Chromatogr. A, 2012, 1256, 67-71.
[http://dx.doi.org/10.1016/j.chroma.2012.07.008] [PMID: 22885038]
[33]
Long, Z.; Guo, Z.; Xue, X.; Zhang, X.; Nordahl, L.; Liang, X. Selective separation and purification of highly polar basic compounds using a silica-based strong cation exchange stationary phase. Anal. Chim. Acta, 2013, 804, 304-312.
[http://dx.doi.org/10.1016/j.aca.2013.10.034] [PMID: 24267097]
[34]
Long, Z.; Yu, D.; Liu, Y.; Du, N.; Tao, Y.; Mei, L.; Guo, Z.; Liang, X. The influence of organic sample solvents on the separation efficiency of basic compounds under strong cation exchange mode. Anal. Chim. Acta, 2015, 872, 77-83.
[http://dx.doi.org/10.1016/j.aca.2014.12.057] [PMID: 25892072]
[35]
Liu, H; Wang, H; Sunderland, VB An isocratic ion exchange HPLC method for the simultaneous determination of flucloxacillin and amoxicillin in a pharmaceutical formulation for injection. J Pharm Biomed Anal., 2005, 37, 395-398.38.
[36]
Li-Bo, D.; Rong-Hua, Z.; Huan-De, L.; Feng, W.; Ping-Fei, F.; Jiang, L. Quantitative analysis of trazodone in human plasma by using HPLC-fluorescence detector coupled with strong cation exchange chromatographic column: Application to a pharmacokinetic study in Chinese healthy volunteers. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 944, 43-48.
[http://dx.doi.org/10.1016/j.jchromb.2013.11.013] [PMID: 24291719]
[37]
Muhammad, N.; Subhani, Q.; Wang, F.; Guo, D.; Zhao, Q.; Wu, S.; Zhu, Y. Application of a simple column-switching ion chromatography technique for removal of matrix interferences and sensitive fluorescence determination of acidic compounds (pharmaceutical drugs) in complex samples. J. Chromatogr. A, 2017, 1515, 69-80.
[http://dx.doi.org/10.1016/j.chroma.2017.07.007] [PMID: 28807548]
[38]
Ding, X.; Mou, S. Ion chromatographic analysis of tetracyclines using polymeric column and acidic eluent. J. Chromatogr. A, 2000, 897(1-2), 205-214.
[http://dx.doi.org/10.1016/S0021-9673(00)00779-2] [PMID: 11128204]
[39]
Wang, S.T.; Yang, H.; Gao, W.; Li, H.J.; Li, P. Trace enrichment and characterization of polyphenols in Bistort Rhizoma using weak anion-exchange solid phase extraction and high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. J. Pharm. Biomed. Anal., 2016, 119, 91-98.
[http://dx.doi.org/10.1016/j.jpba.2015.11.033] [PMID: 26669613]
[40]
Mitamura, K Simultaneous determination of 18 tetrahydrocorticosteroid sulfates in human urine by liquid chromatography/electrospray ionization-tandem mass spectrometry. Steroids, 2014, 85, 18-29.
[41]
Fontanals, N.; Cormack, P.A.G.; Sherrington, D.C.; Marcé, R.M.; Borrull, F. Weak anion-exchange hypercrosslinked sorbent in on-line solid-phase extraction-liquid chromatography coupling to achieve automated determination with an effective clean-up. J. Chromatogr. A, 2010, 1217(17), 2855-2861.
[http://dx.doi.org/10.1016/j.chroma.2010.02.064] [PMID: 20303088]
[42]
Lavén, M.; Alsberg, T.; Yu, Y.; Erici, A.M.; Sun, H. Serial mixed-mode cation- and anion-exchange solid-phase extraction for separation of basic, neutral and acidic pharmaceuticals in wastewater and analysis by high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. J. Chromatogr. A, 2009, 1216(1), 49-62.
[http://dx.doi.org/10.1016/j.chroma.2008.11.014] [PMID: 19054521]
[43]
Huang, B.X.; Kim, H.Y.; Dass, C. Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry. J. Am. Soc. Mass Spectrom., 2004, 15(8), 1237-1247.
[http://dx.doi.org/10.1016/j.jasms.2004.05.004] [PMID: 15276171]
[44]
Kudelski, A. Influence of electrostatically bound proteins on the structure of linkage monolayers: adsorption of bovine serum albumin on silver and gold substrates coated with monolayers of 2-mercaptoethanesulphonate. Vib. Spectrosc., 2003, 33(1-2), 197-204.
[http://dx.doi.org/10.1016/j.vibspec.2003.09.003]
[45]
Hu, T; Su, Z. A solid phase adsorption method for preparation of bovine serum albumin bovine hemoglobin conjugate. J Biotechnol., 2003, 100, 267-275.48.
[46]
Oliva, F.Y.; Avalle, L.B.; Cámara, O.R.; De Pauli, C.P. Adsorption of human serum albumin (HSA) onto colloidal TiO2 particles, Part I. J. Colloid Interface Sci., 2003, 261(2), 299-311.
[http://dx.doi.org/10.1016/S0021-9797(03)00029-8] [PMID: 16256535]
[47]
Alkan, M.; Doğan, M.; Turhan, Y.; Demirbaş, Ö.; Turan, P. Adsorption kinetics and mechanism of maxilon blue 5G dye on sepiolite from aqueous solutions. Chem. Eng. J., 2008, 139(2), 213-223.
[http://dx.doi.org/10.1016/j.cej.2007.07.080]
[48]
Doğan, M.; Alkan, M.; Demirbaş, Ö.; Özdemir, Y.; Özmetin, C. Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions. Chem. Eng. J., 2006, 124(1-3), 89-101.
[http://dx.doi.org/10.1016/j.cej.2006.08.016]
[49]
Lu, C.F.; Nadarajah, A.; Chittur, K.K. A comprehensive model for protein adsorption to surfaces. J. Colloid Interface Sci., 1994, 168(1), 152-161.
[http://dx.doi.org/10.1006/jcis.1994.1404]
[50]
Demirbaş, Ö.; Çalımlı, M.H.; Kuyuldar, E.; Baydilek, H.İ.; Nas, M.S.; Şen, F. Thermodynamic kinetics and sorption of bovine serum albumin with different clay materials. In: Applications of Ion Exchange Materials in Biomedical Industries; Inamuddin, , Ed.; Springer: Cham, 2019.
[http://dx.doi.org/10.1007/978-3-030-06082-4_6]
[51]
Çalımlı, M.H.; Demirbaş, Ö.; Aygün, A.; Alma, M.H.; Nas, M.S.; Khan, A.; Asiri, A.M.; Şen, F. Equilibrium, kinetics and thermodynamics of bovine serum albumin from carbon based materials obtained from food wastes. Bionanoscience, 2019, 9(3), 692-701.
[http://dx.doi.org/10.1007/s12668-019-00633-z]
[52]
Marques, C.; Tarek, R.; Sara, M.; Brar, S.K. Sorbitol production from biomass and its global market. In: Platform Chemical Biorefinery; Elsevier, 2016; pp. 217-227.
[http://dx.doi.org/10.1016/B978-0-12-802980-0.00012-2]
[53]
Dies, R.C.; Kearsley, M.W. Sorbitol and mannitol. In: Sweeteners and Sugar Alternatives in Food Technology, 2nd ed; Wiley, 2012.
[http://dx.doi.org/10.1002/9781118373941.ch15]
[54]
Radhika, G.S.; Moorthy, S.N. Sugar alcohols - A review. Trends Carbohydr. Res., 2009, 1, 71-79.
[55]
Alios, J.; Rainer, H. Ion-exchange chromatography. Methods Enzymol., 2009, 463, 349-371.
[56]
Yang, Y.; Hebron, H.R.; Hang, J. High performance DNA purification using a novel ion exchange matrix. J. Biomol. Tech., 2008, 19(3), 205-210.
[PMID: 19137108]
[57]
Singh, R.P.; Smesko, A.S.; Abbas, N.M. Ion chromatographic characterization of toxic solutions: Analysis and ion chemistry of biological liquids. J. Chromatogr. A, 1997, 774(1-2), 21-35.
[http://dx.doi.org/10.1016/S0021-9673(97)00526-8] [PMID: 9253185]
[58]
Kasai, K. Size-dependent chromatographic separation of nucleic acids. J. Chromatogr., Biomed. Appl., 1993, 618(1-2), 203-221.
[http://dx.doi.org/10.1016/0378-4347(93)80035-3] [PMID: 8227257]
[59]
Cramer, H.; Finn, K.J.; Herzberg, E. Purity analysis and impurities determination by reversed-phase high-performance liquid chromatography. In: Handbook of analysis of oligonucleotides and related products; CRC Press: Boca Raton, FL, 2011; pp. 1-46.
[http://dx.doi.org/10.1201/b10714-2]
[60]
Asteriadis, G.T.; Armbruster, M.A.; Gilham, P.T. Separation of oligonucleotides, nucleotides, and nucleosides on columns of polystyrene anion-exchangers with solvent systems containing ethanol. Anal. Biochem., 1976, 70(1), 64-74.
[http://dx.doi.org/10.1016/S0003-2697(76)80048-6] [PMID: 1259157]
[61]
Zhang, Q.; Lv, H.; Wang, L.; Chen, M.; Li, F.; Liang, C.; Yu, Y.; Jiang, F.; Lu, A.; Zhang, G. Recent methods for purification and structure determination of oligonucleotides. Int. J. Mol. Sci., 2016, 17(12), 2134.
[http://dx.doi.org/10.3390/ijms17122134] [PMID: 27999357]
[62]
Lochmüller, C.H.; Liu, Q.; Huang, L.; Li, Y. Separation of nucleotide oligomers by unitary anion-exchange. J. Chromatogr. Sci., 1999, 37(7), 251-254.
[http://dx.doi.org/10.1093/chromsci/37.7.251] [PMID: 10422265]
[63]
Wall, J.S. Simultaneous separation of purines, pyrimidines, amino acids, and other nitrogenous compounds by Ion exchange chromatography. Anal. Chem., 1953, 25(6), 950-953.
[http://dx.doi.org/10.1021/ac60078a029]
[64]
Kumar, P.S.; Yaashikaa, P.R. Separation and purification of nucleotides, nucleosides, purine and pyrimidine bases by ion exchange. In: Applications of Ion Exchange Materials in Biomedical Industries; Inamuddin, , Ed.; Springer: Cham, 2019; pp. 163-175.
[65]
Vilaplana, A.G.; Villano, D.; Marhuenda, J.; Moreno, D.A.; Viguera, C.G. Vitamins In: Nutraceutical and functional food components; Galanakis, C.A., Ed.; Academic Press: Tokyo, 2017; pp. 159-201.68.
[66]
Fallon, A; Booth, RFG Bell, LD Applications of HPLC in Biochemistry, 1st ed; Elsevier, 1987.
[67]
Williams, R.C.; Baker, D.R.; Schmit, J.A. Analysis of water-soluble vitamins by high-speed ion-exchange chromatography. J. Chromatogr. Sci., 1973, 11(12), 618-624.
[http://dx.doi.org/10.1093/chromsci/11.12.618] [PMID: 4781291]
[68]
Herr, D.S. Synthetic ion exchange resins in the separation, recovery, and concentration of thiamine. Ind. Eng. Chem., 1945, 37(7), 631-634.
[http://dx.doi.org/10.1021/ie50427a011]
[69]
Alexandratos, S.D. Ion-exchange resins: A retrospective from industrial and engineering chemistry research. Ind. Eng. Chem. Res., 2009, 48(1), 388-398.
[http://dx.doi.org/10.1021/ie801242v]
[70]
Henke, S.; Hinkova, A.; Gillarova, S. Colour removal from sugar syrups. In: Applications of Ion Exchange Materials in Biomedical Industries; Inamuddin, , Ed.; Springer: Cham, 2019.
[http://dx.doi.org/10.1007/978-3-030-06082-4_10]
[71]
Callmer, K.; Davies, L. Separation and determination of vitamin B1, B2, B6 and nicotinamide in commercial vitamin preparations using high performance cation-exchange chromatography. Chromatographia, 1974, 7(11), 644-650.
[http://dx.doi.org/10.1007/BF02290508]
[72]
Begent, LA; Hill, AP; Steventon, GB; Hutt, AJ; Pallister, CJ; Cowell, DC Characterization and purification of the vitamin K1 2,3 epoxide reductase system from rat liver. J Pharm Pharmacol., 2001, 53, 481-486.73.
[73]
Godshall, MA; Clarke, MA; Dooley, CD Progress in beet sugar colorant research. J. Sugar Beet Res., 1991, 28(3-4), 155-165.
[http://dx.doi.org/10.5274/jsbr.28.3.155]
[74]
Bahrami, M.E.; Honarvar, M. Identification of colored components produced in sugar beet processing using gel-permeation chromatography (GPC) with UV and RI detection. J Food BiosciTechnol., 2017, 7(2), 19-26.
[75]
Godshall, M.A. Removal of colorants and polysaccharides and the quality of white sugar.Proceedings of the 6th symposium of association Andrew van Hook (AVH)-impurities removal and the quality of white sugar; AVH, Reims, France, 1999, pp. 28-35.

© 2024 Bentham Science Publishers | Privacy Policy