Generic placeholder image

Current Nutraceuticals

Editor-in-Chief

ISSN (Print): 2665-9786
ISSN (Online): 2665-9794

Research Article

The Synergistic Enhancement of Anti-Metabolic Diseases Function of Morus alba with the Combination of Cha (Camellia sinensis)

Author(s): Shinji Sato and Tetsuya Konishi*

Volume 5, 2024

Published on: 22 May, 2024

Article ID: e220524230231 Pages: 9

DOI: 10.2174/0126659786302883240517050829

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Functional foods play an important role in the prevention and amelioration of metabolic syndromes leading to type 2 diabetes. Plant resources that have anti-metabolic syndromes activity, such as Morus alba L. and Cha (Camellia sinensis L.), have been used in functional foods against diabetes. Since Morus and Cha have different mechanisms of action against metabolic syndromes, such as prevention of sugar uptake and lipidosis, respectively, the combination of both resources will be a reliable approach for developing more efficient functional food against type 2 diabetes because certain synergism is expected in their functions.

Methods: Male Wister Rats were fed the high fat-high sucrose (HFHS) diet for 12 weeks, with and without supplementation of Morus and Cha alone and their combination, and the effect of their supplementation on the markers of the metabolic syndrome such as obesity, lipidosis, and fatty liver formation, were examined.

Results: Several metabolic syndrome markers, including body weight gain, lipid deposit, and fatty liver formation, were more significantly prevented by the diet supplemented with Morus and Cha combination compared to Morus or Cha given separately.

Conclusion: Appropriate formulation of food resources with different functional mechanisms is a promising strategy for developing effective dietary treatment of type 2 diabetes that is a typical Mibyou.

Keywords: Anti-metabolic syndromes, synergistic effect, Morus alba, Camellia sinensis, Mibyou-care functional food, obesity.

[1]
Ke, S.X. The principles of health, illness and treatment - The key concepts from “The Yellow Emperor’s Classic of Internal Medicine”. J. Ayurveda Integr. Med., 2023, 14(1), 100637.
[http://dx.doi.org/10.1016/j.jaim.2022.100637] [PMID: 36460575]
[2]
Lee, J.; Kim, S.H.; Lee, Y.; Song, S.; Kim, Y.; Lee, S. The concept of Mibyeong (sub-health) in Korea: A Delphi study. Eur. J. Integr. Med., 2013, 5(6), 514-518.
[http://dx.doi.org/10.1016/j.eujim.2013.07.010]
[3]
Fukuo, Y. Destructive creation in the Reiwa Era Utilization of “The concept of Modern Mibyou” as Presymptomatic Medicine. J. Int. Soc. Inf. Sci, 2010, 38, 15.
[4]
Konishi, T. Mibyou care is a key for healthy life elongation: the role of mibyou-care functional foods. In: Complementary Therapies; Bernardo-Filho, M., Ed.; IntechOpen: London, UK, 2021.
[5]
Miyata, T. Novel approach to curatives of Mibyou (presymptomatic diseases). Yakugaku Zasshi, 2011, 131(9), 1289-1298.
[http://dx.doi.org/10.1248/yakushi.131.1289] [PMID: 21881301]
[6]
Konishi, T. Mibyou-care functional food: Integrated role and use of functional foods in mibyou-care. Glob J Nutri Food Sci, 2024, 4.
[7]
Diabetes center for diseases control and prevention. Available from: https://www.cdc.gov/diabetes/basics/symptoms.html
[8]
Tomic, D.; Shaw, J.E.; Magliano, D.J. The burden and risks of emerging complications of diabetes mellitus. Nat. Rev. Endocrinol., 2022, 18(9), 525-539.
[http://dx.doi.org/10.1038/s41574-022-00690-7] [PMID: 35668219]
[9]
Rao Kondapally Seshasai, S.; Kaptoge, S.; Thompson, A.; Di Angelantonio, E.; Gao, P.; Sarwar, N.; Whincup, P.H.; Mukamal, K.J.; Gillum, R.F.; Holme, I.; Njølstad, I.; Fletcher, A.; Nilsson, P.; Lewington, S.; Collins, R.; Gudnason, V.; Thompson, S.G.; Sattar, N.; Selvin, E.; Hu, F.B. Danesh, J. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med., 2011, 364(9), 829-841.
[http://dx.doi.org/10.1056/NEJMoa1008862] [PMID: 21366474]
[10]
Singh, K.B.; Nnadozie, M.C.; Abdal, M.; Shrestha, N.; Abe, R.A.M.; Masroor, A.; Khorochkov, A.; Prieto, J.; Mohammed, L. Type 2 diabetes and causes of sudden cardiac death: A systematic review. Cureus, 2021, 13(9), e18145.
[http://dx.doi.org/10.7759/cureus.18145] [PMID: 34692349]
[11]
Bjornstad, P.; Chao, L.C.; Cree-Green, M.; Dart, A.B.; King, M.; Looker, H.C.; Magliano, D.J.; Nadeau, K.J.; Pinhas-Hamiel, O.; Shah, A.S.; van Raalte, D.H.; Pavkov, M.E.; Nelson, R.G. Youth-onset type 2 diabetes mellitus: An urgent challenge. Nat. Rev. Nephrol., 2023, 19(3), 168-184.
[http://dx.doi.org/10.1038/s41581-022-00645-1] [PMID: 36316388]
[12]
Xue, M.; Xu, W.; Ou, Y.N.; Cao, X.P.; Tan, M.S.; Tan, L.; Yu, J.T. Diabetes mellitus and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 144 prospective studies. Ageing Res. Rev., 2019, 55, 100944.
[http://dx.doi.org/10.1016/j.arr.2019.100944] [PMID: 31430566]
[13]
Kannel, W.B.; McGee, D.L. Diabetes and cardiovascular disease. The Framingham study. JAMA, 1979, 241(19), 2035-2038.
[http://dx.doi.org/10.1001/jama.1979.03290450033020] [PMID: 430798]
[14]
Cholerton, B.; Baker, L.D.; Montine, T.J.; Craft, S. Type 2 diabetes, cognition, and dementia in older adults: Toward a precision health approach. Diabetes Spectr., 2016, 29(4), 210-219.
[http://dx.doi.org/10.2337/ds16-0041] [PMID: 27899872]
[15]
Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; Pavkov, M.E.; Ramachandaran, A.; Wild, S.H.; James, S.; Herman, W.H.; Zhang, P.; Bommer, C.; Kuo, S.; Boyko, E.J.; Magliano, D.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract., 2022, 183, 109119.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[16]
Colditz, G.A.; Willett, W.C.; Rotnitzky, A.; Manson, J.E. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann. Intern. Med., 1995, 122(7), 481-486.
[http://dx.doi.org/10.7326/0003-4819-122-7-199504010-00001] [PMID: 7872581]
[17]
Selman, A.; Burns, S.; Reddy, A.P.; Culberson, J.; Reddy, P.H. The role of obesity and diabetes in dementia. Int. J. Mol. Sci., 2022, 23(16), 9267.
[http://dx.doi.org/10.3390/ijms23169267] [PMID: 36012526]
[18]
Derosa, G.; Limas, C.P.; Macías, P.C.; Estrella, A.; Maffioli, P. State of the art papers Dietary and nutraceutical approach to type 2 diabetes. Arch. Med. Sci., 2014, 2(2), 336-344.
[http://dx.doi.org/10.5114/aoms.2014.42587] [PMID: 24904670]
[19]
Rahman, M.M.; Dhar, P.S. Sumaia; Anika, F.; Ahmed, L.; Islam, M.R.; Sultana, N.A.; Cavalu, S.; Pop, O.; Rauf, A. Exploring the plant-derived bioactive substances as antidiabetic agent: An extensive review. Biomed. Pharmacother., 2022, 152, 113217.
[http://dx.doi.org/10.1016/j.biopha.2022.113217] [PMID: 35679719]
[20]
Tran, N.; Pham, B.; Le, L. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology, 2020, 9(9), 252.
[http://dx.doi.org/10.3390/biology9090252] [PMID: 32872226]
[21]
Salehi, B.; Ata, A. Sharopov; Ramírez-Alarcón; Ruiz-Ortega; Abdulmajid Ayatollahi; Tsouh Fokou; Kobarfard; Amiruddin Zakaria; Iriti; Taheri; Martorell; Sureda; Setzer; Durazzo; Lucarini; Santini; Capasso; Ostrander; Atta-ur-Rahman; Choudhary, M.I.; Cho, W.C.; Sharifi-Rad, J. Antidiabetic potential of medicinal plants and their active components. Biomolecules, 2019, 9(10), 551.
[http://dx.doi.org/10.3390/biom9100551] [PMID: 31575072]
[22]
Khatun, M.A.; Sato, S.; Konishi, T. Obesity preventive function of novel edible mushroom, Basidiomycetes-X (Echigoshirayukidake): Manipulations of insulin resistance and lipid metabolism. J. Tradit. Complement. Med., 2020, 10(3), 245-251.
[http://dx.doi.org/10.1016/j.jtcme.2020.03.004] [PMID: 32670819]
[23]
Cardullo, N.; Muccilli, V.; Pulvirenti, L. C-glucosidic ellagitannins and galloylated glucoses as potential functional food ingredients with anti-diabetic properties: a study of alfa-glucosidase and alfa-amylase inhibition. Food Chem., 2020, 2020, 313.
[http://dx.doi.org/10.1016/j.foodchem.2019.126099]
[24]
Vivó-Barrachina, L.; Rojas-Chacón, M.J.; Navarro-Salazar, R.; Belda-Sanchis, V.; Pérez-Murillo, J.; Peiró-Puig, A.; Herran-González, M.; Pérez-Bermejo, M. The role of natural products on diabetes mellitus treatment: A systematic review of randomized controlled trials. Pharmaceutics, 2022, 14(1), 101.
[http://dx.doi.org/10.3390/pharmaceutics14010101] [PMID: 35056997]
[25]
Chan, E.W.C.; Lye, P.Y.; Wong, S.K. Phytochemistry, pharmacology, and clinical trials of Morus alba. Chin. J. Nat. Med., 2016, 14, 17-30.
[26]
Tian, S.; Tang, M.; Zhao, B. Current anti-diabetes mechanisms and clinical trials using Morus alba L. J Trad Chin. Med. Sci., 2016, 3, 3-8.
[27]
Morales Ramos, J.G.; Esteves Pairazamán, A.T.; Mocarro Willis, M.E.S.; Collantes Santisteban, S.; Caldas Herrera, E. Medicinal properties of Morus alba for the control of type 2 diabetes mellitus: A systematic review. F1000 Res., 2021, 10, 1022.
[http://dx.doi.org/10.12688/f1000research.55573.1] [PMID: 34912543]
[28]
Sakurai, M.; Sato, S.; Fukushima, T.; Konishi, T. Characteristics of Morus alba L. Cultured by in-room hydroponics. Am. J. Plant Sci., 2022, 13(1), 91-108.
[http://dx.doi.org/10.4236/ajps.2022.131007]
[29]
Dinh, T.C.; Thi Phuong, T.N.; Minh, L.B.; Minh Thuc, V.T.; Bac, N.D.; Van Tien, N.; Pham, V.H.; Show, P.L.; Tao, Y.; Nhu Ngoc, V.T.; Bich Ngoc, N.T.; Jurgoński, A.; Thimiri Govinda Raj, D.B.; Van Tu, P.; Ha, V.N.; Czarzasta, J.; Chu, D.T. The effects of green tea on lipid metabolism and its potential applications for obesity and related metabolic disorders - An existing update. Diabetes Metab. Syndr., 2019, 13(2), 1667-1673.
[http://dx.doi.org/10.1016/j.dsx.2019.03.021] [PMID: 31336539]
[30]
Xu, R.; Yang, K.; Li, S.; Dai, M.; Chen, G. Effect of green tea consumption on blood lipids: A systematic review and meta-analysis of randomized controlled trials. Nutr. J., 2020, 19(1), 48.
[http://dx.doi.org/10.1186/s12937-020-00557-5] [PMID: 32434539]
[31]
Asai, A.; Nakagawa, K. Effect of mulberry leaf extract with enriched 1-deoxynojirimycin content on post prandial glycemic control in subjects with impaired glucose metabolism. Diabetes Care, 2007, 30, 318-323.
[32]
Sato, S.; Sakurai, M.; Konishi, T. Anti-obesity effect of echigoshirayukidake (basidiomycetes-x) in rats. Glycat Stress Res, 2019, 6, 198-211.
[33]
Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem., 1957, 226(1), 497-509.
[http://dx.doi.org/10.1016/S0021-9258(18)64849-5] [PMID: 13428781]
[34]
Das, L.; Bhaumik, E.; Raychaudhuri, U.; Chakraborty, R. Role of nutraceuticals in human health. J. Food Sci. Technol., 2012, 49(2), 173-183.
[http://dx.doi.org/10.1007/s13197-011-0269-4] [PMID: 23572839]
[35]
Koizumi, K.; Oku, M.; Hayashi, S.; Inujima, A.; Shibahara, N.; Chen, L.; Igarashi, Y.; Tobe, K.; Saito, S.; Kadowaki, M.; Aihara, K. Suppression of dynamical network biomarker signals at the predisease state (mibyou) before metabolic syndrome in mice by a traditional japanese medicine (kampo formula) bofutsushosan. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/9129134] [PMID: 32831883]
[36]
Pearson, E.R. Type 2 diabetes: A multifaceted disease. Diabetologia, 2019, 62(7), 1107-1112.
[http://dx.doi.org/10.1007/s00125-019-4909-y] [PMID: 31161345]
[37]
Pan, M.H.; Zhu, S.R.; Duan, W.J.; Ma, X.H.; Luo, X.; Liu, B.; Kurihara, H.; Li, Y.F.; Chen, J.X.; He, R.R. “Shanghuo” increases disease susceptibility: Modern significance of an old TCM theory. J. Ethnopharmacol., 2020, 250, 112491.
[http://dx.doi.org/10.1016/j.jep.2019.112491] [PMID: 31863858]
[38]
Nakrani, M.N.; Wineland, R.H.; Anjum, F. Physiology, glucose metabolism NCBI bookshelf. In: A service of the National Library of Medicine, National Institute of Health; StatPearls Publishing, 2023.
[39]
Iyengar, R. Complex diseases require complex therapies. EMBO Rep., 2013, 14(12), 1039-1042.
[http://dx.doi.org/10.1038/embor.2013.177] [PMID: 24232184]
[40]
Temple, N.J. A rational definition for functional foods: A perspective. Front. Nutr., 2022, 2022, 9.
[http://dx.doi.org/10.3389/fnut.2022.957516]
[41]
He, B.; Lu, C.; Zheng, G.; He, X.; Wang, M.; Chen, G.; Zhang, G.; Lu, A. Combination therapeutics in complex diseases. J. Cell. Mol. Med., 2016, 20(12), 2231-2240.
[http://dx.doi.org/10.1111/jcmm.12930] [PMID: 27605177]
[42]
Yi, Y.D.; Chang, I.M. An overview of traditional chinese herbal formulae and a proposal of a new code system for expressing the formula titles. Evid. Based Complement. Alternat. Med., 2004, 1(2), 125-132.
[http://dx.doi.org/10.1093/ecam/neh019] [PMID: 15480438]
[43]
Wei, R.; Su, Z.; Mackenzie, G.G. Chlorogenic acid combined with epigallocatechin-3-gallate mitigates D -galactose-induced gut aging in mice. Food Funct., 2023, 14(6), 2684-2697.
[http://dx.doi.org/10.1039/D2FO03306B] [PMID: 36752162]
[44]
Yanagimoto, A.; Matsui, Y.; Yamaguchi, T.; Saito, S.; Hanada, R.; Hibi, M. Acute dose–response effectiveness of combined catechins and chlorogenic acids on postprandial glycemic responses in healthy men: Results from two randomized studies. Nutrients, 2023, 15(3), 777.
[http://dx.doi.org/10.3390/nu15030777] [PMID: 36771483]
[45]
Andrysik, Z.; Sullivan, K.D.; Kieft, J.S.; Espinosa, J.M. PPM1D suppresses p53-dependent transactivation and cell death by inhibiting the integrated stress response. Nat. Commun., 2022, 13(1), 7400.
[http://dx.doi.org/10.1038/s41467-022-35089-5] [PMID: 36456590]
[46]
Patti, A.M.; Toth, P.P.; Giglio, R.V.; Banach, M.; Noto, M.; Nikolic, D.; Montalto, G.; Rizzo, M. Nutraceuticals as an important part of combination therapy in dyslipidaemia. Cur Pharamaceut Design, 2017, 23(17), 2496-2503.
[PMID: 28317482]
[47]
Yatsunami, K.; Ichida, M.; Onodera, S. The relationship between 1-deoxynojirimycin content and α-glucosidase inhibitory activity in leaves of 276 mulberry cultivars (Morus spp.) in Kyoto, Japan. J. Nat. Med., 2007, 62(1), 63-66.
[http://dx.doi.org/10.1007/s11418-007-0185-0] [PMID: 18404344]
[48]
He, H.; Lu, Y.H. Comparison of inhibitory activities and mechanisms of five mulberry plant bioactive components against α-glucosidase. J. Agric. Food Chem., 2013, 61(34), 8110-8119.
[http://dx.doi.org/10.1021/jf4019323] [PMID: 23909841]
[49]
Kwon, R.H.; Thaku, N.; Timalsina, B.; Park, S.E.; Choi, J.S.; Jung, H.A. Inhibition mechanism of components isolated from Morus alba branches on diabetes and diabetic complications via experimental and molecular docking analyses. Antioxidants, 2022, 11(2), 383.
[http://dx.doi.org/10.3390/antiox11020383] [PMID: 35204264]
[50]
Sae-tan, S.; Grove, K.A.; Kennett, M.J.; Lambert, J.D. (−)-Epigallocatechin-3-gallate increases the expression of genes related to fat oxidation in the skeletal muscle of high fat-fed mice. Food Funct., 2011, 2(2), 111-116.
[http://dx.doi.org/10.1039/c0fo00155d] [PMID: 21779555]
[51]
Tun, S.; Spainhower, C.J.; Cottrill, C.L. Therapeutic efficacy of antioxidants in ameliorating obesity phenotype and associated comobidities. Front. Pharmacol., 2020, 11, 202.
[52]
Dey, A.; Lakshmanan, J. The role of antioxidants and other agents in alleviating hyperglycemia mediated oxidative stress and injury in liver. Food Funct., 2013, 4(8), 1148-1184.
[http://dx.doi.org/10.1039/c3fo30317a] [PMID: 23760593]
[53]
Matsugo, S.; Sakamoto, T.; Wakame, K.; Nakamura, Y.; Watanabe, K.; Konishi, T. Mushrooms as a resource for mibyou-care functional food; the role of basidiomycetes-x (shirayukidake) and its major components. Nutraceuticals, 2022, 2(3), 132-149.
[http://dx.doi.org/10.3390/nutraceuticals2030010]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy