Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Review Article

Phytochemicals as Adjuvant Therapies in RND Efflux-mediated Multidrug Resistant Pseudomonas aeruginosa Infections and Evaluation Techniques of Efflux Inhibitory Activities in Bacteria

Author(s): Praveena Nanjan and Vanitha Bose*

Volume 22, Issue 5, 2024

Published on: 16 May, 2024

Article ID: e22113525298269 Pages: 16

DOI: 10.2174/0122113525298269240429130911

Price: $65

Open Access Journals Promotions 2
Abstract

One of the top-listed opportunistic pathogens that are frequently found in medical devices such as ventilation systems is Pseudomonas aeruginosa. These bacteria often cause infections in the lungs (pneumonia), blood after surgery, and other parts of the body. Extreme susceptibility to P. aeruginosa infection primarily exists in immunosuppressed individuals, and long-term evolution has led to the development of genetic resistance mechanisms that have high genetic flexibility against damaging antibiotics. Several lines of research evidence point to efflux as the primary reason for the organism's effectiveness against antibiotic treatment in infections caused by this bacterium. Drug Efflux pumps play a crucial role in medicine because they expulse a variety of unique and unrelated chemical structures with either antibiotics or antimicrobials before they reach the concentration necessary to kill bacteria, conferring multiple resistance to more than one class of antibiotics. Targeting this mechanism for example by blocking the most active efflux pump MexAB-orpM would probably lead to the discovery of new ways to circumvent the bacterial system of antibiotic resistance and boost treatment effectiveness.

Keywords: Pseudomonas aeruginosa, multidrug efflux pumps, RND family efflux pump MexAB-OprM, natural inhibitors, bacterial genome, pheumonia.

Graphical Abstract
[1]
Nitz, F.; de Melo, B.O.; da Silva, L.C.N.; de Souza Monteiro, A.; Marques, S.G.; Monteiro-Neto, V.; de Jesus Gomes Turri, R.; Junior, A.D.S.; Conceição, P.C.R.; Magalhães, H.J.C.; Zagmignan, A.; Ferro, T.A.F.; Bomfim, M.R.Q. Molecular detection of drug-resistance genes of blaOXA-23-blaOXA-51 and mcr-1 in clinical isolates of Pseudomonas aeruginosa. Microorganisms, 2021, 9(4), 786.
[http://dx.doi.org/10.3390/microorganisms9040786] [PMID: 33918745]
[2]
Rocha, A.J.; Barsottini, M.R.O.; Rocha, R.R.; Laurindo, M.V.; Moraes, F.L.L.; Rocha, S.L. Pseudomonas aeruginosa: virulence factors and antibiotic resistance genes. Braz. Arch. Biol. Technol., 2019, 62, e19180503.
[http://dx.doi.org/10.1590/1678-4324-2019180503]
[3]
Liao, C.; Huang, X.; Wang, Q.; Yao, D.; Lu, W. Virulence factors of Pseudomonas aeruginosa and Antivirulence strategies to combat its drug resistance. Front. Cell. Infect. Microbiol., 2022, 12, 926758.
[http://dx.doi.org/10.3389/fcimb.2022.926758] [PMID: 35873152]
[4]
Alenazy, R. Drug efflux pump inhibitors: a promising approach to counter multidrug resistance in Gram-negative pathogens by targeting AcrB protein from AcrAB-TolC multidrug efflux pump from Escherichia coli. Biology, 2022, 11(9), 1328.
[http://dx.doi.org/10.3390/biology11091328] [PMID: 36138807]
[5]
Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct. Target. Ther., 2022, 7(1), 199.
[http://dx.doi.org/10.1038/s41392-022-01056-1] [PMID: 35752612]
[6]
Compagne, N.; Vieira Da Cruz, A.; Müller, R.T.; Hartkoorn, R.C.; Flipo, M.; Pos, K.M. Update on the discovery of efflux pump inhibitors against critical priority gram-negative bacteria. Antibiotics, 2023, 12(1), 180.
[http://dx.doi.org/10.3390/antibiotics12010180] [PMID: 36671381]
[7]
Zahedi bialvaei, A.; Rahbar, M.; Hamidi-Farahani, R.; Asgari, A.; Esmailkhani, A.; Mardani dashti, Y.; Soleiman-Meigooni, S. Expression of RND efflux pumps mediated antibiotic resistance in Pseudomonas aeruginosa clinical strains. Microb. Pathog., 2021, 153, 104789.
[http://dx.doi.org/10.1016/j.micpath.2021.104789] [PMID: 33556480]
[8]
Terzi, H.A.; Kulah, C.; Ciftci, İ.H. The effects of active efflux pumps on antibiotic resistance in Pseudomonas aeruginosa. World J. Microbiol. Biotechnol., 2014, 30(10), 2681-2687.
[http://dx.doi.org/10.1007/s11274-014-1692-2] [PMID: 24964907]
[9]
Dreier, J.; Ruggerone, P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front. Microbiol., 2015, 6, 660.
[http://dx.doi.org/10.3389/fmicb.2015.00660] [PMID: 26217310]
[10]
Masuda, N.; Gotoh, N.; Ohya, S.; Nishino, T. Quantitative correlation between susceptibility and OprJ production in NfxB mutants of Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 1996, 40(4), 909-913.
[http://dx.doi.org/10.1128/AAC.40.4.909] [PMID: 8849250]
[11]
Li, X.Z.; Plésiat, P.; Nikaido, H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev., 2015, 28(2), 337-418.
[http://dx.doi.org/10.1128/CMR.00117-14] [PMID: 25788514]
[12]
Purssell, A.C. The mexCD-oprJ multidrug efflux operon in Pseudomonas aeruginosa: Regulation by the NfxB-like novel regulator PA 4596 and envelope stress. Masters Abstracts International, 2009, 49(2), 186-198.
[http://dx.doi.org/10.1111/1462-2920.12602]
[13]
Lorusso, A.B.; Carrara, J.A.; Barroso, C.D.N.; Tuon, F.F.; Faoro, H. Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa. Int. J. Mol. Sci., 2022, 23(24), 15779.
[http://dx.doi.org/10.3390/ijms232415779] [PMID: 36555423]
[14]
Singh, M.; Sykes, E.M.E.; Li, Y.; Kumar, A. MexXY RND pump of Pseudomonas aeruginosa PA7 effluxes bi-anionic β-lactams carbenicillin and sulbenicillin when it partners with the outer membrane factor OprA but not with OprM. Microbiology, 2020, 166(11), 1095-1106.
[http://dx.doi.org/10.1099/mic.0.000971] [PMID: 32909933]
[15]
Morita, Y.; Nakashima, K.; Nishino, K.; Kotani, K.; Tomida, J.; Inoue, M.; Kawamura, Y. Berberine is a novel type efflux inhibitor which attenuates the MexXY-mediated aminoglycoside resistance in Pseudomonas aeruginosa. Front. Microbiol., 2016, 7, 1223.
[http://dx.doi.org/10.3389/fmicb.2016.01223] [PMID: 27547203]
[16]
da Cruz, R.M.D.; Zelli, R.; Benhsain, S.; da Cruz, R.M.D.; Siqueira-Júnior, J.P.; Décout, J.L.; Mingeot-Leclercq, M.P.; Mendonça-Junior, F.J.B. Synthesis and evaluation of 2‐aminothiophene derivatives as Staphylococcus aureus efflux pump inhibitors. ChemMedChem, 2020, 15(8), 716-725.
[http://dx.doi.org/10.1002/cmdc.201900688] [PMID: 32073756]
[17]
Abdallah, A.; El Azawy, D.; Mohammed, H.; El Maghraby, H. Expression of Mex AB-Opr M efflux pump system and meropenem resistance in Pseudomonas aeruginosa isolated from surgical intensive care unit. Microb. Infect. Disea., 2021, 0(0), 0.
[http://dx.doi.org/10.21608/mid.2021.92720.1187]
[18]
Askoura, M.; Mattawa, W.; Abujamel, T.; Taher, I. Efflux pump inhibitors (EPIs) as new antimicrobial agents against Pseudomonas aeruginosa. Libyan J. Med., 2011, 6(1), 5870.
[http://dx.doi.org/10.3402/ljm.v6i0.5870] [PMID: 21594004]
[19]
Mohanty, P.; Bhardwaj, A.K. Bacterial efflux pumps involved in multidrug resistance and their inhibitors: rejuvenating the antimicrobial chemotherapy. Rec. Pat. Anti-Infect. Dru. Disc., 2012, 7(1), 73-89.
[http://dx.doi.org/10.2174/157489112799829710]
[20]
Kumar, A.; Schweizer, H.P. Evidence of MexT-independent overexpression of MexEF-OprN multidrug efflux pump of Pseudomonas aeruginosa in presence of metabolic stress. PLoS One, 2011, 6(10), e26520.
[http://dx.doi.org/10.1371/journal.pone.0026520] [PMID: 22039504]
[21]
Ayhan, D.H.; Tamer, Y.T.; Akbar, M.; Bailey, S.M.; Wong, M.; Daly, S.M.; Greenberg, D.E.; Toprak, E. Sequence-specific targeting of bacterial resistance genes increases antibiotic efficacy. PLoS Biol., 2016, 14(9), e1002552.
[http://dx.doi.org/10.1371/journal.pbio.1002552] [PMID: 27631336]
[22]
Aghayan, S.S.; Kalalian Mogadam, H.; Fazli, M.; Darban-Sarokhalil, D.; Khoramrooz, S.S.; Jabalameli, F.; Yaslianifard, S.; Mirzaii, M. The effects of berberine and palmatine on efflux pumps inhibition with different gene patterns in Pseudomonas aeruginosa isolated from burn infections. Avicenna J. Med. Biotechnol., 2017, 9(1), 2-7.
[PMID: 28090273]
[23]
Bambeke, F.; Pagès, J.M.; Lee, V. Inhibitors of bacterial efflux pumps as adjuvants in antibiotic treatments and diagnostic tools for detection of resistance by efflux. Rec. Pat. Anti-Infect. Dru. Disc., 2006, 1(2), 157-175.
[http://dx.doi.org/10.2174/157489106777452692] [PMID: 18221142]
[24]
Adamiak, J.W.; Jhawar, V.; Bonifay, V.; Chandler, C.E.; Leus, I.V.; Ernst, R.K.; Schweizer, H.P.; Zgurskaya, H.I. Loss of RND-type multidrug efflux pumps triggers iron starvation and lipid A modifications in Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2021, 65(10), e00592-e21.
[http://dx.doi.org/10.1128/AAC.00592-21] [PMID: 34252310]
[25]
Daury, L.; Orange, F.; Taveau, J.C.; Verchère, A.; Monlezun, L.; Gounou, C.; Marreddy, R.K.R.; Picard, M.; Broutin, I.; Pos, K.M.; Lambert, O. Tripartite assembly of RND multidrug efflux pumps. Nat. Commun., 2016, 7(1), 10731.
[http://dx.doi.org/10.1038/ncomms10731] [PMID: 26867482]
[26]
Malléa, M.; Chevalier, J.; Eyraud, A.; Pagès, J.M. Inhibitors of antibiotic efflux pump in resistant Enterobacter aerogenes strains. Biochem. Biophys. Res. Commun., 2002, 293(5), 1370-1373.
[http://dx.doi.org/10.1016/S0006-291X(02)00404-7] [PMID: 12054665]
[27]
Kara, R. Competitive inhibition. Encyclopedia Britannica 2023. Available from: https://www.britannica.com/science/competitiveinhibition Accessed 8 April 2024.
[28]
Pathania, R.; Sharma, A.; Gupta, V.K. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian J. Med. Res., 2019, 149(2), 129-145.
[http://dx.doi.org/10.4103/ijmr.IJMR_2079_17] [PMID: 31219077]
[29]
Siriyong, T.; Srimanote, P.; Chusri, S.; Yingyongnarongkul, B.; Suaisom, C.; Tipmanee, V.; Voravuthikunchai, S.P. Conessine as a novel inhibitor of multidrug efflux pump systems in Pseudomonas aeruginosa. BMC Complement. Altern. Med., 2017, 17(1), 405.
[http://dx.doi.org/10.1186/s12906-017-1913-y] [PMID: 28806947]
[30]
Pagès, J.M.; Amaral, L. Mechanisms of drug efflux and strategies to combat them: Challenging the efflux pump of Gram-negative bacteria. Biochim. Biophys. Acta. Proteins Proteomics, 2009, 1794(5), 826-833.
[http://dx.doi.org/10.1016/j.bbapap.2008.12.011] [PMID: 19150515]
[31]
Morris, G.M.; Lim-Wilby, M Molecular docking. Meth. Mol. Biol., 2008, 443, 365-382.
[http://dx.doi.org/10.1007/978-1-59745-177-2_19]
[32]
Shriram, V.; Khare, T.; Bhagwat, R.; Shukla, R.; Kumar, V. Inhibiting bacterial drug efflux pumps via phyto-therapeutics to combat threatening antimicrobial resistance. Front. Microbiol., 2018, 9, 2990.
[http://dx.doi.org/10.3389/fmicb.2018.02990] [PMID: 30619113]
[33]
Goli, H.R.; Nahaei, M.R.; Rezaee, M.A.; Hasani, A.; Samadi Kafil, H.; Aghazadeh, M.; Sheikhalizadeh, V. Contribution of mexAB-oprM and mexXY (-oprA) efflux operons in antibiotic resistance of clinical Pseudomonas aeruginosa isolates in Tabriz, Iran. Infect. Genet. Evol., 2016, 45, 75-82.
[http://dx.doi.org/10.1016/j.meegid.2016.08.022] [PMID: 27562333]
[34]
Kowalska-Krochmal, B.; Dudek-Wicher, R. The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens, 2021, 10(2), 165.
[http://dx.doi.org/10.3390/pathogens10020165] [PMID: 33557078]
[35]
Waditzer, M.; Bucar, F. Flavonoids as inhibitors of bacterial efflux pumps. Molecules, 2021, 26(22), 6904.
[http://dx.doi.org/10.3390/molecules26226904] [PMID: 34833994]
[36]
Bellio, P.; Fagnani, L.; Nazzicone, L.; Celenza, G. New and simplified method for drug combination studies by checkerboard assay. MethodsX, 2021, 8, 101543.
[http://dx.doi.org/10.1016/j.mex.2021.101543] [PMID: 34754811]
[37]
Aparna, V.; Dineshkumar, K.; Mohanalakshmi, N.; Velmurugan, D.; Hopper, W. Identification of natural compound inhibitors for multi-drug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation. PLoS One, 2014, 9(7), e101840.
[http://dx.doi.org/10.1371/journal.pone.0101840] [PMID: 25025665]
[38]
Paixão, L.; Rodrigues, L.; Couto, I.; Martins, M.; Fernandes, P.; de Carvalho, C.C.C.R.; Monteiro, G.A.; Sansonetty, F.; Amaral, L.; Viveiros, M. Fluorometric determination of ethidium bromide efflux kinetics in Escherichia coli. J. Biol. Eng., 2009, 3(1), 18.
[http://dx.doi.org/10.1186/1754-1611-3-18] [PMID: 19835592]
[39]
Lamut, A.; Peterlin Mašič, L.; Kikelj, D.; Tomašič, T. Efflux pump inhibitors of clinically relevant multidrug resistant bacteria. Med. Res. Rev., 2019, 39(6), 2460-2504.
[http://dx.doi.org/10.1002/med.21591] [PMID: 31004360]
[40]
Anokwah, D.; Asante-Kwatia, E.; Mensah, A.Y.; Danquah, C.A.; Harley, B.K.; Amponsah, I.K.; Oberer, L. Bioactive constituents with antibacterial, resistance modulation, anti-biofilm formation and efflux pump inhibition properties from Aidia genipiflora stem bark. Clini. Phytosci., 2021, 7(1), 28.
[http://dx.doi.org/10.1186/s40816-021-00266-4]
[41]
Martins, M; McCusker, M.P; Viveiros, M; Couto, I; Fanning, S; Pagès, JM; Amaral, L A simple method for assessment of MDR bacteria for over-expressed efflux pumps. Open Microbiol. J., 2013, 7, 72-82.
[http://dx.doi.org/10.2174/1874285801307010072] [PMID: 23589748]
[42]
Babayan, A.; Nikaido, H. In Pseudomonas aeruginosa ethidium bromide does not induce its own degradation or the assembly of pumps involved in its efflux. Biochem. Biophys. Res. Commun., 2004, 324(3), 1065-1068.
[http://dx.doi.org/10.1016/j.bbrc.2004.09.146] [PMID: 15485663]
[43]
Pal, Srikanta; Misra, Arijit; Banerjee, Sohini; Dam, Bomba Adaptation of ethidium bromide fluorescence assay to monitor activity of efflux pumps in bacterial pure cultures or mixed population from environmental samples. J. King Saud University - Science, 2019, 32(1), 939-945.
[http://dx.doi.org/10.1016/j.jksus.2019.06.002]
[44]
Coldham, N.G.; Webber, M.; Woodward, M.J.; Piddock, L.J.V. A 96-well plate fluorescence assay for assessment of cellular permeability and active efflux in Salmonella enterica serovar Typhimurium and Escherichia coli. J. Antimicrob. Chemother., 2010, 65(8), 1655-1663.
[http://dx.doi.org/10.1093/jac/dkq169] [PMID: 20513705]
[45]
Martins, A.; Machado, L.; Costa, S.; Cerca, P.; Spengler, G.; Viveiros, M.; Amaral, L. Role of calcium in the efflux system of Escherichia coli. Int. J. Antimicrob. Agents, 2011, 37(5), 410-414.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.01.010] [PMID: 21419607]
[46]
Richmond, G.E.; Chua, K.L.; Piddock, L.J.V. Efflux in Acinetobacter baumannii can be determined by measuring accumulation of H33342 (bis-benzamide). J. Antimicrob. Chemother., 2013, 68(7), 1594-1600.
[http://dx.doi.org/10.1093/jac/dkt052] [PMID: 23467176]
[47]
Islamieh, D.I; Afshar, D.; Yousefi, M.; Esmaeili, D. Efflux pump inhibitors derived from natural sources as novel antibacterial agents against Pseudomonas aeruginosa: A review. Int J Med Rev, 2018, 5(3), 94-105.
[http://dx.doi.org/10.29252/IJMR-050303]
[48]
Credito, K.; Kosowska-Shick, K.; Appelbaum, P.C. Mutant prevention concentrations of four carbapenems against gram-negative rods. Antimicrob. Agents Chemother., 2010, 54(6), 2692-2695.
[http://dx.doi.org/10.1128/AAC.00033-10] [PMID: 20308376]
[49]
Anokwah, D.; Asante-Kwatia, E.; Mensah, A.Y.; Danquah, C.A.; Harley, B.K.; Amponsah, I.K.; Oberer, L. Bioactive constituents with antibacterial, resistance modulation, anti-biofilm formation and efflux pump inhibition properties from Aidia genipiflora stem bark. Clinical Phytoscience, 2021, 7(1), 28.
[http://dx.doi.org/10.1186/s40816-021-00266-4]
[50]
Khare, T.; Mahalunkar, S.; Shriram, V.; Gosavi, S.; Kumar, V. Embelin-loaded chitosan gold nanoparticles interact synergistically with ciprofloxacin by inhibiting efflux pumps in multidrug-resistant Pseudomonas aeruginosa and Escherichia coli. Environ. Res., 2021, 199, 111321.
[http://dx.doi.org/10.1016/j.envres.2021.111321] [PMID: 33989619]
[51]
Dwivedi, G.R.; Tyagi, R.; Sanchita,; Tripathi, S.; Pati, S.; Srivastava, S.K.; Darokar, M.P.; Sharma, A. Antibiotics potentiating potential of catharanthine against superbug Pseudomonas aeruginosa. J. Biomol. Struct. Dyn., 2018, 36(16), 4270-4284.
[http://dx.doi.org/10.1080/07391102.2017.1413424] [PMID: 29210342]
[52]
Choudhury, D.; Talukdar, A.; Chetia, P.; Bhattacharjee, A.; Choudhury, M. Screening of natural products and derivatives for the identification of RND efflux pump inhibitors. Comb. Chem. High Throughput Screen., 2016, 19(9), 705-713.
[http://dx.doi.org/10.2174/1386207319666160720101502] [PMID: 27450181]
[53]
Mangiaterra, G.; Laudadio, E.; Cometti, M.; Mobbili, G.; Minnelli, C.; Massaccesi, L.; Citterio, B.; Biavasco, F.; Galeazzi, R. Inhibitors of multidrug efflux pumps of Pseudomonas aeruginosa from natural sources: An in silico high-throughput virtual screening and in vitro validation. Med. Chem. Res., 2017, 26(2), 414-430.
[http://dx.doi.org/10.1007/s00044-016-1761-1]
[54]
Garvey, M.I.; Rahman, M.M.; Gibbons, S.; Piddock, L.J.V. Medicinal plant extracts with efflux inhibitory activity against Gram-negative bacteria. Int. J. Antimicrob. Agents, 2011, 37(2), 145-151.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.10.027] [PMID: 21194895]
[55]
Cox, S.D.; Markham, J.L. Susceptibility and intrinsic tolerance of Pseudomonas aeruginosa to selected plant volatile compounds. J. Appl. Microbiol., 2007, 103(4), 930-936.
[http://dx.doi.org/10.1111/j.1365-2672.2007.03353.x] [PMID: 17897196]
[56]
Negi, N.; Prakash, P.; Gupta, M.L.; Mohapatra, T.M. Possible role of curcumin as an efflux pump inhibitor in multi-drug resistant clinical isolates of Pseudomonas aeruginosa. J. Clin. Diagn. Res., 2014, 8(10), DC04-DC07.
[http://dx.doi.org/10.7860/JCDR/2014/8329.4965] [PMID: 25478340]
[57]
Jayaraman, P.; Sakharkar, M.K.; Lim, C.S.; Tang, T.H.; Sakharkar, K.R. Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro. Int. J. Biol. Sci., 2010, 6(6), 556-568.
[http://dx.doi.org/10.7150/ijbs.6.556] [PMID: 20941374]
[58]
Suresh, M.; Nithya, N.; Jayasree, P.R.; Vimal, K.P.; Manish Kumar, P.R. Mutational analyses of regulatory genes, mexR, nalC, nalD and mexZ of mexAB-oprM and mexXY operons, in efflux pump hyperexpressing multidrug-resistant clinical isolates of Pseudomonas aeruginosa. World J. Microbiol. Biotechnol., 2018, 34(6), 83.
[http://dx.doi.org/10.1007/s11274-018-2465-0] [PMID: 29846800]
[59]
Alguel, Y.; Lu, D.; Quade, N.; Sauter, S.; Zhang, X. Crystal structure of MexZ, a key repressor responsible for antibiotic resistance in Pseudomonas aeruginosa. J. Struct. Biol., 2010, 172(3), 305-310.
[http://dx.doi.org/10.1016/j.jsb.2010.07.012] [PMID: 20691272]
[60]
Sacha, P.; Wieczorek, P.; Ojdana, D.; Hauschild, T.; Milewski, R.; Czaban, S.; Poniatowski, B.; Tryniszewska, E. Expression of Mex AB ‐OprM efflux pump system and susceptibility to antibiotics of differentP seudomonas aeruginosa clones isolated from patients hospitalized in two intensive care units at University Hospital in Bialystok (northeastern Poland) between January 2002 and December 2009. Acta Pathol. Microbiol. Scand. Suppl., 2014, 122(10), 931-940.
[http://dx.doi.org/10.1111/apm.12236] [PMID: 24628702]
[61]
Shigemura, K.; Osawa, K.; Kato, A.; Tokimatsu, I.; Arakawa, S.; Shirakawa, T.; Fujisawa, M. Association of overexpression of efflux pump genes with antibiotic resistance in Pseudomonas aeruginosa strains clinically isolated from urinary tract infection patients. J. Antibiot., 2015, 68(9), 568-572.
[http://dx.doi.org/10.1038/ja.2015.34] [PMID: 25850341]
[62]
Nanjan, P.; Bose, V. Efflux-mediated multidrug resistance in critical gram-negative bacteria and natural efflux pump inhibitors. Curr. Drug Res. Rev., 2024, 16
[http://dx.doi.org/10.2174/0125899775271214240112071830] [PMID: 38288795]
[63]
Morita, Y.; Tomida, J.; Kawamura, Y. Efflux-mediated fluoroquinolone resistance in the multidrug-resistant Pseudomonas aeruginosa clinical isolate PA7: identification of a novel MexS variant involved in upregulation of the mexEF-oprN multidrug efflux operon. Front. Microbiol., 2015, 6, 8.
[http://dx.doi.org/10.3389/fmicb.2015.00008] [PMID: 25653649]
[64]
Juarez, P. Regulatory mechanisms of mexEF-oprN efflux operon in Pseudomonas aeruginosa: from mutations in clinical isolates to its induction as response to electrophilic stress In: Bacteriology; Université Bourgogne Franche-Comté, 2017.
[65]
Fetar, H.; Gilmour, C.; Klinoski, R.; Daigle, D.M.; Dean, C.R.; Poole, K. mexEF-oprN multidrug efflux operon of Pseudomonas aeruginosa: regulation by the MexT activator in response to nitrosative stress and chloramphenicol. Antimicrob. Agents Chemother., 2011, 55(2), 508-514.
[http://dx.doi.org/10.1128/AAC.00830-10] [PMID: 21078928]
[66]
Hay, T.; Fraud, S.; Lau, C.H.F.; Gilmour, C.; Poole, K. Antibiotic inducibility of the mexXY multidrug efflux operon of Pseudomonas aeruginosa: involvement of the MexZ anti-repressor ArmZ. PLoS One, 2013, 8(2), e56858.
[http://dx.doi.org/10.1371/journal.pone.0056858] [PMID: 23441219]
[67]
Alenazy, R. Drug Efflux Pump Inhibitors: A Promising Approach to Counter Multidrug Resistance in Gram-Negative Pathogens by Targeting AcrB Protein from AcrAB-TolC Multidrug Efflux Pump from Escherichia coli. Biology (Basel), 2022, 11(9), 1328. Published 2022 Sep 8.
[http://dx.doi.org/10.3390/biology11091328]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy