Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

In vitro and In vivo Biological Activity of Two Aryloxy-naphthoquinones in Mice Infected with Trypanosoma cruzi Strains

Author(s): Karina Vázquez, Adriana Moreno-Rodríguez*, Luis R. Domínguez-Díaz, Jeanluc Bertrand, Cristian O. Salas, Gildardo Rivera, Yobana Pérez Cervera and Virgilio Bocanegra-García

Volume 20, Issue 10, 2024

Published on: 16 May, 2024

Page: [938 - 943] Pages: 6

DOI: 10.2174/0115734064287956240426110450

Abstract

Background: Chagas disease, a condition caused by Trypanosoma cruzi, is an endemic disease in Latin American countries that affects approximately eight million people worldwide. It is a continuing public health problem. As nifurtimox and benznidazole are the two pharmacological treatments currently used to treat it, the present research proposes new therapeutic alternatives. Previous studies conducted on naphthoquinone derivatives have found interesting trypanocidal effects on epimastigotes, with the molecules 2-phenoxy-1,4-naphthoquinone (IC50= 50 nM and SI < 250) and 2-(3-nitrophenoxy)-naphthalene-1,4-dione (IC50= 20 nM and SI=625) presenting the best biological activity..

Methods: The present study evaluated the efficacy of in vitro, ex vivo and in vivo models of two aryloxyquinones, 2-phenoxy-1,4-naphthoquinone (1) and 2-(3-nitrophenoxy)-naphthalene-1,4- dione (2), against two Mexican T. cruzi strains in both their epimastigote and blood Trypomastigote stage. Both compounds were evaluated against T. cruzi using a mouse model (CD1) infected with Mexican isolates of T. cruzi, nifurtimox and benznidazole used as control drugs. Finally, the cytotoxicity of the two compounds against the J774.2 mouse macrophage cell line was also determined.

Results: The in vitro and in vivo results obtained indicated that both quinones were more active than the reference drugs. Compound 1 presents in vivo activity, showing up to 40% parasite reduction after 8 h of administration, a finding which is 1.25 times more effective than the results obtained using nifurtimox.

Conclusion: These are encouraging results for proposing new naphthoquinone derivatives with potential anti-T. cruzi activity.

Keywords: Trypanosoma cruzi, aryloxy-naphthoquinones, trypanosomicidal activity, in vivo assay, mouse model, naphthoquinone derivatives.

Graphical Abstract
[1]
Chagas disease (American trypanosomiasis). 2020. Available from: https://www.who.int/es/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis)
[2]
Dias, J.C.P.; Schofield, C.J. The evolution of Chagas disease (American Trypanosomiasis) control after 90 years since carlos chagas discovery. Mem. Inst. Oswaldo Cruz, 1999, 94(S1), 103-121.
[http://dx.doi.org/10.1590/S0074-02761999000700011] [PMID: 10677697]
[3]
Antiparasitic treatment. 2021. Available from: https://www.cdc. gov/parasites/chagas/health_professionals/tx.html
[4]
Santos, S.S.; de Araújo, R.V.; Giarolla, J.; Seoud, O.E.; Ferreira, E.I. Searching for drugs for Chagas disease, leishmaniasis and schistosomiasis: A review. Int. J. Antimicrob. Agents, 2020, 55(4), 105906.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105906] [PMID: 31987883]
[5]
Filardi, L.S.; Brener, Z. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Trans. R. Soc. Trop. Med. Hyg., 1987, 81(5), 755-759.
[http://dx.doi.org/10.1016/0035-9203(87)90020-4] [PMID: 3130683]
[6]
Toledo, M.J.O.; Bahia, M.T.; Carneiro, C.M.; Filho, M.O.A.; Tibayrenc, M.; Barnabé, C.; Tafuri, W.L.; de Lana, M. Chemotherapy with benznidazole and itraconazole for mice infected with different Trypanosoma cruzi clonal genotypes. Antimicrob. Agents Chemother., 2003, 47(1), 223-230.
[http://dx.doi.org/10.1128/AAC.47.1.223-230.2003] [PMID: 12499195]
[7]
Zapata, C.I.; Argáez, B.R.; Talavera, A.G. Quinones as promising compounds against respiratory viruses: A review. Molecules, 2023, 28(4), 1981.
[http://dx.doi.org/10.3390/molecules28041981] [PMID: 36838969]
[8]
Junior, D.M.A.; Edzang, N.R.W.; Catto, A.L.; Raimundo, J.M. Quinones as an efficient molecular scaffold in the antibacterial/antifungal or antitumoral arsenal. Int. J. Mol. Sci., 2022, 23(22), 14108.
[http://dx.doi.org/10.3390/ijms232214108] [PMID: 36430585]
[9]
Silva, A.C.C.; de-Castro, B.M.C.A.; Leite, A.C.L.; Pereira, V.R.A.; Hernandes, M.Z. Chagas disease treatment and rational drug discovery: A challenge that remains. Front. Pharmacol., 2019, 10, 873.
[http://dx.doi.org/10.3389/fphar.2019.00873] [PMID: 31427977]
[10]
Dantas, E.; de Souza, F.; Nogueira, W.; Silva, C.; de Azevedo, P.; Soares Aragão, C.; Almeida, P.; Cardoso, M.; da Silva, F.; de Azevedo, E.; Barbosa, G.E.; Lima, E.; Ferreira, V.; Lima, Á. Characterization and trypanocidal activity of a novel pyranaphthoquinone. Molecules, 2017, 22(10), 1631.
[http://dx.doi.org/10.3390/molecules22101631] [PMID: 28973960]
[11]
Ravichandiran, P.; Masłyk, M.; Sheet, S.; Janeczko, M.; Premnath, D.; Kim, A.R.; Park, B.H.; Han, M.K.; Yoo, D.J. Synthesis and antimicrobial evaluation of 1,4‐naphthoquinone derivatives as potential antibacterial agents. ChemistryOpen, 2019, 8(5), 589-600.
[http://dx.doi.org/10.1002/open.201900077] [PMID: 31098338]
[12]
Pereyra, C.E.; Dantas, R.F.; Ferreira, S.B.; Gomes, L.P.; Silva-, F.P., Jr The diverse mechanisms and anticancer potential of naphthoquinones. Cancer Cell Int., 2019, 19(1), 207.
[http://dx.doi.org/10.1186/s12935-019-0925-8] [PMID: 31388334]
[13]
Bustos, E.C.; Vázquez, K.; Varela, J.; Cerecetto, H.; Paulino, M.; Segura, R.; Pìzarro, J.; De Vera, B.N.V.; González, M.; Zárate, A.; Salas, C.O. New aryloxy-quinone derivatives with promising activity on Trypanosoma cruzi. Arch. Pharm., 2020, 353(1), e1900213.
[http://dx.doi.org/10.1002/ardp.201900213]
[14]
González, A.; Becerra, N.; Kashif, M.; González, M.; Cerecetto, H.; Aguilera, E.; Nogueda-Torres, B.; Chacón-Vargas, K.F.; José Zarate-Ramos, J.; Castillo-Velázquez, U.; Salas, C.O.; Rivera, G.; Vázquez, K. In vitro and in silico evaluations of new aryloxy-1,4-naphthoquinones as anti-Trypanosoma cruzi agents. Med. Chem. Res., 2020, 29(4), 665-674.
[http://dx.doi.org/10.1007/s00044-020-02512-9]
[15]
Bolognesi, M.L.; Lizzi, F.; Perozzo, R.; Brun, R.; Cavalli, A. Synthesis of a small library of 2-phenoxy-1,4-naphthoquinone and 2-phenoxy-1,4-anthraquinone derivatives bearing anti-trypanosomal and anti-leishmanial activity. Bioorg. Med. Chem. Lett., 2008, 18(7), 2272-2276.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.009] [PMID: 18353643]
[16]
Vázquez, K.; Bustos, E.C.; Delgado, S.J.; Tapia, R.A.; Varela, J.; Birriel, E.; Segura, R.; Pizarro, J.; Cerecetto, H.; González, M.; Paulino, M.; Salas, C.O. New aryloxy-quinone derivatives as potential anti-Chagasic agents: Synthesis, trypanosomicidal activity, electrochemical properties, pharmacophore elucidation and 3D-QSAR analysis. RSC Advances, 2015, 5(80), 65153-65166.
[http://dx.doi.org/10.1039/C5RA10122K]
[17]
Rodríguez, M.A.; Schettino, S.P.M.; Bautista, J.L.; Luis, H.F.; Torrens, H.; Gómez, G.Y.; Canseco, P.S.; Torres, M.B.; Bravo, C.M.; Martinez, C.M.; Campos, P.E. In vitro antiparasitic activity of new thiosemicarbazones in strains of Trypanosoma cruzi. Eur. J. Med. Chem., 2014, 87, 23-29.
[18]
Lorke, D. A new approach to practical acute toxicity testing. Arch. Toxicol., 1983, 54(4), 275-287.
[http://dx.doi.org/10.1007/BF01234480] [PMID: 6667118]
[19]
Chinedu, E.; Arome, D.; Ameh, F. A new method for determining acute toxicity in animal models. Toxicol. Int., 2013, 20(3), 224-226.
[http://dx.doi.org/10.4103/0971-6580.121674] [PMID: 24403732]
[20]
Brener, Z. Therapeutic activity and criterion of cure on mice experimentally infected with Trypanosoma cruzi. Rev. Inst. Med. Trop. São Paulo, 1962, 4, 389-396.
[PMID: 14015230]
[21]
Ribeiro, D.A.; Calvi, S.A.; Picka, M.M.; Persi, E.; de Carvalho, T.B.; Caetano, P.K.; Nagoshi, L.R.; Lima, C.R.G.; Machado, J.M.; Salvadori, D.M.F. DNA damage and nitric oxide synthesis in experimentally infected Balb/c mice with Trypanosoma cruzi. Exp. Parasitol., 2007, 116(3), 296-301.
[http://dx.doi.org/10.1016/j.exppara.2006.12.007] [PMID: 17286971]
[22]
Filardi, L.S.; Brener, Z. A rapid method for testing in vivo the susceptibility of different strains of Trypanosoma cruzi to active chemotherapeutic Agents. Mem. Inst. Oswaldo. Cruz, 1984, 79(2), 221-225.
[23]
Romanha, A.J.; Castro, S.L.; Soeiro, M.N.C.; Lannes-Vieira, J.; Ribeiro, I.; Talvani, A.; Bourdin, B.; Blum, B.; Olivieri, B.; Zani, C.; Spadafora, C.; Chiari, E.; Chatelain, E.; Chaves, G.; Calzada, J.E.; Bustamante, J.M.; Freitas-Junior, L.H.; Romero, L.I.; Bahia, M.T.; Lotrowska, M.; Soares, M.; Andrade, S.G.; Armstrong, T.; Degrave, W.; Andrade, Z.A. In vitro and in vivo experimental models for drug screening and development for Chagas disease. Mem. Inst. Oswaldo Cruz, 2010, 105(2), 233-238.
[http://dx.doi.org/10.1590/S0074-02762010000200022] [PMID: 20428688]
[24]
Pinto, A.V.; de Castro, S.L. The trypanocidal activity of naphthoquinones: A review. Molecules., 2009, 14(11), 4570-4590.
[http://dx.doi.org/10.3390/molecules14114570]

© 2024 Bentham Science Publishers | Privacy Policy