Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Stimuli-sensitive Chitosan-based Nanosystems-immobilized Nucleic Acids for Gene Therapy in Breast Cancer and Hepatocellular Carcinoma

Author(s): Seyed Morteza Naghib*, Bahar Ahmadi and M. R. Mozafari

Volume 24, Issue 17, 2024

Published on: 14 May, 2024

Page: [1464 - 1489] Pages: 26

DOI: 10.2174/0115680266293173240506054439

Price: $65

Abstract

Chitosan-based nanoparticles have emerged as a promising tool in the realm of cancer therapy, particularly for gene delivery. With cancer being a prevalent and devastating disease, finding effective treatment options is of utmost importance. These nanoparticles provide a unique solution by encapsulating specific genes and delivering them directly to cancer cells, offering immense potential for targeted therapy. The biocompatibility and biodegradability of chitosan, a naturally derived polymer, make it an ideal candidate for this purpose. The nanoparticles protect the genetic material during transportation and enhance its cellular uptake, ensuring effective delivery to the site of action. Furthermore, the unique properties of chitosan-based nanoparticles allow for the controlled release of genes, maximizing their therapeutic effect while minimizing adverse effects. By advancing the field of gene therapy through the use of chitosan-based nanoparticles, scientists are making significant strides toward more humane and personalized treatments for cancer patients.

Keywords: Chitosan, Nanoparticle, DNA, RNA, Gene delivery, Breast cancer, Hepatocellular carcinoma.

Graphical Abstract
[1]
Rauf, A.; Izneid, A.T.; Thiruvengadam, M.; Imran, M.; Olatunde, A.; Shariati, M.A.; Bawazeer, S.; Naz, S.; Shirooie, S.; Silva, S.A.; Farooq, U.; Kazhybayeva, G. Garlic ( Allium sativum L.): Its Chemistry, Nutritional Composition, Toxicity, and Anticancer Properties. Curr. Top. Med. Chem., 2022, 22(11), 957-972.
[http://dx.doi.org/10.2174/1568026621666211105094939] [PMID: 34749610]
[2]
Goutas, D.; Pergaris, A.; Giaginis, C.; Theocharis, S. HuR as therapeutic target in cancer: What the future holds. Curr. Med. Chem., 2022, 29(1), 56-65.
[http://dx.doi.org/10.2174/0929867328666210628143430] [PMID: 34182901]
[3]
Arrigoni, R.; Ballini, A.; Santacroce, L.; Cantore, S.; Inchingolo, A.; Inchingolo, F.; Di Domenico, M.; Quagliuolo, L.; Boccellino, M. Another look at dietary polyphenols: Challenges in cancer prevention and treatment. Curr. Med. Chem., 2022, 29(6), 1061-1082.
[http://dx.doi.org/10.2174/1875533XMTE3kMjUp2] [PMID: 34375181]
[4]
Ozkan, E.; Ates, B.F. Ferroptosis: A trusted ally in combating drug resistance in cancer. Curr. Med. Chem., 2022, 29(1), 41-55.
[http://dx.doi.org/10.2174/0929867328666210810115812] [PMID: 34375173]
[5]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[6]
Hosseini, S.S. Crocin Suppresses Colorectal Cancer Cell Proliferation by Regulating miR-143/145 and KRAS/RREB1 Pathways Anticancer Agents Med Chem., 2023, 23(17), 1916-1923.
[http://dx.doi.org/10.2174/1871520623666230718145100]
[7]
Ullah, A.; Ullah, N.; Nawaz, T.; Aziz, T. Molecular mechanisms of Sanguinarine in cancer prevention and treatment Anti-Cancer Agents Med. Chem., 2023, 23(7), 765-778.
[http://dx.doi.org/10.2174/1871520622666220831124321]
[8]
Ardevines, S.; López, M.E.; Herrera, R.P. Heterocycles in Breast Cancer Treatment: The Use of Pyrazole Derivatives. Curr. Med. Chem., 2023, 30(10), 1145-1174.
[http://dx.doi.org/10.2174/0929867329666220829091830] [PMID: 36043746]
[9]
Younis, N.K.; Yassine, H.M.; Eid, A.H. Nanomedicine for Cancer. Curr. Med. Chem., 2023, 30(23), 2592-2594.
[http://dx.doi.org/10.2174/0929867330666221228121947] [PMID: 36579388]
[10]
Tang, Z.; Tan, Y.; Chen, H.; Wan, Y. Benzoxazine: A privileged scaffold in medicinal chemistry. Curr. Med. Chem., 2023, 30(4), 372-389.
[http://dx.doi.org/10.2174/0929867329666220705140846] [PMID: 35792127]
[11]
Narmani, A.; Farhood, B.; Aminjan, H.H.; Mortezazadeh, T.; Aliasgharzadeh, A.; Mohseni, M.; Najafi, M.; Abbasi, H. Gadolinium nanoparticles as diagnostic and therapeutic agents: Their delivery systems in magnetic resonance imaging and neutron capture therapy. J. Drug Deliv. Sci. Technol., 2018, 44, 457-466.
[http://dx.doi.org/10.1016/j.jddst.2018.01.011]
[12]
Grosso, R.; de-Paz, M.V. Thiolated-polymer-based nanoparticles as an avant-garde approach for anticancer therapies—reviewing thiomers from chitosan and hyaluronic acid. Pharmaceutics, 2021, 13(6), 854.
[http://dx.doi.org/10.3390/pharmaceutics13060854] [PMID: 34201403]
[13]
Drăgănescu, M.; Carmocan, C. Hormone therapy in breast cancer. Chirurgia, 2017, 112(4), 413-417.
[http://dx.doi.org/10.21614/chirurgia.112.4.413] [PMID: 28862117]
[14]
Li, K.; Zhang, A.; Li, X.; Zhang, H.; Zhao, L. Advances in clinical immunotherapy for gastric cancer. Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(2), 188615.
[http://dx.doi.org/10.1016/j.bbcan.2021.188615] [PMID: 34403771]
[15]
Baughman, J.; Bradshaw, J. E. The Creation of a Next-Generation Cancer Treatment Using Photodynamic Therapy Thesis: Ouachita Baptist University, 2021.
[16]
Herrero, P.E.; Medarde, F.A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[17]
Anguela, X.M.; High, K.A. Entering the modern era of gene therapy. Annu. Rev. Med., 2019, 70(1), 273-288.
[http://dx.doi.org/10.1146/annurev-med-012017-043332] [PMID: 30477394]
[18]
Duan, C.; Yu, M.; Xu, J.; Li, B.Y.; Zhao, Y.; Kankala, R.K. Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed. Pharmacother., 2023, 162, 114643.
[http://dx.doi.org/10.1016/j.biopha.2023.114643] [PMID: 37031496]
[19]
Kankala, R.K.; Liu, C.G.; Yang, D.Y.; Wang, S-B.; Chen, A.Z. Ultrasmall platinum nanoparticles enable deep tumor penetration and synergistic therapeutic abilities through free radical species-assisted catalysis to combat cancer multidrug resistance. Chem. Eng. J., 2020, 383, 123138.
[http://dx.doi.org/10.1016/j.cej.2019.123138]
[20]
Friedmann, T. A brief history of gene therapy. Nat. Genet., 1992, 2(2), 93-98.
[http://dx.doi.org/10.1038/ng1092-93] [PMID: 1303270]
[21]
Misra, S. Human gene therapy: A brief overview of the genetic revolution. J. Assoc. Physicians India, 2013, 61(2), 127-133.
[PMID: 24471251]
[22]
Rolland, A. Gene medicines: The end of the beginning? Adv. Drug Deliv. Rev., 2005, 57(5), 669-673.
[http://dx.doi.org/10.1016/j.addr.2005.01.002] [PMID: 15757753]
[23]
Zanjani, E.D.; Anderson, W.F. Prospects for in utero human gene therapy Science, 1999, 285(5436), 2084-2088.
[http://dx.doi.org/10.1126/science.285.5436.2084]
[24]
Mahato, R.I.; Smith, L.C.; Rolland, A. Pharmaceutical perspectives of nonviral gene therapy. Adv. Genet., 1999, 41, 95-156.
[http://dx.doi.org/10.1016/S0065-2660(08)60152-2] [PMID: 10494618]
[25]
Pouton, C.W.; Seymour, L.W. Key issues in non-viral gene delivery1PII of original article: S0169-409X(98)00048-9. The article was originally published in Advanced Drug Delivery Reviews 34 (1998) 3–19.1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 187-203.
[http://dx.doi.org/10.1016/S0169-409X(00)00133-2] [PMID: 11259840]
[26]
Yin, H.; Kanasty, R.L.; Eltoukhy, A.A.; Vegas, A.J.; Dorkin, J.R.; Anderson, D.G. Non-viral vectors for gene-based therapy. Nat. Rev. Genet., 2014, 15(8), 541-555.
[http://dx.doi.org/10.1038/nrg3763] [PMID: 25022906]
[27]
Mintzer, M.A.; Simanek, E.E. Nonviral vectors for gene delivery. Chem. Rev., 2009, 109(2), 259-302.
[http://dx.doi.org/10.1021/cr800409e] [PMID: 19053809]
[28]
Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol., 2014, 15(8), 509-524.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[29]
Carballal, S.B.; Fernández, F.E.; Goycoolea, F. Chitosan in non-viral gene delivery: Role of structure, characterization methods, and insights in cancer and rare diseases therapies. Polymers, 2018, 10(4), 444.
[http://dx.doi.org/10.3390/polym10040444] [PMID: 30966479]
[30]
Ginn, S.L.; Amaya, A.K.; Alexander, I.E.; Edelstein, M.; Abedi, M.R. Gene therapy clinical trials worldwide to 2017: An update. J. Gene Med., 2018, 20(5), e3015.
[http://dx.doi.org/10.1002/jgm.3015] [PMID: 29575374]
[31]
Hidai, C.; Kitano, H. Nonviral gene therapy for cancer: A review. Diseases, 2018, 6(3), 57.
[http://dx.doi.org/10.3390/diseases6030057] [PMID: 29970866]
[32]
Pan, D.; Büning, H.; Ling, C. Rational design of gene therapy vectors. Mol. Ther. Methods Clin. Dev., 2019, 12, 246-247.
[http://dx.doi.org/10.1016/j.omtm.2019.01.009] [PMID: 30815510]
[33]
Yokoo, T.; Kamimura, K.; Kanefuji, T.; Suda, T.; Terai, S. Nucleic Acid-Based Therapy: Development of a Nonviral-Based Delivery Approachin in vivo and ex-vivo Gene Therapy for Inherited and Non-Inherited Disorders; IntechOpen Rijeka: Croatia, 2018.
[34]
Kumar, A.; Vimal, A.; Kumar, A. Why Chitosan? From properties to perspective of mucosal drug delivery. Int. J. Biol. Macromol., 2016, 91, 615-622.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.054] [PMID: 27196368]
[35]
Guo, X.; Huang, L. Recent advances in nonviral vectors for gene delivery. Acc. Chem. Res., 2012, 45(7), 971-979.
[http://dx.doi.org/10.1021/ar200151m] [PMID: 21870813]
[36]
Gantenbein, B.; Tang, S.; Guerrero, J.; Castro, H.N.; Puerta, S.A.I.; Croft, A.S.; Gazdhar, A.; Purmessur, D. Non-viral Gene Delivery Methods for Bone and Joints. Front. Bioeng. Biotechnol., 2020, 8, 598466.
[http://dx.doi.org/10.3389/fbioe.2020.598466] [PMID: 33330428]
[37]
Goswami, R.; Subramanian, G.; Silayeva, L.; Newkirk, I.; Doctor, D.; Chawla, K.; Chattopadhyay, S.; Chandra, D.; Chilukuri, N.; Betapudi, V. Gene therapy leaves a vicious cycle. Front. Oncol., 2019, 9(APR), 297.
[http://dx.doi.org/10.3389/fonc.2019.00297] [PMID: 31069169]
[38]
Jones, C.H.; Hill, A.; Chen, M.; Pfeifer, B.A. Contemporary approaches for nonviral gene therapy. Discov. Med., 2015, 19(107), 447-454.
[PMID: 26175402]
[39]
Wu, P.; Chen, H.; Jin, R.; Weng, T.; Ho, J.K.; You, C.; Zhang, L.; Wang, X.; Han, C. Non-viral gene delivery systems for tissue repair and regeneration. J. Transl. Med., 2018, 16(1), 29.
[http://dx.doi.org/10.1186/s12967-018-1402-1] [PMID: 29316942]
[40]
Zhang, W.; Chen, Q.; Wu, F.; Dai, J.; Ding, D.; Wu, J.; Lou, X.; Xia, F. Peptide-based nanomaterials for gene therapy. Nanoscale Adv., 2021, 3(2), 302-310.
[http://dx.doi.org/10.1039/D0NA00899K]
[41]
Felgner, P.L.; Gadek, T.R.; Holm, M.; Roman, R.; Chan, H.W.; Wenz, M.; Northrop, J.P.; Ringold, G.M.; Danielsen, M. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci., 1987, 84(21), 7413-7417.
[http://dx.doi.org/10.1073/pnas.84.21.7413] [PMID: 2823261]
[42]
Loh, X.J.; Lee, T.C.; Dou, Q.; Deen, G.R. Utilising inorganic nanocarriers for gene delivery. Biomater. Sci., 2016, 4(1), 70-86.
[http://dx.doi.org/10.1039/C5BM00277J] [PMID: 26484365]
[43]
Vincent, M.; de Lázaro, I.; Kostarelos, K. Graphene materials as 2D non-viral gene transfer vector platforms. Gene Ther., 2017, 24(3), 123-132.
[http://dx.doi.org/10.1038/gt.2016.79] [PMID: 27874854]
[44]
Wang, W.; Li, W.; Ma, N.; Steinhoff, G. Non-viral gene delivery methods. Curr. Pharm. Biotechnol., 2013, 14(1), 46-60.
[PMID: 23437936]
[45]
Al-Dosari, M.S.; Gao, X. Nonviral gene delivery: Principle, limitations, and recent progress. AAPS J., 2009, 11(4), 671-681.
[http://dx.doi.org/10.1208/s12248-009-9143-y] [PMID: 19834816]
[46]
Jones, C.H.; Chen, C.K.; Ravikrishnan, A.; Rane, S.; Pfeifer, B.A. Overcoming nonviral gene delivery barriers: Perspective and future. Mol. Pharm., 2013, 10(11), 4082-4098.
[http://dx.doi.org/10.1021/mp400467x] [PMID: 24093932]
[47]
Yang, G.; Lv, F.; Wang, B.; Liu, L.; Yang, Q.; Wang, S. Multifunctional non-viral delivery systems based on conjugated polymers. Macromol. Biosci., 2012, 12(12), 1600-1614.
[http://dx.doi.org/10.1002/mabi.201200267] [PMID: 23161784]
[48]
Ning, Q.; Liu, Y.F.; Ye, P.J.; Gao, P.; Li, Z.P.; Tang, S.Y.; He, D.X.; Tang, S.S.; Wei, H.; Yu, C.Y. Delivery of liver-specific miRNA-122 using a targeted macromolecular prodrug toward synergistic therapy for hepatocellular carcinoma. ACS Appl. Mater. Interfaces, 2019, 11(11), 10578-10588.
[http://dx.doi.org/10.1021/acsami.9b00634] [PMID: 30802029]
[49]
El-Say, K.M.; El-Sawy, H.S. Polymeric nanoparticles: Promising platform for drug delivery. Int. J. Pharm., 2017, 528(1-2), 675-691.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.052] [PMID: 28629982]
[50]
Ferreira, C.S.M.; Matthews, C.S.; Missailidis, S. DNA aptamers that bind to MUC1 tumour marker: Design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biol., 2006, 27(6), 289-301.
[http://dx.doi.org/10.1159/000096085] [PMID: 17033199]
[51]
Felt, O.; Buri, P.; Gurny, R. Chitosan: A unique polysaccharide for drug delivery. Drug Dev. Ind. Pharm., 1998, 24(11), 979-993.
[http://dx.doi.org/10.3109/03639049809089942] [PMID: 9876553]
[52]
Boroumand, H.; Badie, F.; Mazaheri, S.; Seyedi, Z.S.; Nahand, J.S.; Nejati, M.; Baghi, H.B.; Kolli, A.M.; Badehnoosh, B.; Ghandali, M.; Hamblin, M.R.; Mirzaei, H. Chitosan-based nanoparticles against viral infections. Front. Cell. Infect. Microbiol., 2021, 11, 643953.
[http://dx.doi.org/10.3389/fcimb.2021.643953] [PMID: 33816349]
[53]
Ahmed, S.; Ikram, S. Chitosan: Derivatives, composites and applications; John Wiley & Sons, 2017.
[http://dx.doi.org/10.1002/9781119364849]
[54]
Singla, A.K.; Chawla, M. Chitosan: Some pharmaceutical and biological aspects - An update. J. Pharm. Pharmacol., 2010, 53(8), 1047-1067.
[http://dx.doi.org/10.1211/0022357011776441] [PMID: 11518015]
[55]
Kumar, R.M.N.V. A review of chitin and chitosan applications. React. Funct. Polym., 2000, 46(1), 1-27.
[http://dx.doi.org/10.1016/S1381-5148(00)00038-9]
[56]
Ali, A.; Ahmed, S. A review on chitosan and its nanocomposites in drug delivery. Int. J. Biol. Macromol., 2018, 109, 273-286.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.078] [PMID: 29248555]
[57]
Szymańska, E.; Winnicka, K. Stability of chitosan-A challenge for pharmaceutical and biomedical applications. Mar. Drugs, 2015, 13(4), 1819-1846.
[http://dx.doi.org/10.3390/md13041819] [PMID: 25837983]
[58]
Viljoen, J.M.; Steenekamp, J.H.; Marais, A.F.; Kotzé, A.F. Effect of moisture content, temperature and exposure time on the physical stability of chitosan powder and tablets. Drug Dev. Ind. Pharm., 2014, 40(6), 730-742.
[http://dx.doi.org/10.3109/03639045.2013.782501] [PMID: 23596972]
[59]
Nguyen, T.T.B.; Hein, S.; Ng, C.H.; Stevens, W.F. Molecular stability of chitosan in acid solutions stored at various conditions. J. Appl. Polym. Sci., 2008, 107(4), 2588-2593.
[http://dx.doi.org/10.1002/app.27376]
[60]
Karayianni, M.; Sentoukas, T.; Skandalis, A.; Pippa, N.; Pispas, S. Chitosan-Based Nanoparticles for Nucleic Acid Delivery: Technological Aspects, Applications, and Future Perspectives. Pharmaceutics, 2023, 15(7), 1849.
[http://dx.doi.org/10.3390/pharmaceutics15071849] [PMID: 37514036]
[61]
Bhatia, S.; Rathee, P.; Sharma, K.; Chaugule, B.B.; Kar, N.; Bera, T. Immuno-modulation effect of sulphated polysaccharide (porphyran) from Porphyra vietnamensis. Int. J. Biol. Macromol., 2013, 57, 50-56.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.03.012] [PMID: 23500431]
[62]
Faucher, M.; Perreault, V.; Gaaloul, S.; Bazinet, L. Defatting of sweet whey by electrodialysis with bipolar membranes: Effect of protein concentration factor. Separ. Purif. Tech., 2020, 251, 117248.
[http://dx.doi.org/10.1016/j.seppur.2020.117248]
[63]
Li, Q.; Dunn, E.T.; Grandmaison, E.W.; Goosen, M.F.A. Applications and properties of chitosan.Applications of Chitan and Chitosan; CRC Press, 2020, pp. 3-29.
[http://dx.doi.org/10.1201/9781003072812-2]
[64]
Mohammed, M.; Syeda, J.; Wasan, K.; Wasan, E. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics, 2017, 9(4), 53.
[http://dx.doi.org/10.3390/pharmaceutics9040053] [PMID: 29156634]
[65]
Hasanifard, M.; Hosseinzadeh, E.B.; Zarmi, H.A.; Rezayan, A.H.; Esmaeili, M.A. Development of thiolated chitosan nanoparticles based mucoadhesive vaginal drug delivery systems. Polym. Sci. Ser. A, 2017, 59(6), 858-865.
[http://dx.doi.org/10.1134/S0965545X17060025]
[66]
Ghadi, A.; Mahjoub, S.; Tabandeh, F.; Talebnia, F. Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering. Caspian J. Intern. Med., 2014, 5(3), 156-161.
[PMID: 25202443]
[67]
Wang, X.; Li, J.; Wang, Y.; Cho, K.J.; Kim, G.; Gjyrezi, A.; Koenig, L.; Giannakakou, P.; Shin, H.J.C.; Tighiouart, M.; Nie, S.; Chen, Z.G.; Shin, D.M. HFT-T, a targeting nanoparticle, enhances specific delivery of paclitaxel to folate receptor-positive tumors. ACS Nano, 2009, 3(10), 3165-3174.
[http://dx.doi.org/10.1021/nn900649v] [PMID: 19761191]
[68]
Malhotra, M.; Duchesneau, T.C.; Saha, S.; Kahouli, I.; Prakash, S. Development and characterization of chitosan-PEG-TAT nanoparticles for the intracellular delivery of siRNA. Int. J. Nanomedicine, 2013, 8, 2041-2052.
[PMID: 23723699]
[69]
Inamdar, N.; Mourya, V.K. Chitosan and anionic polymers—Complex formation and applications.Polysaccharides Dev. Prop. Appl; Tiwari, A., Ed.; Research Gate, 2011, pp. 333-377.
[70]
Malmo, J.; Sørgård, H.; Vårum, K.M.; Strand, S.P. siRNA delivery with chitosan nanoparticles: Molecular properties favoring efficient gene silencing. J. Control. Release, 2012, 158(2), 261-268.
[http://dx.doi.org/10.1016/j.jconrel.2011.11.012] [PMID: 22119955]
[71]
Bozkir, A.; Saka, O.M. Chitosan nanoparticles for plasmid DNA delivery: Effect of chitosan molecular structure on formulation and release characteristics. Drug Deliv., 2004, 11(2), 107-112.
[http://dx.doi.org/10.1080/10717540490280705] [PMID: 15200009]
[72]
Cao, Y.; Tan, Y.F.; Wong, Y.S.; Liew, M.W.J.; Venkatraman, S. Recent advances in chitosan-based carriers for gene delivery. Mar. Drugs, 2019, 17(6), 381.
[http://dx.doi.org/10.3390/md17060381] [PMID: 31242678]
[73]
Layek, B.; Singh, J. Chitosan for DNA and gene therapy.Chitosan Based Biomaterials; Elsevier, 2017, 2, pp. 209-244.
[http://dx.doi.org/10.1016/B978-0-08-100228-5.00008-0]
[74]
Mao, S.; Sun, W.; Kissel, T. Chitosan-based formulations for delivery of DNA and siRNA. Adv. Drug Deliv. Rev., 2010, 62(1), 12-27.
[http://dx.doi.org/10.1016/j.addr.2009.08.004] [PMID: 19796660]
[75]
Dunn, M. R.; Jimenez, R. M.; Chaput, J. C. Analysis of aptamer discovery and technology Nat Rev Chem, 2017, 1, 0076.
[http://dx.doi.org/10.1038/s41570-017-0076]
[76]
Zhu, G.; Zhang, H.; Jacobson, O.; Wang, Z.; Chen, H.; Yang, X.; Niu, G.; Chen, X. Combinatorial screening of DNA aptamers for molecular imaging of HER2 in cancer. Bioconjug. Chem., 2017, 28(4), 1068-1075.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00746] [PMID: 28122449]
[77]
Zhu, G.; Chen, X. Aptamer-based targeted therapy. Adv. Drug Deliv. Rev., 2018, 134, 65-78.
[http://dx.doi.org/10.1016/j.addr.2018.08.005] [PMID: 30125604]
[78]
Hernández, C.C.D.; Martínez, R.G.; Ramírez, C.S.A.; Pacheco, M.M.; Burgos, C.M.; García, L.A.; Grajeda, R.J.P.; Ramírez, G.I.; Covarrubias, G.V.; Arroyo, C.I.; Cerbón, M.; Dorantes, R.M. Aptamers as Theragnostic Tools in Prostate Cancer. Biomolecules, 2022, 12(8), 1056.
[http://dx.doi.org/10.3390/biom12081056] [PMID: 36008950]
[79]
Ramchandani, M.; Kumari, P.; Goyal, A.K. Aptamers as Theranostics in Cardiovascular Diseases. J. Nanotheranostics, 2023, 4(3), 408-428.
[http://dx.doi.org/10.3390/jnt4030018]
[80]
Sheikh, A.; Md, S.; Alhakamy, N.A.; Kesharwani, P. Recent development of aptamer conjugated chitosan nanoparticles as cancer therapeutics. Int. J. Pharm., 2022, 620, 121751.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121751] [PMID: 35436511]
[81]
Karkan, F.S.; Mirinejad, S.; Karnak, U.F.; Mukhtar, M.; Almanghadim, G.H.; Sargazi, S.; Rahdar, A.; Pascual, D.A.M. Biomedical applications of aptamer-modified chitosan nanomaterials: An updated review. Int. J. Biol. Macromol., 2023, 238, 124103.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.124103] [PMID: 36948344]
[82]
Ni, S.; Zhuo, Z.; Pan, Y.; Yu, Y.; Li, F.; Liu, J.; Wang, L.; Wu, X.; Li, D.; Wan, Y.; Zhang, L.; Yang, Z.; Zhang, B.T.; Lu, A.; Zhang, G. Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications. ACS Appl. Mater. Interfaces, 2021, 13(8), 9500-9519.
[http://dx.doi.org/10.1021/acsami.0c05750] [PMID: 32603135]
[83]
Liu, M.; Wang, L.; Lo, Y.; Shiu, S.C.C.; Kinghorn, A.B.; Tanner, J.A. Aptamer-Enabled Nanomaterials for Therapeutics, Drug Targeting and Imaging. Cells, 2022, 11(1), 159.
[http://dx.doi.org/10.3390/cells11010159] [PMID: 35011722]
[84]
Fu, Z.; Xiang, J. Aptamer-functionalized nanoparticles in targeted delivery and cancer therapy. Int. J. Mol. Sci., 2020, 21(23), 9123.
[http://dx.doi.org/10.3390/ijms21239123] [PMID: 33266216]
[85]
Yang, L.; Zhang, X.; Ye, M.; Jiang, J.; Yang, R.; Fu, T.; Chen, Y.; Wang, K.; Liu, C.; Tan, W. Aptamer-conjugated nanomaterials and their applications. Adv. Drug Deliv. Rev., 2011, 63(14-15), 1361-1370.
[http://dx.doi.org/10.1016/j.addr.2011.10.002] [PMID: 22016112]
[86]
Tekie, F.S.M.; Soleimani, M.; Zakerian, A.; Dinarvand, M.; Amini, M.; Dinarvand, R.; Arefian, E.; Atyabi, F. Glutathione responsive chitosan-thiolated dextran conjugated miR-145 nanoparticles targeted with AS1411 aptamer for cancer treatment. Carbohydr. Polym., 2018, 201, 131-140.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.060] [PMID: 30241804]
[87]
Esmaeili, Y.; Dabiri, A.; Mashayekhi, F.; Rahimmanesh, I.; Bidram, E.; Karbasi, S.; Rafienia, M.; Javanmard, S.H.; Ertas, Y.N.; Zarrabi, A.; Shariati, L. Smart co-delivery of plasmid DNA and doxorubicin using MCM-chitosan-PEG polymerization functionalized with MUC-1 aptamer against breast cancer. Biomed. Pharmacother., 2024, 173, 116465.
[http://dx.doi.org/10.1016/j.biopha.2024.116465] [PMID: 38507955]
[88]
Zhang, Q.; Landgraf, R. Selecting molecular recognition. what can existing aptamers tell us about their inherent recognition capabilities and modes of interaction? Pharmaceuticals, 2012, 5(5), 493-513.
[http://dx.doi.org/10.3390/ph5050493] [PMID: 24281560]
[89]
Escareño, N.; Hassan, N.; Kogan, M.J.; Juárez, J.; Topete, A.; Navarro, D.A. Microfluidics-assisted conjugation of chitosan-coated polymeric nanoparticles with antibodies: Significance in drug release, uptake, and cytotoxicity in breast cancer cells. J. Colloid Interface Sci., 2021, 591, 440-450.
[http://dx.doi.org/10.1016/j.jcis.2021.02.031] [PMID: 33631531]
[90]
Helmi, O.; Elshishiny, F.; Mamdouh, W. Targeted doxorubicin delivery and release within breast cancer environment using PEGylated chitosan nanoparticles labeled with monoclonal antibodies. Int. J. Biol. Macromol., 2021, 184, 325-338.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.014] [PMID: 34119547]
[91]
Varty, K.; O’Brien, C.; Ignaszak, A. Breast cancer aptamers: Current sensing targets, available aptamers, and their evaluation for clinical use in diagnostics. Cancers, 2021, 13(16), 3984.
[http://dx.doi.org/10.3390/cancers13163984] [PMID: 34439139]
[92]
Siersbæk, R.; Kumar, S.; Carroll, J.S. Signaling pathways and steroid receptors modulating estrogen receptor α function in breast cancer. Genes Dev., 2018, 32(17-18), 1141-1154.
[http://dx.doi.org/10.1101/gad.316646.118] [PMID: 30181360]
[93]
Ahirwar, R.; Vellarikkal, S.K.; Sett, A.; Sivasubbu, S.; Scaria, V.; Bora, U.; Borthakur, B.B.; Kataki, A.C.; Sharma, J.D.; Nahar, P. Aptamer-assisted detection of the altered expression of estrogen receptor alpha in human breast cancer. PLoS One, 2016, 11(4), e0153001.
[http://dx.doi.org/10.1371/journal.pone.0153001] [PMID: 27043307]
[94]
Gires, O.; Pan, M.; Schinke, H.; Canis, M.; Baeuerle, P.A. Expression and function of epithelial cell adhesion molecule EpCAM: Where are we after 40 years? Cancer Metastasis Rev., 2020, 39(3), 969-987.
[http://dx.doi.org/10.1007/s10555-020-09898-3] [PMID: 32507912]
[95]
Shigdar, S.; Lin, J.; Yu, Y.; Pastuovic, M.; Wei, M.; Duan, W. RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule. Cancer Sci., 2011, 102(5), 991-998.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01897.x] [PMID: 21281402]
[96]
Song, Y.; Zhu, Z.; An, Y.; Zhang, W.; Zhang, H.; Liu, D.; Yu, C.; Duan, W.; Yang, C.J. Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal. Chem., 2013, 85(8), 4141-4149.
[http://dx.doi.org/10.1021/ac400366b] [PMID: 23480100]
[97]
Subramanian, N.; Kanwar, J.R.; Kanwar, R.K.; Sreemanthula, J.; Biswas, J.; Khetan, V.; Krishnakumar, S. EpCAM aptamer-siRNA chimera targets and regress epithelial cancer. PLoS One, 2015, 10(7), e0132407.
[http://dx.doi.org/10.1371/journal.pone.0132407] [PMID: 26176230]
[98]
Tajrishi, M.M.; Tuteja, R.; Tuteja, N. Nucleolin. Commun. Integr. Biol., 2011, 4(3), 267-275.
[http://dx.doi.org/10.4161/cib.4.3.14884] [PMID: 21980556]
[99]
Liu, M.; Yu, X.; Chen, Z.; Yang, T.; Yang, D.; Liu, Q.; Du, K.; Li, B.; Wang, Z.; Li, S.; Deng, Y.; He, N. Aptamer selection and applications for breast cancer diagnostics and therapy. J. Nanobiotechnology, 2017, 15(1), 81.
[http://dx.doi.org/10.1186/s12951-017-0311-4] [PMID: 29132385]
[100]
Zhang, H.; Wang, Z.; Zhang, Q.; Wang, F.; Liu, Y. Ti3C2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosomes. Biosens. Bioelectron., 2019, 124-125, 184-190.
[http://dx.doi.org/10.1016/j.bios.2018.10.016] [PMID: 30388560]
[101]
Lapitan, L.D.S., Jr; Pietrzak, M.; Krawczyk, M.; Malinowska, E. Serum biomarkers and ultrasensitive biosensors for diagnosis of early-stage hepatocellular carcinoma. Sens. Actuators B Chem., 2023, 393, 134209.
[http://dx.doi.org/10.1016/j.snb.2023.134209]
[102]
Chen, Y.; Kong, D.; Qiu, L.; Wu, Y.; Dai, C.; Luo, S.; Huang, Z.; Lin, Q.; Chen, H.; Xie, S.; Geng, L.; Zhao, J.; Tan, W.; Liu, Y.; Wei, D. Artificial Nucleotide Aptamer-Based Field-Effect Transistor for Ultrasensitive Detection of Hepatoma Exosomes. Anal. Chem., 2022, 95(2), acs.analchem.2c04433.
[http://dx.doi.org/10.1021/acs.analchem.2c04433] [PMID: 36577081]
[103]
Wu, D.; Yu, Y.; Jin, D.; Xiao, M.M.; Zhang, Z.Y.; Zhang, G.J. Dual-Aptamer Modified Graphene Field-Effect Transistor Nanosensor for Label-Free and Specific Detection of Hepatocellular Carcinoma-Derived Microvesicles. Anal. Chem., 2020, 92(5), 4006-4015.
[http://dx.doi.org/10.1021/acs.analchem.9b05531] [PMID: 32040907]
[104]
Islam, N.; Dmour, I.; Taha, M.O. Degradability of chitosan micro/nanoparticles for pulmonary drug delivery. Heliyon, 2019, 5(5), e01684.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01684] [PMID: 31193324]
[105]
Mazancová, P.; Némethová, V.; Treľová, D.; Kleščíková, L.; Lacík, I.; Rázga, F. Dissociation of chitosan/tripolyphosphate complexes into separate components upon pH elevation. Carbohydr. Polym., 2018, 192, 104-110.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.030] [PMID: 29691001]
[106]
Miller, T.; Hill, A.; Uezguen, S.; Weigandt, M.; Goepferich, A. Analysis of immediate stress mechanisms upon injection of polymeric micelles and related colloidal drug carriers: Implications on drug targeting. Biomacromolecules, 2012, 13(6), 1707-1718.
[http://dx.doi.org/10.1021/bm3002045] [PMID: 22462502]
[107]
Buyens, K.; De Smedt, S.C.; Braeckmans, K.; Demeester, J.; Peeters, L.; van Grunsven, L.A.; du Jeu, M.X.; Sawant, R.; Torchilin, V.; Farkasova, K.; Ogris, M.; Sanders, N.N. Liposome based systems for systemic siRNA delivery: Stability in blood sets the requirements for optimal carrier design. J. Control. Release, 2012, 158(3), 362-370.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.009] [PMID: 22023849]
[108]
Mao, H.Q.; Roy, K.; Troung-Le, V.L.; Janes, K.A.; Lin, K.Y.; Wang, Y.; August, J.T.; Leong, K.W. Chitosan-DNA nanoparticles as gene carriers: Synthesis, characterization and transfection efficiency. J. Control. Release, 2001, 70(3), 399-421.
[http://dx.doi.org/10.1016/S0168-3659(00)00361-8] [PMID: 11182210]
[109]
Strand, S.P.; Issa, M.M.; Christensen, B.E.; Vårum, K.M.; Artursson, P. Tailoring of chitosans for gene delivery: Novel self-branched glycosylated chitosan oligomers with improved functional properties. Biomacromolecules, 2008, 9(11), 3268-3276.
[http://dx.doi.org/10.1021/bm800832u] [PMID: 18834173]
[110]
Hashimoto, M.; Morimoto, M.; Saimoto, H.; Shigemasa, Y.; Sato, T. Lactosylated chitosan for DNA delivery into hepatocytes: The effect of lactosylation on the physicochemical properties and intracellular trafficking of pDNA/chitosan complexes. Bioconjug. Chem., 2006, 17(2), 309-316.
[http://dx.doi.org/10.1021/bc050228h] [PMID: 16536460]
[111]
Wang, B.; He, C.; Tang, C.; Yin, C. Effects of hydrophobic and hydrophilic modifications on gene delivery of amphiphilic chitosan based nanocarriers. Biomaterials, 2011, 32(20), 4630-4638.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.003] [PMID: 21440295]
[112]
Zhang, Y.; Chen, J.; Zhang, Y.; Pan, Y.; Zhao, J.; Ren, L.; Liao, M.; Hu, Z.; Kong, L.; Wang, J. A novel PEGylation of chitosan nanoparticles for gene delivery. Biotechnol. Appl. Biochem., 2007, 46(4), 197-204.
[http://dx.doi.org/10.1042/BA20060163] [PMID: 17147512]
[113]
Zhang, H.; Mardyani, S.; Chan, W.C.W.; Kumacheva, E. Design of biocompatible chitosan microgels for targeted pH-mediated intracellular release of cancer therapeutics. Biomacromolecules, 2006, 7(5), 1568-1572.
[http://dx.doi.org/10.1021/bm050912z] [PMID: 16677040]
[114]
Gao, S.; Chen, J.; Xu, X.; Ding, Z.; Yang, Y.H.; Hua, Z.; Zhang, J. Galactosylated low molecular weight chitosan as DNA carrier for hepatocyte-targeting. Int. J. Pharm., 2003, 255(1-2), 57-68.
[http://dx.doi.org/10.1016/S0378-5173(03)00082-6] [PMID: 12672602]
[115]
Kim, T.H.; Nah, J.W.; Cho, M.H.; Park, T.G.; Cho, C.S. Receptor-mediated gene delivery into antigen presenting cells using mannosylated chitosan/DNA nanoparticles. J. Nanosci. Nanotechnol., 2006, 6(9), 2796-2803.
[http://dx.doi.org/10.1166/jnn.2006.434] [PMID: 17048485]
[116]
Pack, D.W.; Hoffman, A.S.; Pun, S.; Stayton, P.S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov., 2005, 4(7), 581-593.
[http://dx.doi.org/10.1038/nrd1775] [PMID: 16052241]
[117]
Chan, P.; Kurisawa, M.; Chung, J.E.; Yang, Y.Y. Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials, 2007, 28(3), 540-549.
[http://dx.doi.org/10.1016/j.biomaterials.2006.08.046] [PMID: 16999995]
[118]
Malhotra, M.; Duchesneau, T.C.; Prakash, S. Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases. Biomaterials, 2013, 34(4), 1270-1280.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.013] [PMID: 23140978]
[119]
Luo, X.; Mather, P.T. Shape memory assisted self-healing coating. ACS Macro Lett., 2013, 2(2), 152-156.
[http://dx.doi.org/10.1021/mz400017x] [PMID: 35581778]
[120]
Lee, D.; Lockey, R.; Mohapatra, S. Folate receptor-mediated cancer cell specific gene delivery using folic acid-conjugated oligochitosans. J. Nanosci. Nanotechnol., 2006, 6(9), 2860-2866.
[http://dx.doi.org/10.1166/jnn.2006.465] [PMID: 17048492]
[121]
Carballal, S.B.; Aaldering, L.J.; Ritzefeld, M.; Pereira, S.; Sewald, N.; Moerschbacher, B.M.; Götte, M.; Goycoolea, F.M. Physicochemical and biological characterization of chitosan-microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells. Sci. Rep., 2015, 5(1), 13567.
[http://dx.doi.org/10.1038/srep13567] [PMID: 26324407]
[122]
Mirzaie, Z.H.; Irani, S.; Mirfakhraie, R.; Atyabi, S.M.; Dinarvand, M.; Dinarvand, R.; Varshochian, R.; Atyabi, F. DOCETAXEL –Chitosan nanoparticles for breast cancer treatment: Cell viability and gene expression study. Chem. Biol. Drug Des., 2016, 88(6), 850-858.
[http://dx.doi.org/10.1111/cbdd.12814] [PMID: 27390258]
[123]
Wang, K.; Huang, Q.; Qiu, F.; Sui, M. Non-viral delivery systems for the application in p53 cancer gene therapy. Curr. Med. Chem., 2015, 22(35), 4118-4136.
[http://dx.doi.org/10.2174/0929867322666151001121601] [PMID: 26423086]
[124]
Xu, Q.; Leong, J.; Chua, Q.Y.; Chi, Y.T.; Chow, P.K.H.; Pack, D.W.; Wang, C.H. Combined modality doxorubicin-based chemotherapy and chitosan-mediated p53 gene therapy using double-walled microspheres for treatment of human hepatocellular carcinoma. Biomaterials, 2013, 34(21), 5149-5162.
[http://dx.doi.org/10.1016/j.biomaterials.2013.03.044] [PMID: 23578555]
[125]
Liu, L.; Dong, X.; Zhu, D.; Song, L.; leng; Zhang, H. TAT-LHRH conjugated low molecular weight chitosan as a gene carrier specific for hepatocellular carcinoma cells. Int. J. Nanomedicine, 2014, 9, 2879-2889.
[http://dx.doi.org/10.2147/IJN.S61392] [PMID: 24959076]
[126]
Lin, W.; Li, S.; Meng, Y.; Huang, G.; Liang, S.; Du, J.; Liu, Q.; Cheng, B. UDCA Inhibits Hypoxic Hepatocellular Carcinoma Cell–Induced Angiogenesis Through Suppressing HIF-1α/VEGF/IL-8 Intercellular Signaling. Front. Pharmacol., 2021, 12, 755394.
[http://dx.doi.org/10.3389/fphar.2021.755394] [PMID: 34975472]
[127]
Wei, H.; Xu, Z.; Chen, L.; Wei, Q.; Huang, Z.; Liu, G.; Li, W.; Wang, J.; Tang, Q.; Pu, J. Long non-coding RNA PAARH promotes hepatocellular carcinoma progression and angiogenesis via upregulating HOTTIP and activating HIF-1α/VEGF signaling. Cell Death Dis., 2022, 13(2), 102.
[http://dx.doi.org/10.1038/s41419-022-04505-5] [PMID: 35110549]
[128]
Hu, Q.; Li, Y.; Chen, H.; Liao, H.; He, Y.; Zheng, Q. CCDC88A post-transcriptionally regulates VEGF via miR-101 and subsequently regulates hepatocellular carcinoma. Front. Immunol., 2022, 13, 859331.
[http://dx.doi.org/10.3389/fimmu.2022.859331] [PMID: 35493459]
[129]
Huang, Z.; Dong, L.; Chen, J.; Gao, F.; Zhang, Z.; Chen, J.; Zhang, J. Low-molecular weight chitosan/vascular endothelial growth factor short hairpin RNA for the treatment of hepatocellular carcinoma. Life Sci., 2012, 91(23-24), 1207-1215.
[http://dx.doi.org/10.1016/j.lfs.2012.09.015] [PMID: 23044224]
[130]
Liu, N.; Chang, C.W.; Steer, C.J.; Wang, X.W.; Song, G. MicroRNA-15a/16-1 prevents hepatocellular carcinoma by disrupting the communication between Kupffer cells and regulatory T cells. Gastroenterology, 2022, 162(2), 575-589.
[http://dx.doi.org/10.1053/j.gastro.2021.10.015] [PMID: 34678217]
[131]
Liu, N.; Wang, X.; Steer, C.J.; Song, G. MicroRNA-206 promotes the recruitment of CD8+ T cells by driving M1 polarisation of Kupffer cells. Gut, 2022, 71(8), 1642-1655.
[PMID: 34706869]
[132]
Zhang, H.; Liu, S.; Chen, L.; Sheng, Y.; Luo, W.; Zhao, G. MicroRNA miR-509-3p inhibit metastasis and epithelial-mesenchymal transition in hepatocellular carcinoma. Bioengineered, 2021, 12(1), 2263-2273.
[http://dx.doi.org/10.1080/21655979.2021.1932210] [PMID: 34115554]
[133]
Yao, Y.; Wang, T.; Liu, Y.; Zhang, N. Co-delivery of sorafenib and VEGF-siRNA via pH-sensitive liposomes for the synergistic treatment of hepatocellular carcinoma. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1374-1383.
[http://dx.doi.org/10.1080/21691401.2019.1596943] [PMID: 30977418]
[134]
Zhong, J.; Huang, H.L.; Li, J.; Qian, F.C.; Li, L.Q.; Niu, P.P.; Dai, L.C. Development of hybrid-type modified chitosan derivative nanoparticles for the intracellular delivery of midkine-siRNA in hepatocellular carcinoma cells. Hepatobiliary Pancreat. Dis. Int., 2015, 14(1), 82-89.
[http://dx.doi.org/10.1016/S1499-3872(15)60336-8] [PMID: 25655295]
[135]
Wang, B.; Fang, L.; Zhao, H.; Xiang, T.; Wang, D. MDM2 inhibitor Nutlin-3a suppresses proliferation and promotes apoptosis in osteosarcoma cells. Acta Biochim. Biophys. Sin., 2012, 44(8), 685-691.
[http://dx.doi.org/10.1093/abbs/gms053] [PMID: 22843172]
[136]
Moran, D.M.; Maki, C.G. Nutlin-3a induces cytoskeletal rearrangement and inhibits the migration and invasion capacity of p53 wild-type cancer cells. Mol. Cancer Ther., 2010, 9(4), 895-905.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-1220] [PMID: 20371712]
[137]
Planells, V.R.; Mulet, C.L.; Soler, M.F.; Castaño, E.; Acebes, J.J.; Bonafé, G.P.; Gil, J.; Tortosa, A. Activation of p53 by nutlin-3a induces apoptosis and cellular senescence in human glioblastoma multiforme. PLoS One, 2011, 6(4), e18588.
[http://dx.doi.org/10.1371/journal.pone.0018588] [PMID: 21483692]
[138]
Davoodi, P.; Srinivasan, M.P.; Wang, C.H. Effective co-delivery of nutlin-3a and p53 genes via core–shell microparticles for disruption of MDM2–p53 interaction and reactivation of p53 in hepatocellular carcinoma. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(29), 5816-5834.
[http://dx.doi.org/10.1039/C7TB00481H] [PMID: 32264215]
[139]
Guan, H.G.; Xue, W.J.; Qian, H.X.; Zhou, X.J.; Qin, L.; Lan, J. RASSF1A expression inhibits cell growth and enhances cell chemosensitivity to mitomycin in BEL-7402 hepatocellular carcinoma cells. Chin. Med. J., 2009, 122(11), 1328-1332.
[PMID: 19567146]
[140]
Xue, W.J.; Feng, Y.; Wang, F.; Guo, Y.B.; Li, P.; Wang, L.; Liu, Y.F.; Wang, Z.W.; Yang, Y.M.; Mao, Q.S. Asialoglycoprotein receptor-magnetic dual targeting nanoparticles for delivery of RASSF1A to hepatocellular carcinoma. Sci. Rep., 2016, 6(1), 22149.
[http://dx.doi.org/10.1038/srep22149] [PMID: 26915683]
[141]
Chen, J. Mouse IP-10 gene delivered by folate-modified chitosan nanoparticles and dendritic/tumour cells fusion vaccine effectively inhibit the growth of hepato-cellular carcinoma in mice Theranostics, 2017, 7(7), 1942-1952.
[142]
Lai, C.; Yu, X.; Zhuo, H.; Zhou, N.; Xie, Y.; He, J.; Peng, Y.; Xie, X.; Luo, G.; Zhou, S.; Zhao, Y.; Lu, X. Anti-tumor immune response of folate-conjugated chitosan nanoparticles containing the IP-10 gene in mice with hepatocellular carcinoma. J. Biomed. Nanotechnol., 2014, 10(12), 3576-3589.
[http://dx.doi.org/10.1166/jbn.2014.2051] [PMID: 26000371]
[143]
Duan, S.; Song, M.; He, J.; Zhou, N.; Zhou, S.; Zhao, J.; Fang, Y.; Peng, Y.; Huang, X.; Luo, G.; Lai, C.; Yu, X.; Zhang, Z.; Xie, Y.; Zhao, Y.; Lu, X. Folate-modified chitosan nanoparticles coated interferon-inducible protein-10 gene enhance cytotoxic T lymphocytes’ responses to hepatocellular carcinoma. J. Biomed. Nanotechnol., 2016, 12(4), 700-709.
[http://dx.doi.org/10.1166/jbn.2016.2216] [PMID: 27301196]
[144]
Jiang, X.; Lu, X.; Hu, P.; Liu, R. Improved therapeutic efficacy using vaccination with glioma lysate-pulsed dendritic cells combined with IP-10 in murine glioma. Vaccine, 2009, 27(44), 6210-6216.
[http://dx.doi.org/10.1016/j.vaccine.2009.08.002] [PMID: 19699331]
[145]
Buschmann, M.D.; Merzouki, A.; Lavertu, M.; Thibault, M.; Jean, M.; Darras, V. Chitosans for delivery of nucleic acids. Adv. Drug Deliv. Rev., 2013, 65(9), 1234-1270.
[http://dx.doi.org/10.1016/j.addr.2013.07.005] [PMID: 23872012]
[146]
Huh, M.S.; Lee, S.Y.; Park, S.; Lee, S.; Chung, H.; Lee, S.; Choi, Y.; Oh, Y.K.; Park, J.H.; Jeong, S.Y.; Choi, K.; Kim, K.; Kwon, I.C. Tumor-homing glycol chitosan/polyethylenimine nanoparticles for the systemic delivery of siRNA in tumor-bearing mice. J. Control. Release, 2010, 144(2), 134-143.
[http://dx.doi.org/10.1016/j.jconrel.2010.02.023] [PMID: 20184928]
[147]
Noh, S.M.; Park, M.O.; Shim, G.; Han, S.E.; Lee, H.Y.; Huh, J.H.; Kim, M.S.; Choi, J.J.; Kim, K.; Kwon, I.C.; Kim, J.S.; Baek, K.H.; Oh, Y.K. Pegylated poly-l-arginine derivatives of chitosan for effective delivery of siRNA. J. Control. Release, 2010, 145(2), 159-164.
[http://dx.doi.org/10.1016/j.jconrel.2010.04.005] [PMID: 20385182]
[148]
Zhang, C.; Zhu, W.; Liu, Y.; Yuan, Z.; Yang, S.; Chen, W.; Li, J.; Zhou, X.; Liu, C.; Zhang, X. Novel polymer micelle mediated co-delivery of doxorubicin and P-glycoprotein siRNA for reversal of multidrug resistance and synergistic tumor therapy. Sci. Rep., 2016, 6(1), 23859.
[http://dx.doi.org/10.1038/srep23859] [PMID: 27030638]
[149]
Lee, D.W.; Yun, K.S.; Ban, H.S.; Choe, W.; Lee, S.K.; Lee, K.Y. Preparation and characterization of chitosan/polyguluronate nanoparticles for siRNA delivery. J. Control. Release, 2009, 139(2), 146-152.
[http://dx.doi.org/10.1016/j.jconrel.2009.06.018] [PMID: 19567259]
[150]
Şenel, B.; Öztürk, A.A. New approaches to tumor therapy with siRNA-decorated and chitosan-modified PLGA nanoparticles. Drug Dev. Ind. Pharm., 2019, 45(11), 1835-1848.
[http://dx.doi.org/10.1080/03639045.2019.1665061] [PMID: 31491363]
[151]
Bayer, I.S. Hyaluronic acid and controlled release: A review. Molecules, 2020, 25(11), 2649.
[http://dx.doi.org/10.3390/molecules25112649] [PMID: 32517278]
[152]
Zhang, W.; Xu, W.; Lan, Y.; He, X.; Liu, K.; Liang, Y. Antitumor effect of hyaluronic-acid-modified chitosan nanoparticles loaded with siRNA for targeted therapy for non-small cell lung cancer. Int. J. Nanomedicine, 2019, 14, 5287-5301.
[http://dx.doi.org/10.2147/IJN.S203113] [PMID: 31406460]
[153]
Raja, A.G.M.; Katas, H.; Wen, J.T. Stability, intracellular delivery, and release of siRNA from chitosan nanoparticles using different cross-linkers. PLoS One, 2015, 10(6), e0128963.
[http://dx.doi.org/10.1371/journal.pone.0128963] [PMID: 26068222]
[154]
Velazquez, L.M.; Alkharboosh, R.; Norton, E.S.; Loera, R.C.; Freeman, W.D.; Cazares, G.H.; Forte, A.J.; Hinojosa, Q.A.; Estrada, S.R. Chitosan-based non-viral gene and drug delivery systems for brain cancer. Front. Neurol., 2020, 11, 740.
[http://dx.doi.org/10.3389/fneur.2020.00740] [PMID: 32849207]
[155]
Salimifard, S.; Kiani, K.F.; Eshaghi, S.F.; Izadi, S.; Shahdadnejad, K.; Masjedi, A.; Heydari, M.; Ahmadi, A.; Farsangi, H.M.; Hassannia, H.; Mohammadi, H.; Noughabi, B.S.; Keramati, M.R.; Niaragh, J.F. Codelivery of BV6 and anti-IL6 siRNA by hyaluronate-conjugated PEG-chitosan-lactate nanoparticles inhibits tumor progression. Life Sci., 2020, 260, 118423.
[http://dx.doi.org/10.1016/j.lfs.2020.118423] [PMID: 32941896]
[156]
Wang, L.; Wu, W.; Wang, J.; Wang, J.; Tong, X.; Hu, Q.; Qi, L. Highly efficient Gab2 siRNA delivery to ovarian cancer cells mediated by chitosan–polyethyleneimine nanoparticles. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(2), 273-281.
[http://dx.doi.org/10.1039/C5TB01238D] [PMID: 32263369]
[157]
Chang, J.; Yang, Z.; Li, J.; Jin, Y.; Gao, Y.; Sun, Y.; Li, H.; Yu, T. Preparation and in vitro and in vivo antitumor effects of VEGF targeting micelles. Technol. Cancer Res. Treat., 2020, 19, 1533033820957022.
[http://dx.doi.org/10.1177/1533033820957022] [PMID: 32912078]
[158]
Zhong, Y.; Meng, F.; Deng, C.; Zhong, Z. Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules, 2014, 15(6), 1955-1969.
[http://dx.doi.org/10.1021/bm5003009] [PMID: 24798476]
[159]
Yadav, M.; Kaushik, B.; Rao, G.K.; Srivastava, C.M.; Vaya, D. Advances and challenges in the use of chitosan and its derivatives in biomedical fields: A review. Carbohydrate Polymer Technologies and Applications, 2023, 5, 100323.
[http://dx.doi.org/10.1016/j.carpta.2023.100323]
[160]
Zhang, W.; Mehta, A.; Tong, Z.; Esser, L.; Voelcker, N. H. Development of Polymeric Nanoparticles for Blood–Brain Barrier Transfer—Strategies and Challenges In: Advanced Science; Wiley Online Library, 2021; 8, p. (10)2003937.
[http://dx.doi.org/10.1002/advs.202003937]
[161]
Mokhtarzadeh, A.; Tabarzad, M.; Ranjbari, J.; de la Guardia, M.; Hejazi, M.; Ramezani, M. Aptamers as smart ligands for nano-carriers targeting. Trends Analyt. Chem., 2016, 82, 316-327.
[http://dx.doi.org/10.1016/j.trac.2016.06.018]
[162]
Pei, X.; Zhang, J.; Liu, J. Clinical applications of nucleic acid aptamers in cancer. Mol. Clin. Oncol., 2014, 2(3), 341-348.
[http://dx.doi.org/10.3892/mco.2014.255]
[163]
Urmann, K.; Modrejewski, J.; Scheper, T.; Walter, J.G. Aptamer-modified nanomaterials: Principles and applications. BioNanoMaterials, 2017, 18(1-2)
[http://dx.doi.org/10.1515/bnm-2016-0012]
[164]
Nikzamir, M.; Hanifehpour, Y.; Akbarzadeh, A.; Panahi, Y. Applications of Dendrimers in Nanomedicine and Drug Delivery: A Review. J. Inorg. Organomet. Polym. Mater., 2021, 31(6), 2246-2261.
[http://dx.doi.org/10.1007/s10904-021-01925-2]
[165]
Rabiee, N.; Ahmadi, S.; Afshari, R.; Khalaji, S.; Rabiee, M.; Bagherzadeh, M.; Fatahi, Y.; Dinarvand, R.; Tahriri, M.; Tayebi, L.; Hamblin, M.R.; Webster, T.J. Polymeric Nanoparticles for Nasal Drug Delivery to the Brain: Relevance to Alzheimer’s Disease. Adv. Ther., 2021, 4(3), 2000076.
[http://dx.doi.org/10.1002/adtp.202000076]
[166]
Cai, R.; Chen, X.; Zhang, Y.; Wang, X.; Zhou, N. Systematic bio-fabrication of aptamers and their applications in engineering biology. Sys. Microbiol. Biomanufacturing, 2023, 3(2), 223-245.
[http://dx.doi.org/10.1007/s43393-022-00140-5] [PMID: 38013802]
[167]
Baba, S.A.; Jain, S.; Navani, N.K. A reliable, quick and universally applicable method for monitoring aptamer SELEX progress. Gene, 2021, 774, 145416.
[http://dx.doi.org/10.1016/j.gene.2021.145416] [PMID: 33444681]
[168]
Lakhin, A.V.; Tarantul, V.Z.; Gening, L.V. Aptamers: Problems, solutions and prospects. Acta Nat., 2013, 5(4), 34-43.
[http://dx.doi.org/10.32607/20758251-2013-5-4-34-43] [PMID: 24455181]
[169]
Ni, X.; Castanares, M.; Mukherjee, A.; Lupold, S.E. Nucleic acid aptamers: Clinical applications and promising new horizons. Curr. Med. Chem., 2011, 18(27), 4206-4214.
[http://dx.doi.org/10.2174/092986711797189600] [PMID: 21838685]
[170]
Kovacevic, K.D.; Gilbert, J.C.; Jilma, B. Pharmacokinetics, pharmacodynamics and safety of aptamers. Adv. Drug Deliv. Rev., 2018, 134, 36-50.
[http://dx.doi.org/10.1016/j.addr.2018.10.008] [PMID: 30321620]
[171]
Li, X.; Wang, Y.; Feng, C.; Chen, H.; Gao, Y. Chemical Modification of Chitosan for Developing Cancer Nanotheranostics. Biomacromolecules, 2022, 23(6), 2197-2218.
[http://dx.doi.org/10.1021/acs.biomac.2c00184] [PMID: 35522524]
[172]
Gomes, C.P.; Lopes, F.C.D.; Moreno, D.P.M.; Moreira, V.A.; Alonso, M.J.; Pêgo, A.P. Translating chitosan to clinical delivery of nucleic acid-based drugs. MRS Bull., 2014, 39(1), 60-70.
[http://dx.doi.org/10.1557/mrs.2013.314]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy