Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

CircRNA Interference Pathway: A New Target for Intervention in Different Stages of Heart Failure

Author(s): Yuli Wang, Qiaoling Chen, Jiaqi Zhang, Yun Deng, Changyu Liu, Shuangcui Wang, Maojuan Guo* and Lili Song*

Volume 24, Issue 17, 2024

Published on: 24 May, 2024

Page: [1451 - 1463] Pages: 13

DOI: 10.2174/0115680266300535240514104107

Price: $65

conference banner
Abstract

Cardio-cerebrovascular disease has seen a rapid rise in recent years, with Heart Failure (HF) - a terminal stage of various cardiovascular diseases - also on the rise. HF has a complex pathogenesis involving multiple factors, such as inflammation, fibrosis, and oxidative stress. Due to its unique reverse shear mechanism, HF exhibits distinct expression patterns across different diseases. CircRNA has been linked to conditions like cancer, diabetes, and osteoarthritis. This article briefly introduces the mechanisms of circRNA biogenesis and its associated biological functions, focusing on CircSLC8A1-1, CircRNA_000203, and others at the early stage of HF, CircRNA PAN3, CircRNA (ACR), and others during the progression of HF, and CircHIPK3, CircNfix, and others at the end stage of HF. These circRNAs play a participatory role in the exact mechanism. As a research method, circRNA can be utilized to study the pathogenesis of heart failure and serve as a target for drug discovery and development. Therefore, circRNA's ability to mark the disease at different stages has significant guiding implications for HF monitoring, treatment, and prognosis.

Keywords: circRNA, Heart failure, Myocardial, Hypertrophy, Fibrosis, Apoptosis, Autophagy.

Next »
Graphical Abstract
[1]
Devaux, Y.; Zangrando, J.; Schroen, B.; Creemers, E.E.; Pedrazzini, T.; Chang, C.P.; Dorn, G.W., II; Thum, T.; Heymans, S. Long noncoding RNAs in cardiac development and ageing. Nat. Rev. Cardiol., 2015, 12(7), 415-425.
[http://dx.doi.org/10.1038/nrcardio.2015.55] [PMID: 25855606]
[2]
Chen, X.; Han, P.; Zhou, T.; Guo, X.; Song, X.; Li, Y. circRNADb: A comprehensive database for human circular RNAs with protein-coding annotations. Sci. Rep., 2016, 6(1), 34985.
[http://dx.doi.org/10.1038/srep34985] [PMID: 27725737]
[3]
Khan, MA, Reckman YJ, Aufiero S, van den Hoogenhof MM, van der Made I, Beqqali A, Koolbergen DR, Rasmussen TB, van der Velden J, Creemers EE, Pinto YM. RBM20 regulates circular RNA production from the titin gene. Circ Res., 2016, 119(9), 996-1003.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309568] [PMID: 27531932]
[4]
Jakobi, T.; Hasse, C.L.F.; Reinhardt, R.; Dieterich, C. Profiling and validation of the circular RNA repertoire in adult murine hearts. Geno. Prot. Bioinf., 2016, 14(4), 216-223.
[http://dx.doi.org/10.1016/j.gpb.2016.02.003] [PMID: 27132142]
[5]
Werfel, S.; Nothjunge, S.; Schwarzmayr, T.; Strom, T.M.; Meitinger, T.; Engelhardt, S. Characterization of circular RNAs in human, mouse and rat hearts. J. Mol. Cell. Cardiol., 2016, 98, 103-107.
[http://dx.doi.org/10.1016/j.yjmcc.2016.07.007] [PMID: 27476877]
[6]
Vries, N.I.S.; Eschenbach, J.; Schudy, S.; Meder, B.; Dieterich, C. Targeted Analysis of circRNA Expression in Patient Samples by Lexo-circSeq. Front. Mol. Biosci., 2022, 9, 875805.
[http://dx.doi.org/10.3389/fmolb.2022.875805] [PMID: 35755822]
[7]
Sanger, H.L.; Klotz, G.; Riesner, D.; Gross, H.J.; Kleinschmidt, A.K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl. Acad. Sci., 1976, 73(11), 3852-3856.
[http://dx.doi.org/10.1073/pnas.73.11.3852] [PMID: 1069269]
[8]
Arnberg, A.C.; Ommen, V.G.J.B.; Grivell, L.A.; Bruggen, V.E.F.J.; Borst, P. Some yeast mitochondrial RNAs are circular. Cell, 1980, 19(2), 313-319.
[http://dx.doi.org/10.1016/0092-8674(80)90505-X] [PMID: 6986989]
[9]
Capel, B.; Swain, A.; Nicolis, S.; Hacker, A.; Walter, M.; Koopman, P.; Badge, L.R. Circular transcripts of the testis-determininggene Sry in adult mouse testis. Cell., 1993, 73(5), 1019-30.
[http://dx.doi.org/10.1016/0092-8674(93)90279-Y]
[10]
Nigro, J.M.; Cho, K.R.; Fearon, E.R.; Kern, S.E.; Ruppert, J.M.; Oliner, J.D.; Kinzler, K.W.; Vogelstein, B. Scrambled exons. Cell, 1991, 64(3), 607-613.
[http://dx.doi.org/10.1016/0092-8674(91)90244-S] [PMID: 1991322]
[11]
Zaphiropoulos, P.G. Circular RNAs from transcripts of the ratcytochrome P450 2C24 gene. Correl. Exon Skip., 1996, 93(13), 6536-6541.
[http://dx.doi.org/10.1073/pnas.93.13.6536]
[12]
Qu, S.; Zhong, Y.; Shang, R.; Zhang, X.; Song, W.; Kjems, J.; Li, H. The emerging landscape of circular RNA in life processes. RNA Biol., 2017, 14(8), 992-999.
[http://dx.doi.org/10.1080/15476286.2016.1220473] [PMID: 27617908]
[13]
Zhang, Y.; Zhang, X.O.; Chen, T.; Xiang, J.F.; Yin, Q.F.; Xing, Y.H.; Zhu, S.; Yang, L.; Chen, L.L. Circular intronic long noncoding RNAs. Mol. Cell, 2013, 51(6), 792-806.
[http://dx.doi.org/10.1016/j.molcel.2013.08.017] [PMID: 24035497]
[14]
Tang, X.; Ren, H.; Guo, M.; Qian, J.; Yang, Y.; Gu, C. Review on circular RNAs and new insights into their roles in cancer. Comput. Struct. Biotechnol. J., 2021, 19, 910-928.
[http://dx.doi.org/10.1016/j.csbj.2021.01.018] [PMID: 33598105]
[15]
Dong, H.; Zhou, J.; Cheng, Y.; Wang, M.; Wang, S.; Xu, H. Biogenesis, Functions, and Role of CircRNAs in Lung Cancer. Cancer Manag. Res., 2021, 13, 6651-6671.
[http://dx.doi.org/10.2147/CMAR.S324812] [PMID: 34466035]
[16]
Li, Z.; Ruan, Y.; Zhang, H.; Shen, Y.; Li, T.; Xiao, B. Tumor-suppressive circular RNAs: Mechanisms underlying their suppression of tumor occurrence and use as therapeutic targets. Cancer Sci., 2019, 110(12), 3630-3638.
[http://dx.doi.org/10.1111/cas.14211] [PMID: 31599076]
[17]
Wang, Z.; Lei, X. Matrix factorization with neural network for predicting circRNA-RBP interactions. BMC Bioinform., 2020, 21(1), 229.
[http://dx.doi.org/10.1186/s12859-020-3514-x] [PMID: 32503474]
[18]
Zhou, W.Y.; Cai, Z.R.; Liu, J.; Wang, D.S.; Ju, H.Q.; Xu, R.H. Circular RNA: Metabolism, functions and interactions with proteins. Mol. Cancer, 2020, 19(1), 172.
[http://dx.doi.org/10.1186/s12943-020-01286-3] [PMID: 33317550]
[19]
Vausort, M.; Somoza, S.A.; Zhang, L.; Leszek, P.; Scholz, M.; Teren, A.; Burkhardt, R.; Thiery, J.; Wagner, D.R.; Devaux, Y. Myocardial Infarction-Associated Circular RNA Predicting Left Ventricular Dysfunction. J. Am. Coll. Cardiol., 2016, 68(11), 1247-1248.
[http://dx.doi.org/10.1016/j.jacc.2016.06.040] [PMID: 27609688]
[20]
Sanders, D.A. Self-transcription: RNA polymerase transcription of its own genes, and its role in cellular differentiation and cell cycling. J. Theor. Biol., 1984, 106(2), 171-182.
[http://dx.doi.org/10.1016/0022-5193(84)90017-1] [PMID: 6708566]
[21]
Chen, C.K.; Cheng, R.; Demeter, J.; Chen, J.; Gabbay, W.S.; Jiang, L.; Snyder, M.P.; Weissman, J.S.; Segal, E.; Jackson, P.K.; Chang, H.Y. Structured elements drive extensive circular RNA translation. Mol. Cell, 2021, 81(20), 4300-4318.e13.
[http://dx.doi.org/10.1016/j.molcel.2021.07.042] [PMID: 34437836]
[22]
Qi, X.; Zhang, D.H.; Wu, N.; Xiao, J.H.; Wang, X.; Ma, W. ceRNA in cancer: Possible functions and clinical implications. J. Med. Genet., 2015, 52(10), 710-718.
[http://dx.doi.org/10.1136/jmedgenet-2015-103334] [PMID: 26358722]
[23]
Zhou, R.S.; Zhang, E.X.; Sun, Q.F.; Ye, Z.J.; Liu, J.W.; Zhou, D.H.; Tang, Y. Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in squamous cell carcinoma of tongue. BMC Cancer, 2019, 19(1), 779.
[http://dx.doi.org/10.1186/s12885-019-5983-8] [PMID: 31391008]
[24]
Guo, H.; Ingolia, N.T.; Weissman, J.S.; Bartel, D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 2010, 466(7308), 835-840.
[http://dx.doi.org/10.1038/nature09267] [PMID: 20703300]
[25]
Zhou, M.; Yang, J.M.; Xiong, X. The emerging landscape of circular RNA in cardiovascular diseases. J. Mol. Cell. Cardiol., 2018, 122, 134-139.
[http://dx.doi.org/10.1016/j.yjmcc.2018.08.012] [PMID: 30118789]
[26]
Zhang, S.; Aibara, S.; Vos, S.M.; Agafonov, D.E.; Lührmann, R.; Cramer, P. Structure of a transcribing RNA polymerase II–U1 snRNP complex. Science, 2021, 371(6526), 305-309.
[http://dx.doi.org/10.1126/science.abf1870] [PMID: 33446560]
[27]
Li, Z.; Huang, C.; Bao, C.; Chen, L.; Lin, M.; Wang, X.; Zhong, G.; Yu, B.; Hu, W.; Dai, L.; Zhu, P.; Chang, Z.; Wu, Q.; Zhao, Y.; Jia, Y.; Xu, P.; Liu, H.; Shan, G. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol., 2015, 22(3), 256-264.
[http://dx.doi.org/10.1038/nsmb.2959] [PMID: 25664725]
[28]
Oka, T.; Akazawa, H.; Naito, A.T.; Komuro, I. Angiogenesis and cardiac hypertrophy: Maintenance of cardiac function and causative roles in heart failure. Circ. Res., 2014, 114(3), 565-571.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.300507] [PMID: 24481846]
[29]
Siede, D.; Rapti, K.; Gorska, A.A.; Katus, H.A.; Altmüller, J.; Boeckel, J.N.; Meder, B.; Maack, C.; Völkers, M.; Müller, O.J.; Backs, J.; Dieterich, C. Identification of circular RNAs with host gene-independent expression in human model systems for cardiac differentiation and disease. J. Mol. Cell. Cardiol., 2017, 109, 48-56.
[http://dx.doi.org/10.1016/j.yjmcc.2017.06.015] [PMID: 28676412]
[30]
Tan, W.L.W.; Lim, B.T.S.; Nzelu, A.C.G.O.; Johnson, A.M.; Dashi, A.; See, K.; Tiang, Z.; Lee, D.P.; Chua, W.W.; Luu, T.D.A.; Li, P.Y.Q.; Richards, A.M.; Foo, R.S.Y. A landscape of circular RNA expression in the human heart. Cardiovasc. Res., 2017, 113(3), cvw250.
[http://dx.doi.org/10.1093/cvr/cvw250] [PMID: 28082450]
[31]
Fathi, M.; Gharakhanlou, R.; Rezaei, R. The Changes of Heart miR-1 and miR-133 Expressions following Physiological Hypertrophy Due to Endurance Training. Cell J., 2020, 22(S1), 133-140.
[http://dx.doi.org/10.22074/cellj.2020.7014] [PMID: 32779443]
[32]
Lim, T.B.; Aliwarga, E.; Luu, T.D.A.; Li, Y.P.; Ng, S.L.; Annadoray, L.; Sian, S.; Johnson, A.M.A.; Foo, R.S.Y. Targeting the highly abundant circular RNA circSlc8a1 in cardiomyocytes attenuates pressure overload induced hypertrophy. Cardiovasc. Res., 2019, 115(14), 1998-2007.
[http://dx.doi.org/10.1093/cvr/cvz130] [PMID: 31114845]
[33]
Li, H.; Xu, J.D.; Fang, X.H.; Zhu, J.N.; Yang, J.; Pan, R.; Yuan, S.J.; Zeng, N.; Yang, Z.Z.; Yang, H.; Wang, X.P.; Duan, J.Z.; Wang, S.; Luo, J.F.; Wu, S.L.; Shan, Z.X. Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4. Cardiovasc. Res., 2020, 116(7), 1323-1334.
[http://dx.doi.org/10.1093/cvr/cvz215] [PMID: 31397837]
[34]
Lin, X.; Zhang, L.; Zhang, W.; Lei, X.; Lu, Q.; Ma, A. Circular RNA circ_0001006 aggravates cardiac hypertrophy via miR-214-3p/PAK6 axis. Aging, 2022, 14(5), 2210-2220.
[http://dx.doi.org/10.18632/aging.203461] [PMID: 35306484]
[35]
Chen, W.; Cen, S.; Zhou, X.; Yang, T.; Wu, K.; Zou, L.; Luo, J.; Li, C.; Lv, D.; Mao, X. Circular RNA CircNOLC1, Upregulated by NF-KappaB, Promotes the Progression of Prostate Cancer via miR-647/PAQR4 Axis. Front. Cell Dev. Biol., 2021, 8, 624764.
[http://dx.doi.org/10.3389/fcell.2020.624764] [PMID: 33490086]
[36]
Bai, S.; Xiong, X.; Tang, B.; Ji, T.; Li, X.; Qu, X.; Li, W. Exosomal circ_DLGAP4 promotes diabetic kidney disease progression by sponging miR-143 and targeting ERBB3/NF-κB/MMP-2 axis. Cell Death Dis., 2020, 11(11), 1008.
[http://dx.doi.org/10.1038/s41419-020-03169-3] [PMID: 33230102]
[37]
Xu, X.; Wang, J.; Wang, X. Silencing of circHIPK3 Inhibits Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction by Sponging miR-185-3p. Drug Des. Devel. Ther., 2020, 14, 5699-5710.
[http://dx.doi.org/10.2147/DDDT.S245199] [PMID: 33402817]
[38]
Wang, K.; Long, B.; Liu, F.; Wang, J.X.; Liu, C.Y.; Zhao, B.; Zhou, L.Y.; Sun, T.; Wang, M.; Yu, T.; Gong, Y.; Liu, J.; Dong, Y.H.; Li, N.; Li, P.F. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur. Heart J., 2016, 37(33), 2602-2611.
[http://dx.doi.org/10.1093/eurheartj/ehv713] [PMID: 26802132]
[39]
Li, S, Yang K, Cao W, Guo R, Liu Z, Zhang J, Fan A, Huang Y, Ma C, Li L, Fan G. Tanshinone IIA enhances the therapeutic efficacy of mesenchymal stem cells derived exosomes in myocardial ischemia/reperfusion injury via up-regulating miR-223-5p. J Control Release, 2024, 291(358), 13-26.
[http://dx.doi.org/10.1016/j.jconrel.2023.04.014] [PMID: 37086952]
[40]
Qin, D.; Wang, X.; Li, Y.; Yang, L.; Wang, R.; Peng, J.; Essandoh, K.; Mu, X.; Peng, T.; Han, Q.; Yu, K.J.; Fan, G.C. MicroRNA-223-5p and -3p Cooperatively Suppress Necroptosis in Ischemic/Reperfused Hearts. J. Biol. Chem., 2016, 291(38), 20247-20259.
[http://dx.doi.org/10.1074/jbc.M116.732735] [PMID: 27502281]
[41]
Murtaza, I.; Wang, H.X.; Mushtaq, S.; Javed, Q.; Li, P.F. Interplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1-Induced Cardiomyocyte Hypertrophy. Iran. J. Basic Med. Sci., 2013, 16(8), 928-935.
[PMID: 24106598]
[42]
Li, H.L.; Liang, S.; Cui, J.H.; Han, G.Y. Targeting of GSK-3β by miR-214 to facilitate gastric cancer cell proliferation and decrease of cell apoptosis. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(1), 127-134.
[http://dx.doi.org/10.26355/eurrev_201801_14109] [PMID: 29364479]
[43]
Pan, J.; Xu, Z.; Guo, G.; Xu, C.; Song, Z.; Li, K.; Zhong, K.; Wang, D. Circ_nuclear factor I X (circNfix) attenuates pressure overload-induced cardiac hypertrophy via regulating miR-145-5p/ATF3 axis. Bioengineered, 2021, 12(1), 5373-5385.
[http://dx.doi.org/10.1080/21655979.2021.1960462] [PMID: 34468254]
[44]
Koren, L.; Elhanani, O.; Kehat, I.; Hai, T.; Aronheim, A. Adult cardiac expression of the activating transcription factor 3, ATF3, promotes ventricular hypertrophy. PLoS One, 2013, 8(7), e68396.
[http://dx.doi.org/10.1371/journal.pone.0068396] [PMID: 23874609]
[45]
Lin, K.H.; Kumar, V.B.; Shanmugam, T.; Shibu, M.A.; Chen, R.J.; Kuo, C.H.; Ho, T.J.; Padma, V.V.; Yeh, Y.L.; Huang, C.Y. miR-145-5p targets paxillin to attenuate angiotensin II-induced pathological cardiac hypertrophy via downregulation of Rac 1, pJNK, p-c-Jun, NFATc3, ANP and by Sirt-1 upregulation. Mol. Cell. Biochem., 2021, 476(9), 3253-3260.
[http://dx.doi.org/10.1007/s11010-021-04100-w] [PMID: 33886061]
[46]
Wang, L.P.; Han, R.M.; Wu, B.; Luo, M.Y.; Deng, Y.H.; Wang, W.; Huang, C.; Xie, X.; Luo, J. Mst1 silencing alleviates hypertensive myocardial injury associated with the augmentation of microvascular endothelial cell autophagy. Int. J. Mol. Med., 2022, 50(6), 146.
[http://dx.doi.org/10.3892/ijmm.2022.5202] [PMID: 36367168]
[47]
Zhang, C.L.; Long, T.Y.; Bi, S.S.; Sheikh, S.A.; Li, F. CircPAN3 ameliorates myocardial ischaemia/reperfusion injury by targeting miR-421/Pink1 axis-mediated autophagy suppression. Lab. Invest., 2021, 101(1), 89-103.
[http://dx.doi.org/10.1038/s41374-020-00483-4] [PMID: 32929177]
[48]
Guo, L.; Guo, M.; Yao, J.; Weng, Y.; Zhang, X. MicroRNA-421 improves ischemia/reperfusion injury via regulation toll-like receptor 4 pathway. J. Int. Med. Res., 2020, 48(3), 300060519871863.
[http://dx.doi.org/10.1177/0300060519871863] [PMID: 31847632]
[49]
Zeng, J.; Zhang, Z.; Liao, Q.; Lu, Q.; Liu, J.; Yuan, L.; Liu, G. CircPan3 Promotes the Ghrelin System and Chondrocyte Autophagy by Sponging miR-667-5p During Rat Osteoarthritis Pathogenesis. Front. Cell Dev. Biol., 2021, 9, 719898.
[http://dx.doi.org/10.3389/fcell.2021.719898] [PMID: 34869311]
[50]
Shang, J.; Chen, W.M.; Liu, S.; Wang, Z.H.; Wei, T.N.; Chen, Z.Z.; Wu, W.B. CircPAN3 contributes to drug resistance in acute myeloid leukemia through regulation of autophagy. Leuk. Res., 2019, 85, 106198.
[http://dx.doi.org/10.1016/j.leukres.2019.106198] [PMID: 31401408]
[51]
Liu, Y.; Chen, X.; Yao, J.; Kang, J. Circular RNA ACR relieves high glucose-aroused RSC96 cell apoptosis and autophagy via declining microRNA-145-3p. J. Cell. Biochem., 2019, 122(9), 1252.
[http://dx.doi.org/10.1002/jcb.29568] [PMID: 31886589]
[52]
Zhou, L.Y.; Zhai, M.; Huang, Y.; Xu, S.; An, T.; Wang, Y.H.; Zhang, R.C.; Liu, C.Y.; Dong, Y.H.; Wang, M.; Qian, L.L.; Ponnusamy, M.; Zhang, Y.H.; Zhang, J.; Wang, K. The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/FAM65B pathway. Cell Death Differ., 2019, 26(7), 1299-1315.
[http://dx.doi.org/10.1038/s41418-018-0206-4] [PMID: 30349076]
[53]
Guo, Q.; Xu, Y.; Li, J.; An, W.; Luo, D.; Huang, C.; Huang, Y. Explore the Effect and Target of Liraglutide on Islet Function in Type 2 Diabetic Rats by miRNA Omics Technology. Diabetes Metab. Syndr. Obes., 2021, 14, 3795-3807.
[http://dx.doi.org/10.2147/DMSO.S325030] [PMID: 34511953]
[54]
Huang, C.; Shu, L.; Zhang, H.; Zhu, X.; Huang, G.; Xu, J. Circ_ZNF512-Mediated miR-181d-5p Inhibition Limits Cardiomyocyte Autophagy and Promotes Myocardial Ischemia/Reperfusion Injury through an EGR1/mTORC1/TFEB-Based Mechanism. J. Med. Chem., 2022, 65(3), 1808-1821.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00745] [PMID: 35041407]
[55]
Wang, K.; Gan, T.Y.; Li, N.; Liu, C.Y.; Zhou, L.Y.; Gao, J.N.; Chen, C.; Yan, K.W.; Ponnusamy, M.; Zhang, Y.H.; Li, P.F. Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death Differ., 2017, 24(6), 1111-1120.
[http://dx.doi.org/10.1038/cdd.2017.61] [PMID: 28498369]
[56]
Gao, G.; Chen, W.; Yan, M.; Liu, J.; Luo, H.; Wang, C.; Yang, P. Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure by inhibiting mTOR signaling. Int. J. Mol. Med., 2019, 45(1), 195-209.
[http://dx.doi.org/10.3892/ijmm.2019.4407] [PMID: 31746373]
[57]
Wencker, D.; Chandra, M.; Nguyen, K.; Miao, W.; Garantziotis, S.; Factor, S.M.; Shirani, J.; Armstrong, R.C.; Kitsis, R.N. A mechanistic role for cardiac myocyte apoptosis in heart failure. J. Clin. Invest., 2003, 111(10), 1497-1504.
[http://dx.doi.org/10.1172/JCI17664] [PMID: 12750399]
[58]
Li, S.; Ma, Y.; Tan, Y.; Ma, X.; Zhao, M.; Chen, B.; Zhang, R.; Chen, Z.; Wang, K. Profiling and functional analysis of circular RNAs in acute promyelocytic leukemia and their dynamic regulation during all-trans retinoic acid treatment. Cell Death Dis., 2018, 9(6), 651.
[http://dx.doi.org/10.1038/s41419-018-0699-2] [PMID: 29844435]
[59]
Zhou, J.; Li, L.; Hu, H.; Wu, J.; Chen, H.; Feng, K.; Ma, L. Circ-HIPK2 Accelerates Cell Apoptosis and Autophagy in Myocardial Oxidative Injury by Sponging miR-485-5p and Targeting ATG101. J. Cardiovasc. Pharmacol., 2020, 76(4), 427-436.
[http://dx.doi.org/10.1097/FJC.0000000000000879] [PMID: 33027196]
[60]
Ma, X.; Yang, X.; Li, S.; Lin, Y.; Dong, T. miR-485-5p Induces HSP90 Ubiquitination to Impede Circular RNAcircHIPK2 Associated Cell Proliferation of Non-Small Cell Lung Cancer: Therapeutic Implications. Ann. Clin. Lab. Sci., 2022, 52(1), 109-116.
[PMID: 35181624]
[61]
Xu, H.; Zhang, Y.; Qi, L.; Ding, L.; Jiang, H.; Yu, H. NFIX Circular RNA Promotes Glioma Progression by Regulating miR-34a-5p via Notch Signaling Pathway. Front. Mol. Neurosci., 2018, 11, 225.
[http://dx.doi.org/10.3389/fnmol.2018.00225] [PMID: 30072869]
[62]
Wang, X.; Sun, Q.; Hu, W. Carvedilol Protects Against the H2O2-induced Cell Damages in Rat Myoblasts by Regulating the Circ_NFIX/miR-125b-5p/TLR4 Signal Axis. J. Cardiovasc. Pharmacol., 2021, 78(4), 604-614.
[http://dx.doi.org/10.1097/FJC.0000000000001095] [PMID: 34173813]
[63]
Yu, H.; Zhao, L.; Zhao, Y.; Fei, J.; Zhang, W. Circular RNA circ_0029589 regulates proliferation, migration, invasion, and apoptosis in ox-LDL-stimulated VSMCs by regulating miR-424-5p/IGF2 axis. Vascul. Pharmacol., 2020, 135, 106782.
[http://dx.doi.org/10.1016/j.vph.2020.106782] [PMID: 32860985]
[64]
Huang, Z.; Li, P.; Wu, L.; Zhang, D.; Du, B.; Liang, C.; Gao, L.; Zhang, Y.; Yao, R. Hsa_circ_0029589 knockdown inhibits the proliferation, migration and invasion of vascular smooth muscle cells via regulating miR-214-3p and STIM1. Life Sci., 2020, 259, 118251.
[http://dx.doi.org/10.1016/j.lfs.2020.118251] [PMID: 32795540]
[65]
Zhao, B.; Song, X.; Guan, H. CircACAP2 promotes breast cancer proliferation and metastasis by targeting miR-29a/b-3p-COL5A1 axis. Life Sci., 2020, 244, 117179.
[http://dx.doi.org/10.1016/j.lfs.2019.117179] [PMID: 31863774]
[66]
Zhu, J.; Xiang, X.L.; Cai, P.; Jiang, Y.L.; Zhu, Z.W.; Hu, F.L.; Wang, J. CircRNA-ACAP2 contributes to the invasion, migration, and anti-apoptosis of neuroblastoma cells through targeting the miRNA-143-3p-hexokinase 2 axis. Transl. Pediatr., 2021, 10(12), 3237-3247.
[http://dx.doi.org/10.21037/tp-21-527] [PMID: 35070838]
[67]
Zhang, G.; Liu, Z.; Zhong, J.; Lin, L. Circ-ACAP2 facilitates the progression of colorectal cancer through mediating miR-143-3p/FZD4 axis. Eur. J. Clin. Invest., 2021, 51(12), e13607.
[http://dx.doi.org/10.1111/eci.13607] [PMID: 34085707]
[68]
Liu, X.; Wang, M.; Li, Q.; Liu, W.; Song, Q.; Jiang, H. CircRNA ACAP2 induces myocardial apoptosis after myocardial infarction by sponging miR-29. Minerva Med., 2022, 113(1), 128-134.
[http://dx.doi.org/10.23736/S0026-4806.20.06600-8] [PMID: 32406223]
[69]
Yu, L.; Wang, Q.; Liu, N.; Zhao, J.; Yu, J.; Tao, S. Circular RNA circ-Ttc3 protects HaCaT cells from hypoxic injury by downregulation of miR-449a. IUBMB Life, 2020, 72(3), 505-514.
[http://dx.doi.org/10.1002/iub.2236] [PMID: 32043754]
[70]
Cai, L.; Qi, B.; Wu, X.; Peng, S.; Zhou, G.; Wei, Y.; Xu, J.; Chen, S.; Liu, S. Circular RNA Ttc3 regulates cardiac function after myocardial infarction by sponging miR-15b. J. Mol. Cell. Cardiol., 2019, 130, 10-22.
[http://dx.doi.org/10.1016/j.yjmcc.2019.03.007] [PMID: 30876857]
[71]
Sala, L.; Valls, F.H.; Stanisavljevic, J.; Curto, J.; Vergés, J.; Peña, R.; Duch, P.; Alcaraz, J.; Herreros, G.A.; Baulida, J. Abrogation of myofibroblast activities in metastasis and fibrosis by methyltransferase inhibition. Int. J. Cancer, 2019, 145(11), 3064-3077.
[http://dx.doi.org/10.1002/ijc.32376] [PMID: 31032902]
[72]
Ni, H.; Li, W.; Zhuge, Y.; Xu, S.; Wang, Y.; Chen, Y.; Shen, G.; Wang, F. Inhibition of circHIPK3 prevents angiotensin II-induced cardiac fibrosis by sponging miR-29b-3p. Int. J. Cardiol., 2019, 292, 188-196.
[http://dx.doi.org/10.1016/j.ijcard.2019.04.006] [PMID: 30967276]
[73]
Huang, S.; Li, X.; Zheng, H.; Si, X.; Li, B.; Wei, G.; Li, C.; Chen, Y.; Chen, Y.; Liao, W.; Liao, Y.; Bin, J. Loss of Super-Enhancer-Regulated circRNA Nfix Induces Cardiac Regeneration After Myocardial Infarction in Adult Mice. Circulation, 2019, 139(25), 2857-2876.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.038361] [PMID: 30947518]
[74]
Zheng, Q.; Bao, C.; Guo, W.; Li, S.; Chen, J.; Chen, B.; Luo, Y.; Lyu, D.; Li, Y.; Shi, G.; Liang, L.; Gu, J.; He, X.; Huang, S. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun., 2016, 7(1), 11215.
[http://dx.doi.org/10.1038/ncomms11215] [PMID: 27050392]
[75]
Zhang, J.; Lu, J.; Xie, H.; Wang, D.; Ni, H.; Zhu, Y.; Ren, L.; Meng, X.; Wang, R. circHIPK3 regulates lung fibroblast-to-myofibroblast transition by functioning as a competing endogenous RNA. Cell Death Dis., 2019, 10(3), 182.
[http://dx.doi.org/10.1038/s41419-019-1430-7] [PMID: 30796204]
[76]
Wu, Y.; Luan, J.; Jiao, C.; Zhang, S.; Ma, C.; Zhang, Y.; Fu, J.; Lai, E.Y.; Kopp, J.B.; Pi, J.; Zhou, H. circHIPK3 Exacerbates Folic Acid-Induced Renal Tubulointerstitial Fibrosis by Sponging miR-30a. Front. Physiol., 2022, 12, 715567.
[http://dx.doi.org/10.3389/fphys.2021.715567] [PMID: 35058790]
[77]
Wang, W.; Zhang, S.; Xu, L.; Feng, Y.; Wu, X.; Zhang, M.; Yu, Z.; Zhou, X. Involvement of circHIPK3 in the pathogenesis of diabetic cardiomyopathy in mice. Diabetologia, 2021, 64(3), 681-692.
[http://dx.doi.org/10.1007/s00125-020-05353-8] [PMID: 33398455]
[78]
Shan, K.; Liu, C.; Liu, B.H.; Chen, X.; Dong, R.; Liu, X.; Zhang, Y.Y.; Liu, B.; Zhang, S.J.; Wang, J.J.; Zhang, S.H.; Wu, J.H.; Zhao, C.; Yan, B. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation, 2017, 136(17), 1629-1642.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.029004] [PMID: 28860123]
[79]
Cheng, Y.; He, Q.; Jin, T.; Li, N. miR-214-3p Protects and Restores the Myocardial Tissue of Rat Myocardial Infarction Model by Targeting PTEN. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/1175935] [PMID: 35899226]
[80]
Zhao, Q.; Li, W.; Pan, W.; Wang, Z. CircRNA 010567 plays a significant role in myocardial infarction via the regulation of the miRNA-141/DAPK1 axis. J. Thorac. Dis., 2021, 13(4), 2447-2459.
[http://dx.doi.org/10.21037/jtd-21-212] [PMID: 34012592]
[81]
Zhang, H.W.; Jin, J.L.; Cao, Y.X.; Guo, Y.L.; Wu, N.Q.; Zhu, C.G.; Xu, R.X.; Dong, Q.; Li, J.J. Association of diabetes mellitus with clinical outcomes in patients with different coronary artery stenosis. Cardiovasc. Diabetol., 2021, 20(1), 214.
[http://dx.doi.org/10.1186/s12933-021-01403-6] [PMID: 34688289]
[82]
Zhou, B.; Yu, J.W. A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1. Biochem. Biophys. Res. Commun., 2017, 487(4), 769-775.
[http://dx.doi.org/10.1016/j.bbrc.2017.04.044] [PMID: 28412345]
[83]
Bai, M.; Pan, C.L.; Jiang, G.X.; Zhang, Y.M. CircRNA 010567 improves myocardial infarction rats through inhibiting TGF-β1. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(1), 369-375.
[http://dx.doi.org/10.26355/eurrev_202001_19935] [PMID: 31957851]
[84]
Tang, C.M.; Zhang, M.; Huang, L.; Hu, Z.; Zhu, J.N.; Xiao, Z.; Zhang, Z.; Lin, Q.; Zheng, X.L.; -Yang, M.; Wu, S.L.; Cheng, J.D.; Shan, Z.X. CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci. Rep., 2017, 7(1), 40342.
[http://dx.doi.org/10.1038/srep40342] [PMID: 28079129]
[85]
Jin, Z.Q. MicroRNA targets and biomarker validation for diabetes-associated cardiac fibrosis. Pharmacol. Res., 2021, 174, 105941.
[http://dx.doi.org/10.1016/j.phrs.2021.105941] [PMID: 34656765]
[86]
Zhao, Z.; Li, X.; Gao, C.; Jian, D.; Hao, P.; Rao, L.; Li, M. Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease. Sci. Rep., 2017, 7(1), 39918.
[http://dx.doi.org/10.1038/srep39918] [PMID: 28045102]
[87]
Somoza, S.A.; Zhang, L.; Vausort, M.; Devaux, Y. The circular RNA MICRA for risk stratification after myocardial infarction. Int. J. Cardiol. Heart Vasc., 2017, 17, 33-36.
[http://dx.doi.org/10.1016/j.ijcha.2017.11.001] [PMID: 29159270]
[88]
Houweling, A.C.; van Borren, M.M.; Moorman, A.F.; Christoffels, V.M. Expression and regulation of the atrial natriuretic factor encoding gene Nppa during development and disease. Cardiovasc Res, 67(4), 583-593.
[89]
Khananshvili, D. The SLC8 gene family of sodium–calcium exchangers (NCX) – Structure, function, and regulation in health and disease. Mol. Aspects Med., 2013, 34(2-3), 220-235.
[http://dx.doi.org/10.1016/j.mam.2012.07.003] [PMID: 23506867]
[90]
Justice, M.J.; Hirschi, K.K. The role of quaking in mammalian embryonic development. Adv. Exp. Med. Biol., 2010, 693, 82-92.
[http://dx.doi.org/10.1007/978-1-4419-7005-3_6] [PMID: 21189687]
[91]
Lu, D.; Chatterjee, S.; Xiao, K.; Riedel, I.; Huang, C.K.; Costa, A.; Cushman, S.; Neufeldt, D.; Rode, L.; Schmidt, A.; Juchem, M.; Leonardy, J.; Büchler, G.; Blume, J.; Gern, O.L.; Kalinke, U.; Wen Tan, W.L.; Foo, R.; Vink, A.; van Laake, L.W.; van der Meer, P.; Bär, C.; Thum, T. A circular RNA derived from the insulin receptor locus protects against doxorubicin-induced cardiotoxicity. Eur. Heart J., 2022, 43(42), 4496-4511.
[http://dx.doi.org/10.1093/eurheartj/ehac337] [PMID: 35758064]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy