Generic placeholder image

Current Respiratory Medicine Reviews

Editor-in-Chief

ISSN (Print): 1573-398X
ISSN (Online): 1875-6387

Review Article

An Overview of Pathological Pathway of Asthma and Molecular Mechanisms of Anti-Asthmatic Phytoconstituents

Author(s): Aysha Javed, Sristi Srivastava, Anas Khan, Badruddeen .*, Juber Akhtar, Mohammad Irfan Khan and Mohammad Ahmad

Volume 20, Issue 4, 2024

Published on: 09 May, 2024

Page: [322 - 334] Pages: 13

DOI: 10.2174/011573398X286987240409040829

Price: $65

Open Access Journals Promotions 2
Abstract

Asthma presents with chronic inflammation and airway constriction triggered by allergens or pollution. Inflammatory mediators such as histamine and leukotrienes, released in response to inflammation, prompt bronchoconstriction, contracting the smooth muscles around the airways. This constriction obstructs airflow and worsens symptoms such as coughing, wheezing, and breathlessness. Additionally, airways become hyperresponsive, reacting excessively even to harmless stimuli. Persistent inflammation leads to the production of thick mucus, further blocking airflow and worsening symptoms. Mast cell-released histamine triggers bronchoconstriction, leukotrienes, and prostaglandins (e.g., Interleukin-4, Interleukin-13) and promotes airway inflammation while cytokines drive Th2-mediated immune responses. Current therapies in asthma include long-acting beta agonists, leukotriene modifiers, inhaled corticosteroids, and immunomodulators. Natural products, due to their anti-inflammatory, antioxidant and immunomodulatory properties, have emerged as promising anti-asthmatic candidates. Polyphenols (quercetin, resveratrol, curcumin, etc.) and Omega-3 fatty acids offer anti-inflammatory benefits by suppressing cytokines and oxidative stress. Natural products intervene at various levels of these pathways. Quercetin inhibits the release of mast cell histamines, alleviating bronchoconstriction. Curcumin suppresses Th2 cytokines, mitigating the allergic response. Omega-3 fatty acids modulate leukotriene and prostaglandin production, reducing airway inflammation. This review concludes that natural phytobioactives have potential in asthma management due to their complex mechanisms that target various immuno-inflammatory mediators.

Keywords: Asthma, pathological pathways, immuno-inflammatory mediators, phytobioactives, polyphenols, bronchodilator.

Graphical Abstract
[1]
Zainab R, Akram M, Daniyal M, Riaz M. Awareness and current therapeutics of asthma. Dose Response 2019; 17(3)
[http://dx.doi.org/10.1177/1559325819870900] [PMID: 31523203]
[2]
Leynaert B, Sunyer J, Garcia-Esteban R, et al. Gender differences in prevalence, diagnosis and incidence of allergic and non-allergic asthma: a population-based cohort. Thorax 2012; 67(7): 625-31.
[http://dx.doi.org/10.1136/thoraxjnl-2011-201249] [PMID: 22334535]
[3]
Koinis-Mitchell D, McQuaid EL, Friedman D, et al. Latino caregivers’ beliefs about asthma: causes, symptoms, and practices. J Asthma 2008; 45(3): 205-10.
[http://dx.doi.org/10.1080/02770900801890422] [PMID: 18415827]
[4]
Kaufman G. Asthma: pathophysiology, diagnosis and management. Nursing Standard 2011; 26(5): 48-56.
[http://dx.doi.org/10.7748/ns2011.10.26.5.48.c8744]
[5]
Denning DW, Pleuvry A, Cole DC. Global burden of allergic bronchopulmonary aspergillosis with asthma and its complication chronic pulmonary aspergillosis in adults. Med Mycol 2013; 51(4): 361-70.
[http://dx.doi.org/10.3109/13693786.2012.738312] [PMID: 23210682]
[6]
Kheradmand F, Rishi K, Corry DB. Environmental contributions to the allergic asthma epidemic. Environ Health Perspect 2002; 110(Suppl 4) (Suppl. 4): 553-6.
[http://dx.doi.org/10.1289/ehp.02110s4553] [PMID: 12194885]
[7]
Walter MJ, Holtzman MJ. A centennial history of research on asthma pathogenesis. Am J Respir Cell Mol Biol 2005; 32(6): 483-9.
[http://dx.doi.org/10.1165/rcmb.F300] [PMID: 15901618]
[8]
Moulaei N, Mirjahanbakhsh SM, Momeni MK, Shahryar M, Ansari H. Evaluating the effectiveness of tiotropium bromide on severe asthma patients referred to ali ibn abi talib hospital in zahedan, southeastern iran. J Adv Pharm Educa Res 2020; 10(S1): 77.
[9]
Maddox L, Schwartz DA. The pathophysiology of asthma. Annu Rev Med 2002; 53(1): 477-98.
[http://dx.doi.org/10.1146/annurev.med.53.082901.103921] [PMID: 11818486]
[10]
Raby KL, Michaeloudes C, Tonkin J, Chung KF, Bhavsar PK. Mechanisms of airway epithelial injury and abnormal repair in asthma and COPD. Front Immunol 2023; 14: 1201658.
[http://dx.doi.org/10.3389/fimmu.2023.1201658] [PMID: 37520564]
[11]
Busse WW, Rosenwasser LJ. Mechanisms of asthma. J Allergy Clin Immunol 2003; 111(3): S799-804.
[http://dx.doi.org/10.1067/mai.2003.158] [PMID: 12618746]
[12]
Barnes PJ, Chung KF, Page CP. Inflammatory mediators of asthma: an update. Pharmacol Rev 1998; 50(4): 515-96.
[http://dx.doi.org/10.1124/pr.56.4.2] [PMID: 9860804]
[13]
Ichinose M. Differences of inflammatory mechanisms in asthma and COPD. Allergol Int 2009; 58(3): 307-13.
[http://dx.doi.org/10.2332/allergolint.09-RAI-0106] [PMID: 19628975]
[14]
Kudo M, Ishigatsubo Y, Aoki I. Pathology of asthma. Front Microbiol 2013; 4: 263.
[http://dx.doi.org/10.3389/fmicb.2013.00263] [PMID: 24032029]
[15]
Holt PG, Macaubas C, Stumbles PA, Sly PD. The role of allergy in the development of asthma. Nature 1999; 402(S6760): 12-7.
[http://dx.doi.org/10.1038/35037009] [PMID: 10586890]
[16]
Barrios RJ, Kheradmand F, Batts LK, Corry DB. Asthma: Pathology and pathophysiology. Arch Pathol Lab Med 2006; 130(4): 447-51.
[http://dx.doi.org/10.5858/2006-130-447-APAP] [PMID: 16594736]
[17]
Crocker DD, Kinyota S, Dumitru GG, et al. Effectiveness of home-based, multi-trigger, multicomponent interventions with an environmental focus for reducing asthma morbidity: a community guide systematic review. Am J Prev Med 2011; 41(2) (Suppl. 1): S5-S32.
[http://dx.doi.org/10.1016/j.amepre.2011.05.012] [PMID: 21767736]
[18]
Busse WW, Calhoun WF, Sedgwick JD. Mechanism of airway inflammation in asthma. Am Rev Respir Dis 1993; 147(6_pt_2): S20-4.
[http://dx.doi.org/10.1164/ajrccm/147.6_Pt_2.S20] [PMID: 8494196]
[19]
Cohen L, e X, Tarsi J, et al. Epithelial cell proliferation contributes to airway remodeling in severe asthma. Am J Respir Crit Care Med 2007; 176(2): 138-45.
[http://dx.doi.org/10.1164/rccm.200607-1062OC] [PMID: 17463414]
[20]
Yssel H, Abbal C, Pène J, Bousquet J. The role of IgE in asthma. Clin Exp Allergy 1998; 28 (Suppl. 5): 104-9.
[http://dx.doi.org/10.1046/j.1365-2222.1998.028s5104.x] [PMID: 9988455]
[21]
Bousquet J, Jeffery PK, Busse WW, Johnson M, Vignola AM. Asthma. From bronchoconstriction to airways inflammation and remodeling Am J Respir Crit Care Med 2000; 161(5): 1720-45.
[http://dx.doi.org/10.1164/ajrccm.161.5.9903102] [PMID: 10806180]
[22]
Hough KP, Curtiss ML, Blain TJ, et al. Airway remodeling in asthma. Front Med 2020; 7: 191.
[http://dx.doi.org/10.3389/fmed.2020.00191] [PMID: 32509793]
[23]
Wardlaw AJ. Molecular basis for selective eosinophil trafficking in asthma: A multistep paradigm. J Allergy Clin Immunol 1999; 104(5): 917-26.
[http://dx.doi.org/10.1016/S0091-6749(99)70069-2] [PMID: 10550733]
[24]
Corrigan CJ, Wang W, Meng Q, et al. T-helper cell type 2 (Th2) memory T cell-potentiating cytokine IL-25 has the potential to promote angiogenesis in asthma. Proc Natl Acad Sci USA 2011; 108(4): 1579-84.
[http://dx.doi.org/10.1073/pnas.1014241108] [PMID: 21205894]
[25]
Noor G, Badruddeen , Akhtar J, Singh B, Ahmad M, Khan MI. An outlook on the target-based molecular mechanism of phytoconstituents as immunomodulators. Phytother Res 2023; 37(11): 5058-79.
[http://dx.doi.org/10.1002/ptr.7969]
[26]
Gerthoffer WT, Singer CA. MAPK regulation of gene expression in airway smooth muscle. Respir Physiol Neurobiol 2003; 137(2-3): 237-50.
[http://dx.doi.org/10.1016/S1569-9048(03)00150-2] [PMID: 14516729]
[27]
Rowe RK, Gill MA. Asthma: the interplay between viral infections and allergic diseases. Immunol Allerg Clin 2015; 35(1): 115-27.
[PMID: 25459580]
[28]
Goplen N, Karim Z, Guo L, et al. ERK1 is important for Th2 differentiation and development of experimental asthma. FASEB J 2012; 26(5): 1934-45.
[http://dx.doi.org/10.1096/fj.11-196477] [PMID: 22262639]
[29]
Yao J, Jiang M, Zhang Y, Liu X, Du Q, Feng G. Chrysin alleviates allergic inflammation and airway remodeling in a murine model of chronic asthma. Int Immunopharmacol 2016; 32: 24-31.
[http://dx.doi.org/10.1016/j.intimp.2016.01.005] [PMID: 26780233]
[30]
Caramori G, Adcock I. Pharmacology of airway inflammation in asthma and COPD. Pulm Pharmacol Ther 2003; 16(5): 247-77.
[http://dx.doi.org/10.1016/S1094-5539(03)00070-1] [PMID: 12877818]
[31]
Caramori G, Ito K, Adcock IM. Transcription factors in asthma and COPD. IDrugs 2004; 7(8): 764-70.
[PMID: 15334310]
[32]
Barnes PJ. Transcription factors in airway diseases. Lab Invest 2006; 86(9): 867-72.
[http://dx.doi.org/10.1038/labinvest.3700456] [PMID: 16865089]
[33]
Platts-Mills T, Leung DY, Schatz M. The role of allergens in asthma. Am Fam Physician 2007; 76(5): 675-80.
[PMID: 17894137]
[34]
Billingham MEJ. Cytokines as inflammatory mediators. Br Med Bull 1987; 43(2): 350-70.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a072187] [PMID: 3319033]
[35]
Björnsdottir US, Cypcar DM. Asthma: an inflammatory mediator soup. Allergy 1999; 54(s49) (Suppl. 49): 55-61.
[http://dx.doi.org/10.1111/j.1398-9995.1999.tb04389.x] [PMID: 10422749]
[36]
Iqbal M, Verpoorte R, Korthout HAAJ, Mustafa NR. Phytochemicals as a potential source for TNF-α inhibitors. Phytochem Rev 2013; 12(1): 65-93.
[http://dx.doi.org/10.1007/s11101-012-9251-7]
[37]
Kips JC. Cytokines in asthma. Eur Respir J 2001; 18(1) (Suppl.): 24-33.
[http://dx.doi.org/10.1183/09031936.01.00229601] [PMID: 12392032]
[38]
Nakae S, Komiyama Y, Yokoyama H, et al. IL-1 is required for allergen-specific Th2 cell activation and the development of airway hypersensitivity response. Int Immunol 2003; 15(4): 483-90.
[http://dx.doi.org/10.1093/intimm/dxg054] [PMID: 12663678]
[39]
Nakajima H, Takatsu K. Role of cytokines in allergic airway inflammation. Int Arch Allergy Immunol 2007; 142(4): 265-73.
[http://dx.doi.org/10.1159/000097357] [PMID: 17124428]
[40]
Chialda L, Zhang M, Brune K, Pahl A. Inhibitors of mitogen-activated protein kinases differentially regulate costimulated T cell cytokine production and mouse airway eosinophilia. Respir Res 2005; 6(1): 36.
[http://dx.doi.org/10.1186/1465-9921-6-36] [PMID: 15833106]
[41]
Hallsworth MP, Moir LM, Lai D, Hirst SJ. Inhibitors of mitogen-activated protein kinases differentially regulate eosinophil-activating cytokine release from human airway smooth muscle. Am J Respir Crit Care Med 2001; 164(4): 688-97.
[http://dx.doi.org/10.1164/ajrccm.164.4.2011004] [PMID: 11520738]
[42]
Hedges JC, Singer CA, Gerthoffer WT. Mitogen-activated protein kinases regulate cytokine gene expression in human airway myocytes. Am J Respir Cell Mol Biol 2000; 23(1): 86-94.
[http://dx.doi.org/10.1165/ajrcmb.23.1.4014] [PMID: 10873157]
[43]
Liang Q, Guo L, Gogate S, et al. IL-2 and IL-4 stimulate MEK1 expression and contribute to T cell resistance against suppression by TGF-β and IL-10 in asthma. J Immunol 2010; 185(10): 5704-13.
[http://dx.doi.org/10.4049/jimmunol.1000690] [PMID: 20926789]
[44]
Oliveira TT, Campos KM, Cerqueira-Lima AT, et al. Potential therapeutic effect of Allium cepa L. and quercetin in a murine model of Blomia tropicalis induced asthma. Daru 2015; 23(1): 18.
[http://dx.doi.org/10.1186/s40199-015-0098-5] [PMID: 25890178]
[45]
Costa-Neto EM. The use of insects in folk medicine in the state of Bahia, northeastern Brazil, with notes on insects reported elsewhere in Brazilian folk medicine. Hum Ecol Interdiscip J 2002; 30(2): 245-63.
[http://dx.doi.org/10.1023/A:1015696830997]
[46]
Yao J, Zhang YS, Feng GZ, Du Q. Chrysin inhibits human airway smooth muscle cells proliferation through the extracellular signal-regulated kinase 1/2 signaling pathway. Mol Med Rep 2015; 12(5): 7693-8.
[http://dx.doi.org/10.3892/mmr.2015.4401] [PMID: 26502995]
[47]
Bae Y, Lee S, Kim SH. Chrysin suppresses mast cell-mediated allergic inflammation: Involvement of calcium, caspase-1 and nuclear factor-κB. Toxicol Appl Pharmacol 2011; 254(1): 56-64.
[http://dx.doi.org/10.1016/j.taap.2011.04.008] [PMID: 21515303]
[48]
Zhang DH, Cohn L, Ray P, Bottomly K, Ray A. Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J Biol Chem 1997; 272(34): 21597-603.
[http://dx.doi.org/10.1074/jbc.272.34.21597] [PMID: 9261181]
[49]
Hwang YP, Jin SW, Choi JH, et al. Inhibitory effects of l-theanine on airway inflammation in ovalbumin-induced allergic asthma. Food Chem Toxicol 2017; 99: 162-9.
[http://dx.doi.org/10.1016/j.fct.2016.11.032] [PMID: 27908701]
[50]
Jeon CM, Shin IS, Shin NR, et al. Siegesbeckia glabrescens attenuates allergic airway inflammation in LPS-stimulated RAW 264.7 cells and OVA induced asthma murine model. Int Immunopharmacol 2014; 22(2): 414-9.
[http://dx.doi.org/10.1016/j.intimp.2014.07.013] [PMID: 25066761]
[51]
Doshi VB, Shetye VM, Mahashur AA, Kamat SR. Picrorrhiza kurroa in bronchial asthma. J Postgrad Med 1983; 29(2): 89-95.
[PMID: 6355451]
[52]
Leandro LM, de Sousa Vargas F, Barbosa PCS, Neves JKO, da Silva JA, da Veiga-Junior VF. Chemistry and biological activities of terpenoids from copaiba (Copaifera spp.) oleoresins. Molecules 2012; 17(4): 3866-89.
[http://dx.doi.org/10.3390/molecules17043866] [PMID: 22466849]
[53]
Zhao YL, Cao J, Shang JH, et al. Airways antiallergic effect and pharmacokinetics of alkaloids from Alstonia scholaris. Phytomedicine 2017; 27: 63-72.
[http://dx.doi.org/10.1016/j.phymed.2017.02.002] [PMID: 28314480]
[54]
Amaral-Machado L, Oliveira WN, Moreira-Oliveira SS, et al. Use of natural products in asthma treatment. Evid Based Complement Alternat Med 2020; 2020: 1-35.
[http://dx.doi.org/10.1155/2020/1021258] [PMID: 32104188]
[55]
Yuan G, Wahlqvist ML, He G, Yang M, Li D. Natural products and anti-inflammatory activity. Asia Pac J Clin Nutr 2006; 15(2): 143-52.
[PMID: 16672197]
[56]
Fuchs S, Hsieh L T, Saarberg W, et al. Haemanthus coccineas extract and its main bioactive component narciclasine display profound anti-inflammatory activities in vitro and in vivo. J Cellul Molecu Medi 2015; 19(5): 1021-32.
[http://dx.doi.org/10.1111/jcmm.12493] [PMID: 25754537]
[57]
Vasconcelos JF, Teixeira MM, Barbosa-Filho JM, et al. The triterpenoid lupeol attenuates allergic airway inflammation in a murine model. Int Immunopharmacol 2008; 8(9): 1216-21.
[http://dx.doi.org/10.1016/j.intimp.2008.04.011] [PMID: 18602067]
[58]
Nair AM, Saraf MN. Inhibition of antigen and compound 48/80 induced contractions of guinea pig trachea by the ethanolic extract of the leaves of Vitex negundo Linn. Indian J Pharmacol 1995; 27(4): 230.
[59]
Paliwa JK, Dwivedi AK, Singh S, Gutpa RC. Pharmacokinetics and in-situ absorption studies of a new anti-allergic compound 73/602 in rats. Int J Pharm 2000; 197(1-2): 213-20.
[http://dx.doi.org/10.1016/S0378-5173(00)00324-0] [PMID: 10704808]
[60]
Yaqoob P. Monounsaturated fats and immune function. Proc Nutr Soc 1998; 57(4): 511-20.
[http://dx.doi.org/10.1079/PNS19980075] [PMID: 10096110]
[61]
Prasad S, Tyagi AK. Historical spice as a future drug: therapeutic potential of piperlongumine. Curr Pharm Des 2016; 22(27): 4151-9.
[http://dx.doi.org/10.2174/1381612822666160601103027] [PMID: 27262330]
[62]
Park HS, Kim SR, Lee YC. Impact of oxidative stress on lung diseases. Respirology 2009; 14(1): 27-38.
[http://dx.doi.org/10.1111/j.1440-1843.2008.01447.x] [PMID: 19144046]
[63]
Agra MF, Baracho GS, Nurit K, Basílio IJLD, Coelho VPM. Medicinal and poisonous diversity of the flora of “Cariri Paraibano”, Brazil. J Ethnopharmacol 2007; 111(2): 383-95.
[http://dx.doi.org/10.1016/j.jep.2006.12.007] [PMID: 17236731]
[64]
Santos AO, Ueda-Nakamura T, Dias Filho BP, Veiga Junior VF, Pinto AC, Nakamura CV. Antimicrobial activity of Brazilian copaiba oils obtained from different species of the Copaifera genus. Mem Inst Oswaldo Cruz 2008; 103(3): 277-81.
[http://dx.doi.org/10.1590/S0074-02762008005000015] [PMID: 18545856]
[65]
Tereza Cerqueira-Lima A, Maria Alcantara-Neves N, Carlos Pontes de Carvalho L, et al. Effects of Cissampelos sympodialis Eichl. and its alkaloid, warifteine, in an experimental model of respiratory allergy to Blomia tropicalis. Curr Drug Targets 2010; 11(11): 1458-67.
[http://dx.doi.org/10.2174/1389450111009011458] [PMID: 20583974]
[66]
Chung MJ, Pandey RP, Choi JW, Sohng JK, Choi DJ, Park YI. Inhibitory effects of kaempferol-3-O-rhamnoside on ovalbumin-induced lung inflammation in a mouse model of allergic asthma. Int Immunopharmacol 2015; 25(2): 302-10.
[http://dx.doi.org/10.1016/j.intimp.2015.01.031] [PMID: 25698556]
[67]
Zheng M, Zhang Q, Joe Y, et al. Curcumin induces apoptotic cell death of activated human CD4+ T cells via increasing endoplasmic reticulum stress and mitochondrial dysfunction. Int Immunopharmacol 2013; 15(3): 517-23.
[http://dx.doi.org/10.1016/j.intimp.2013.02.002] [PMID: 23415873]
[68]
Chong L, Zhang W, Nie Y, et al. Protective effect of curcumin on acute airway inflammation of allergic asthma in mice through Notch1-GATA3 signaling pathway. Inflammation 2014; 37(5): 1476-85.
[http://dx.doi.org/10.1007/s10753-014-9873-6] [PMID: 24706026]
[69]
Lee H, Han AR, Kim Y, et al. A new compound, 1H,8H-pyrano[3,4-c]pyran-1,8-dione, suppresses airway epithelial cell inflammatory responses in a murine model of asthma. Int J Immunopathol Pharmacol 2009; 22(3): 591-603.
[http://dx.doi.org/10.1177/039463200902200305] [PMID: 19822076]
[70]
Fuchs S, Hsieh LT, Saarberg W, et al. Haemanthus coccineus extract and its main bioactive component narciclasine display profound anti-inflammatory activities in vitro and in vivo. J Cell Mol Med 2015; 19(5): 1021-32.
[http://dx.doi.org/10.1111/jcmm.12493] [PMID: 25754537]
[71]
Manvi , Khan MI, Badruddeen , et al. Role of plant bioactive as diuretics: General considerations and mechanism of diuresis. Curr Hypertens Rev 2023; 19(2): 79-92.
[http://dx.doi.org/10.2174/1573402119666230612115220] [PMID: 37309769]
[72]
Ahmad A, Khushtar M, Kumar R, et al. Augmented reversal of cisplatin-induced delayed gastric emptying by amla (emblica officinalis) fruit extract in sprague-dawley rats. J Diet Suppl 2018; 15(5): 684-91.
[http://dx.doi.org/10.1080/19390211.2017.1385562] [PMID: 29115898]
[73]
Akhtar J, Ahmad U, Badruddeen , Khan MI. Metformin: Pharmacology and Drug Interactions. Intechopen 2021; 154.
[http://dx.doi.org/10.5772/intechopen.94707]
[74]
Birt DF, Hendrich S, Wang W. Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther 2001; 90(2-3): 157-77.
[http://dx.doi.org/10.1016/S0163-7258(01)00137-1] [PMID: 11578656]
[75]
Khan MI, Rahman MA, Badruddeen , Khalid M, Khushtar M, Mujahid M. Quality control standardization and evaluation of antimicrobial potential of Daruhaldi (Berberis aristate DC) stem bark. J Diet Suppl 2020; 17(1): 97-109.
[http://dx.doi.org/10.1080/19390211.2018.1484405] [PMID: 30289011]
[76]
Mali RG, Dhake AS. A review on herbal antiasthmatics. Orient Pharm Exp Med 2011; 11(2): 77-90.
[http://dx.doi.org/10.1007/s13596-011-0019-1] [PMID: 22207824]
[77]
Lam KS. New aspects of natural products in drug discovery. Trends Microbiol 2007; 15(6): 279-89.
[http://dx.doi.org/10.1016/j.tim.2007.04.001] [PMID: 17433686]
[78]
Park S, Park MS, Jung KH, et al. Treatment with pyranopyran-1, 8-dione attenuates airway responses in cockroach allergen sensitized asthma in mice. PLoS One 2014; 9(1): e87558.
[http://dx.doi.org/10.1371/journal.pone.0087558] [PMID: 24489937]
[79]
Ventola CL. Current issues regarding complementary and alternative medicine (CAM) in the United States: part 1: the widespread use of CAM and the need for better-informed health care professionals to provide patient counseling. P&T 2010; 35(8): 461-8.
[PMID: 20844696]
[80]
Shen ML, Wang CH, Lin CH, Zhou N, Kao ST, Wu DC. Luteolin attenuates airway mucus overproduction via inhibition of the GABAergic system. Sci Rep 2016; 6(1): 32756.
[http://dx.doi.org/10.1038/srep32756] [PMID: 27595800]
[81]
Houssen ME, Ragab A, Mesbah A, et al. Natural anti-inflammatory products and leukotriene inhibitors as complementary therapy for bronchial asthma. Clin Biochem 2010; 43(10-11): 887-90.
[http://dx.doi.org/10.1016/j.clinbiochem.2010.04.061] [PMID: 20430018]
[82]
Nikles S, Monschein M, Zou H, et al. Metabolic profiling of the traditional Chinese medicine formulation Yu Ping Feng San for the identification of constituents relevant for effects on expression of TNF-α, IFN-γ, IL-1β and IL-4 in U937 cells. J Pharm Biomed Anal 2017; 145: 219-29.
[http://dx.doi.org/10.1016/j.jpba.2017.03.049] [PMID: 28667937]
[83]
Gupta SS. Prospects and perspectives of natural plant products in medicine. Indian J Pharmacol 1994; 26(1): 1-2.
[PMID: 36960514]
[84]
Ammon HPT. Modulation of the immune system by Boswellia serrata extracts and boswellic acids. Phytomedicine 2010; 17(11): 862-7.
[http://dx.doi.org/10.1016/j.phymed.2010.03.003] [PMID: 20696559]
[85]
Veiga VF, Rosas EC, Carvalho MV, Henriques MGMO, Pinto AC. Chemical composition and anti-inflammatory activity of copaiba oils from Copaifera cearensis Huber ex Ducke, Copaifera reticulata Ducke and Copaifera multijuga Hayne—A comparative study. J Ethnopharmacol 2007; 112(2): 248-54.
[http://dx.doi.org/10.1016/j.jep.2007.03.005] [PMID: 17446019]
[86]
Rahman MM, Bibi S, Rahaman MS, et al. Natural therapeutics and nutraceuticals for lung diseases: Traditional significance, phytochemistry, and pharmacology. Biomed Pharmacother 2022; 150: 113041.
[http://dx.doi.org/10.1016/j.biopha.2022.113041] [PMID: 35658211]
[87]
Zhang TZ, Fu Q, Chen T, Ma SP. Anti-asthmatic effects of oxymatrine in a mouse model of allergic asthma through regulating CD40 signaling. Chin J Nat Med 2015; 13(5): 368-74.
[http://dx.doi.org/10.1016/S1875-5364(15)30028-5] [PMID: 25986286]
[88]
Ahn KS, Noh EJ, Zhao HL, Jung SH, Kang SS, Kim YS. Inhibition of inducible nitric oxide synthase and cyclooxygenase II by Platycodon grandiflorum saponins via suppression of nuclear factor-κB activation in RAW 264.7 cells. Life Sci 2005; 76(20): 2315-28.
[http://dx.doi.org/10.1016/j.lfs.2004.10.042] [PMID: 15748625]
[89]
Leung CY, Liu L, Wong RNS, Zeng YY, Li M, Zhou H. Saikosaponin-d inhibits T cell activation through the modulation of PKCθ, JNK, and NF-κB transcription factor. Biochem Biophys Res Commun 2005; 338(4): 1920-7.
[http://dx.doi.org/10.1016/j.bbrc.2005.10.175] [PMID: 16289105]
[90]
Khan M, Shah AJ, Gilani AH. Insight into the bronchodilator activity of Vitex negundo. Pharm Biol 2015; 53(3): 340-4.
[http://dx.doi.org/10.3109/13880209.2014.919327] [PMID: 25622948]
[91]
Gupta A, Prajapati PK. A clinical review of different formulations of Vasa (Adhatoda vasica) on Tamaka Shwasa (asthma). Ayu 2010; 31(4): 520-4.
[http://dx.doi.org/10.4103/0974-8520.82032] [PMID: 22048552]
[92]
Zhao J, Lloyd CM, Noble A. Th17 responses in chronic allergic airway inflammation abrogate regulatory T-cell-mediated tolerance and contribute to airway remodeling. Mucosal Immunol 2013; 6(2): 335-46.
[http://dx.doi.org/10.1038/mi.2012.76] [PMID: 22892938]
[93]
Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997; 89(4): 587-96.
[http://dx.doi.org/10.1016/S0092-8674(00)80240-8] [PMID: 9160750]
[94]
Shin INSIK, Shin NARAE, Jeon CM, et al. Thuja orientalis reduces airway inflammation in ovalbumin-induced allergic asthma. Mol Med Rep 2015; 12(3): 4640-6.
[http://dx.doi.org/10.3892/mmr.2015.3910] [PMID: 26063078]
[95]
Zhou Y, McLane M, Levitt RC. Th2 cytokines and asthma — Interleukin-9 as a therapeutic target for asthma. Respir Res 2001; 2(2): 80-4.
[http://dx.doi.org/10.1186/rr42] [PMID: 11686869]
[96]
Silva LP, Miyasaka CK, Martins EF, et al. Effect of bullfrog (Rana catesbeiana) oil administered by gavage on the fatty acid composition and oxidative stress of mouse liver. Braz J Med Biol Res 2004; 37(10): 1491-6.
[http://dx.doi.org/10.1590/S0100-879X2004001000007] [PMID: 15448869]
[97]
Chen LS, Zheng DS. Bioactive constituents from the rhizomes of aster tataricus LF Afford the treatment of asthma through activation of beta (2) AR and inhibition of NF-kappa b. Lat Am J Pharm 2015; 34(2): 291-5.
[98]
Rosa SIG, Rios-Santos F, Balogun SO, et al. Hydroethanolic extract from Echinodorus scaber Rataj leaves inhibits inflammation in ovalbumin-induced allergic asthma. J Ethnopharmacol 2017; 203: 191-9.
[http://dx.doi.org/10.1016/j.jep.2017.03.025] [PMID: 28342859]
[99]
Chen Y, Zhang Y, Xu M, et al. Catalpol alleviates ovalbumin-induced asthma in mice: Reduced eosinophil infiltration in the lung. Int Immunopharmacol 2017; 43: 140-6.
[http://dx.doi.org/10.1016/j.intimp.2016.12.011] [PMID: 27992791]
[100]
Zhao Y, He D, Zhao J, et al. Lysophosphatidic acid induces interleukin-13 (IL-13) receptor α2 expression and inhibits IL-13 signaling in primary human bronchial epithelial cells. J Biol Chem 2007; 282(14): 10172-9.
[http://dx.doi.org/10.1074/jbc.M611210200] [PMID: 17287216]
[101]
Lee M, Kim S, Kwon OK, Oh SR, Lee HK, Ahn K. Anti-inflammatory and anti-asthmatic effects of resveratrol, a polyphenolic stilbene, in a mouse model of allergic asthma. Int Immunopharmacol 2009; 9(4): 418-24.
[http://dx.doi.org/10.1016/j.intimp.2009.01.005] [PMID: 19185061]
[102]
Sultana S, Khan A, Safhi MM, Alhazmi HA. Cough suppressant herbal drugs: A review. Int J Pharm Sci Invent 2016; 5(5): 15-28.
[103]
Podtschaske M, Benary U, Zwinger S, Höfer T, Radbruch A, Baumgrass R. Digital NFATc2 activation per cell transforms graded T cell receptor activation into an all-or-none IL-2 expression. PLoS One 2007; 2(9): e935.
[http://dx.doi.org/10.1371/journal.pone.0000935] [PMID: 17895976]
[104]
Bashir S, Al-Rehaily AJ, Gilani AH. Mechanisms underlying the antidiarrheal, antispasmodic and bronchodilator activities of Fumaria parviflora and involvement of tissue and species specificity. J Ethnopharmacol 2012; 144(1): 128-37.
[http://dx.doi.org/10.1016/j.jep.2012.08.039] [PMID: 22975416]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy