Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Some Terminally Alkenyl-substituted Porphyrins: Synthesis and Attempts of Heck Reaction Leading to Porphyrin–Azulene Dyads

Author(s): Stanisław Ostrowski*, Sebastian Grzyb and Bartosz Godlewski

Volume 28, Issue 19, 2024

Published on: 02 May, 2024

Page: [1542 - 1549] Pages: 8

DOI: 10.2174/0113852728239522231006064747

Price: $65

conference banner
Abstract

The synthesis of meso-tetraphenylporphyrin derivatives, double functionalized in one of the phenyl rings (with a nitro group and carbon substituents), is described. 5-(4- Nitroaryl)-10,15,20-triarylporphyrinates react, in the presence of a base (t-BuOK), with carbanions containing a leaving group at the carbanionic center to give products of substitution of hydrogen at ortho-position to the nitro group via vicarious nucleophilic substitution scheme. Their alkylation with allyl bromide or 4-bromobut-1-en (t-BuOK/DMF, at 0-5°C) leads to porphyrins bearing side alkyl chain with a terminal double bond in yields of up to 82%. The above-mentioned double-substituted intermediates are very convenient substrates for Heck cross-coupling reaction. In this study, the synthesis of porphyrin–azulene dyads is reported. In some cases, the formation of highly conjugated systems is observed, with moderate yield. Their structures are interesting from both the porphyrin and azulene point of view.

Keywords: Porphyrins, azulene derivatives, Heck reaction, vinyl derivatives, dyads, catalysts, palladium.

« Previous
Graphical Abstract
[1]
Hsi, R.A.; Rosenthal, D.I.; Glatstein, E. Photodynamic therapy in the treatment of cancer: Current state of the art. Drugs, 1999, 57(5), 725-734.
[http://dx.doi.org/10.2165/00003495-199957050-00005] [PMID: 10353297]
[2]
Nyman, E.S.; Hynninen, P.H. Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. J. Photochem. Photobiol. B, 2004, 73(1-2), 1-28.
[http://dx.doi.org/10.1016/j.jphotobiol.2003.10.002] [PMID: 14732247]
[3]
Dror, S.B.; Bronshtein, I.; Garini, Y.; O’Neal, W.G.; Jacobi, P.A.; Ehrenberg, B. The localization and photosensitization of modified chlorin photosensitizers in artificial membranes. Photochem. Photobiol. Sci., 2009, 8(3), 354-361.
[http://dx.doi.org/10.1039/b814970d] [PMID: 19255676]
[4]
Allison, R.R.; Downie, G.H.; Cuenca, R.; Hu, X.H.; Childs, C.J.H.; Sibata, C.H. Photosensitizers in clinical PDT. Photodiagn. Photodyn. Ther., 2004, 1(1), 27-42.
[http://dx.doi.org/10.1016/S1572-1000(04)00007-9] [PMID: 25048062]
[5]
Wei, L.; Padmaja, K.; Youngblood, W.J.; Lysenko, A.B.; Lindsey, J.S.; Bocian, D.F. Diverse redox-active molecules bearing identical thiol-terminated tripodal tethers for studies of molecular information storage. J. Org. Chem., 2004, 69(5), 1461-1469. and refs. cited therein.
[http://dx.doi.org/10.1021/jo0349476] [PMID: 14986997]
[6]
Imahori, H.; Hagiwara, K.; Aoki, M.; Akiyama, T.; Taniguchi, S.; Okada, T.; Shirakawa, M.; Sakata, Y. Linkage and solvent dependence of photoinduced electron transfer in zincporphyrin–C60 dyads. J. Am. Chem. Soc., 1996, 118(47), 11771-11782.
[http://dx.doi.org/10.1021/ja9628415]
[7]
Zheng, G.; Dougherty, T.J.; Pandey, R.K. Novel chlorin–diene building block by enyne metathesis: Synthesis of chlorin–fullerene dyads. Chem. Commun., 1999, (24), 2469-2470.
[http://dx.doi.org/10.1039/a906889i]
[8]
Ostrowski, S.; Mikus, A. A new approach to the synthesis of porphyrin–fullerene dyads. Mol. Divers., 2003, 6(3/4), 315-321.
[http://dx.doi.org/10.1023/B:MODI.0000006864.22321.2e] [PMID: 15068095]
[9]
Tang, M.; Liang, Y.; Lu, X.; Miao, X.; Jiang, L.; Liu, J.; Bian, L.; Wang, S.; Wu, L.; Liu, Z. Molecular-strain engineering of double-walled tetrahedra. Chem, 2021, 7(8), 2160-2174.
[http://dx.doi.org/10.1016/j.chempr.2021.05.004]
[10]
Tang, M.; Liang, Y.; Liu, J.; Wu, L.; Wang, S.; Bian, L.; Jiang, L.; Tang, Z.B.; Liu, Z. Mechanical trapping and in situ derivatization of the porphodimethene intermediate. Mater. Today Chem., 2022, 24, 100868.
[http://dx.doi.org/10.1016/j.mtchem.2022.100868]
[11]
Rousseaux, S.A.L.; Gong, J.Q.; Haver, R.; Odell, B.; Claridge, T.D.W.; Herz, L.M.; Anderson, H.L. Self‐assembly of Russian doll concentric porphyrin nanorings. J. Am. Chem. Soc., 2015, 137(39), 12713-12718.
[http://dx.doi.org/10.1021/jacs.5b07956] [PMID: 26378660]
[12]
Seeman, N.C.; Sleiman, H.F. DNA nanotechnology. Nat. Rev. Mater., 2018, 3(1), 17068.
[http://dx.doi.org/10.1038/natrevmats.2017.68]
[13]
Schmitt, S.; Baumgarten, M.; Simon, J.; Hafner, K. 2,4,6,8-Tetracyano- azulene: A new building block for “organic metals”. Angew. Chem. Int. Ed., 1998, 37(8), 1077-1081.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980504)37:8<1077::AID-ANIE1077>3.0.CO;2-R] [PMID: 29711030]
[14]
Yeow, E.K.L.; Ziolek, M.; Karolczak, J.; Shevyakov, S.V.; Asato, A.E.; Maciejewski, A.; Steer, R.P. Sequential forward S2-S2 and back S1-S1 (cyclic) energy transfer in a novel azulene–zinc porphyrin dyad. J. Phys. Chem. A, 2004, 108(50), 10980-10988.
[http://dx.doi.org/10.1021/jp0465175]
[15]
Luhowy, R.; Keehn, P.M. Cyclophanes. 9. anti-[2.2](2,6)Azulenophane. Synthesis and charge-transfer interaction. J. Am. Chem. Soc., 1977, 99(11), 3797-3805.
[http://dx.doi.org/10.1021/ja00453a046]
[16]
Remacle, F.; Speiser, S.; Levine, R.D. Intermolecular and intramolecular logic gates. J. Phys. Chem. B, 2001, 105(24), 5589-5591.
[http://dx.doi.org/10.1021/jp0101211]
[17]
Hansen, H.J. Die Geburt einer Struktur: Zur 60. Wiederkehr der Aufstellung der Azulenformel durch Pfau und Plattner. Chimia, 1997, 51(4), 147-159.
[http://dx.doi.org/10.2533/chimia.1997.147]
[18]
Gordon, M. The azulenes. Chem. Rev., 1952, 50(1), 127-200.
[http://dx.doi.org/10.1021/cr60155a004]
[19]
Wang, S.; Tang, M.; Wu, L.; Bian, L.; Jiang, L.; Liu, J.; Tang, Z.B.; Liang, Y.; Liu, Z. Linear nonalternant isomers of acenes fusing multiple azulene units. Angew. Chem. Int. Ed., 2022, 61(33), e202205658.
[http://dx.doi.org/10.1002/anie.202205658] [PMID: 35699676]
[20]
Beer, M.; Longuet-Higgins, H.C. Anomalous light emission of azulene. J. Chem. Phys., 1955, 23(8), 1390-1391.
[http://dx.doi.org/10.1063/1.1742314]
[21]
Sidman, J.W.; McClure, D.S. Electronic and vibrational states of azulene. J. Chem. Phys., 1956, 24(4), 757-763.
[http://dx.doi.org/10.1063/1.1742604]
[22]
Locos, O.B.; Arnold, D.P. The Heck reaction for porphyrin functionalisation: Synthesis of meso-alkenyl monoporphyrins and palladium-catalysed formation of unprecedented meso-β ethene-linked diporphyrins. Org. Biomol. Chem., 2006, 4(5), 902-916.
[http://dx.doi.org/10.1039/b516989e] [PMID: 16493475]
[23]
Unpublished results from our laboratory.
[24]
Gauler, R.; Risch, N. New Heck-type coupling reactions of natural tetra-pyrroles - synthesis of porphyrinoligomers bridged by divinyl- and trivinylbenzene. Eur. J. Org. Chem., 1998, (6), 1193-1200.
[http://dx.doi.org/10.1002/(SICI)1099-0690(199806)1998:6<1193::AID-EJOC1193>3.0.CO;2-K]
[25]
Risch, N.; Gauler, R.; Keuper, R. Synthesis of porphyrin dimers using a Heck-type coupling reaction with bisacrylates. Tetrahedron Lett., 1999, 40(15), 2925-2926.
[http://dx.doi.org/10.1016/S0040-4039(99)00418-9]
[26]
Katterle, M.; Holzwarth, A.R.; Jesorka, A. A Heck-type coupling for the synthesis of novel bridged metallochlorin–fullerene C60 dyads. Eur. J. Org. Chem., 2006, (2), 414-422.
[http://dx.doi.org/10.1002/ejoc.200500494]
[27]
Castella, M.; Calahorra, F.; Sainz, D.; Velasco, D. New Heck-type reaction applied to the synthesis of protoporphyrin-IX derivatives. Org. Lett., 2001, 3(4), 541-544.
[http://dx.doi.org/10.1021/ol000370s] [PMID: 11178820]
[28]
Ostrowski, S.; Mikus, A.; Shim, Y.K.; Lee, J.C.; Seo, E.Y.; Lee, K.I.; Olejnik, M. On selective functionalization of meso-tetraphenylporphyrin derivatives by vicarious nucleophilic substitution of hydrogen. Heterocycles, 2002, 57(9), 1615-1626.
[http://dx.doi.org/10.3987/COM-02-9514]
[29]
Ostrowski, S.; Grzyb, S.; Mikus, A. Direct amination of meso-tetraaryl-porphyrin derivatives - easy route to A3B-, A2BC-, and A2B2-type porphyrins bearing two nitrogen-containing substituents at the meso-positioned phenyl groups. Helv. Chim. Acta, 2007, 90(10), 2000-2008.
[http://dx.doi.org/10.1002/hlca.200790207]
[30]
Long, F.A.; Schulze, J. Hydrogen exchange of azulenes. II. Acid-base equilibria in aqueous solutions. J. Am. Chem. Soc., 1964, 86(3), 327-331.
[http://dx.doi.org/10.1021/ja01057a004]
[31]
Anderson, A.G., Jr; Nelson, J.A.; Tazuma, J.J. Azulene. III. Electrophilic substitution. J. Am. Chem. Soc., 1953, 75(20), 4980-4989.
[http://dx.doi.org/10.1021/ja01116a030]
[32]
Anderson, A.G., Jr; Steckler, B.M. Azulene. VIII. A study of the visible absorption spectra and dipole moments of some 1- and 1,3-substituted azu-lenes. J. Am. Chem. Soc., 1959, 81(18), 4941-4946.
[http://dx.doi.org/10.1021/ja01527a046]
[33]
Hafner, K.; Patzelt, H.; Kaiser, H. Zur Kenntnis der Azulene, XI. Nucleophile Substitution halogenierter Azulene. Justus Liebigs Ann. Chem., 1962, 656(1), 24-33.
[http://dx.doi.org/10.1002/jlac.19626560106]
[34]
Jagtap, S. Heck reaction - state of the art. Catalysts, 2017, 7(9), 267.
[http://dx.doi.org/10.3390/catal7090267]
[35]
Zapf, A.; Beller, M. Palladium catalyst systems for cross-coupling reactions of aryl chlorides and olefins. Chem. Eur. J., 2001, 7(13), 2908-2915.
[http://dx.doi.org/10.1002/1521-3765(20010702)7:13<2908::AID-CHEM-2908>3.0.CO;2-R] [PMID: 11486967]
[36]
Ohtaka, A.; Yamaguchi, T.; Teratani, T.; Shimomura, O.; Nomura, R. Linear polystyrene-stabilized PdO nanoparticle-catalyzed Mizoroki-Heck reactions in water. Molecules, 2011, 16(11), 9067-9076.
[http://dx.doi.org/10.3390/molecules16119067] [PMID: 22033141]
[37]
Sherwood, J.; Clark, J.H.; Fairlamb, I.J.S.; Slattery, J.M. Solvent effects in palladium catalysed cross-coupling reactions. Green Chem., 2019, 21(9), 2164-2213.
[http://dx.doi.org/10.1039/C9GC00617F]
[38]
Wróbel, Z.; Ma̧kosza, M. Transformations of o-nitroarylallyl carbanions. Synthesis of quinoline N-oxides and N-hydroxyindoles. Tetrahedron, 1993, 49(24), 5315-5326.
[http://dx.doi.org/10.1016/S0040-4020(01)82380-2]
[39]
Huang, L.; Ackerman, L.K.G.; Kang, K.; Parsons, A.M.; Weix, D.J. LiCl-accelerated multimetallic cross-coupling of aryl chlorides with aryl triflates. J. Am. Chem. Soc., 2019, 141(28), 10978-10983.
[http://dx.doi.org/10.1021/jacs.9b05461] [PMID: 31257881]
[40]
Ebran, J.P.; Hansen, A.L.; Gøgsig, T.M.; Skrydstrup, T. Studies on the Heck reaction with alkenyl phosphates: Can the 1,2-migration be controlled? Scope and limitations. J. Am. Chem. Soc., 2007, 129(21), 6931-6942.
[http://dx.doi.org/10.1021/ja070321b] [PMID: 17474745]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy