Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Effect of Diosmin on Pharmacokinetics and Pharmacodynamics of Rivaroxaban in Rats

Author(s): Siwen Wang, Mingyu Cui*, Fan Wu, Chao Yu, Yue Sui, Xueying Yan and Yingli Gai

Volume 20, Issue 4, 2024

Published on: 30 April, 2024

Page: [264 - 274] Pages: 11

DOI: 10.2174/0115734129282400240417115747

conference banner
Abstract

Background and Objective: Rivaroxaban, a direct oral anticoagulant, has become the first-line therapy medicine to prevent and treat Venous Thromboembolism (VTE). Patients with femoropopliteal venous thrombosis may use rivaroxaban along with diosmin. Rivaroxaban is the substrate of CYP3A4 and P-glycoprotein (P-gp), but diosmin is the inhibitor. The combination might lead to Drug-drug Interaction (DDI). The aim of this study was to assess the effect of diosmin on the pharmacokinetics and pharmacodynamics of rivaroxaban in rats.

Methods: Plasma concentration of rivaroxaban in the absence or presence of diosmin groups was determined by High-performance Liquid Chromatography (HPLC). Pharmacokinetics parameters were calculated and used to evaluate pharmacokinetics interactions. Anticoagulation was investigated by Prothrombin Time (PT), International Normalized Ratio (INR), and Activated Partial Thromboplastin Time (APTT). Antithrombotic efficacy was investigated by the length of tail thrombosis, the content levels of Interleukin-1β (IL-1β) and D-dimer (D-D) in rats, and histopathological sections in the tail thrombosis model.

Results: Maximum concentration (Cmax), 0-t Area Under the Curve (AUC0–t), 0-∞ Area Under the Curve (AUC0–∞) of rivaroxaban increased significantly in the combination group. PT, INR, and APPT in the combination group exhibited an increase compared to the Rivaroxaban group. Simultaneously, the length of tail thrombosis and levels of IL-1β and D-D were significantly reduced. Significant improvement of tissue histology in tail thrombosis could be observed.

Conclusion: Taken together, diosmin could significantly affect the pharmacokinetics and pharmacodynamics of rivaroxaban, and enhance anticoagulant and antithrombotic efficacy in rats. More attention should be paid to avoid harmful DDI in the clinic.

Keywords: Rivaroxaban, diosmin, venous thromboembolism, pharmacokinetics, pharmacodynamics, drug-drug interaction.

Graphical Abstract
[1]
Reçber, T.; Haznedaroğlu, İ.C.; Çelebier, M. Review on characteristics and analytical methods of rivaroxaban. Crit. Rev. Anal. Chem., 2022, 52(4), 865-877.
[http://dx.doi.org/10.1080/10408347.2020.1839735] [PMID: 33146024]
[2]
Dale, B.J.; Chan, N.C.; Eikelboom, J.W. Laboratory measurement of the direct oral anticoagulants. Br. J. Haematol., 2016, 172(3), 315-336.
[http://dx.doi.org/10.1111/bjh.13810] [PMID: 26492202]
[3]
Dunois, C. Laboratory monitoring of direct oral anticoagulants (DOACs). Biomedicines, 2021, 9(5), 445.
[http://dx.doi.org/10.3390/biomedicines9050445] [PMID: 33919121]
[4]
Ren, Y.; Cao, S.L.; Li, Z.; Luo, T.; Feng, B.; Weng, X.S. Comparable efficacy of 100 mg aspirin twice daily and rivaroxaban for venous thromboembolism prophylaxis following primary total hip arthroplasty: a randomized controlled trial. Chin. Med. J., 2021, 134(2), 164-172.
[http://dx.doi.org/10.1097/CM9.0000000000001305] [PMID: 33410616]
[5]
Fernandes, C. J.; Alves Júnior, J. L.; Gavilanes, F.; Prada, L. F.; Morinaga, L. K.; Souza, R. New anticoagulants for the treatment of venous thromboembolism. J. Bras. Pneumol., 2016, 42(2), 146-154.
[6]
Naito, R.; Miyauchi, K.; Yasuda, S.; Kaikita, K.; Akao, M.; Ako, J.; Matoba, T.; Nakamura, M.; Hagiwara, N.; Kimura, K.; Hirayama, A.; Matsui, K.; Ogawa, H.; Nakamura, A.; Tamiya, E.; Yamamoto, T.; Suetake, S.; Noguchi, T.; Nakamura, S.; Matsumura, A.; Kojima, J.; Yamaguchi, H.; Suwa, S.; Yasu, T.; Nakajima, A.; Yamada, T.; Arai, H.; Hata, Y.; Sakanashi, T.; Tateishi, H.; Nakayama, T.; Nozaki, Y.; Okumura, Y.; Tokue, M.; Kuroki, N.; Maruyama, Y.; Suzuki, H.; Nishida, Y.; Ajioka, M.; Yumoto, K.; Shimizu, S.; Aoyama, T.; Shimomura, H.; Takeda, T.; Oshiro, K.; Sugishita, N.; Shibata, Y.; Otonari, T.; Shimizu, M.; Kihara, H.; Ogawa, H.; Ono, A.; Hazama, M.; Tsukahara, K.; Haruta, S.; Haruna, T.; Ito, M.; Fujii, K.; Atsuchi, N.; Sata, M.; Wakeyama, T.; Hasebe, N.; Kobayasi, Y.; Osato, K.; Hironaga, K.; Naganuma, Y.; Anzaki, K.; Okazaki, S.; Nakagawa, Y.; Tokuhiro, K.; Tanaka, K.; Momose, T.; Fukushima, Y.; Kametani, R.; Kawamitsu, K.; Saito, Y.; Akashi, S.; Kumagai, K.; Eshima, K.; Tobaru, T.; Seo, T.; Okuhara, K.; Kozuma, K.; Ikari, Y.; Takahashi, T.; Oiwa, K.; Michishita, I.; Fujikura, H.; Momomura, S.; Yamamoto, Y.; Otomo, K.; Matsubara, T.; Tashiro, H.; Inoue, T.; Ishihara, M.; Shiojima, I.; Tachibana, E.; Sumii, K.; Yamamoto, N.; Omura, N.; Nakamura, T.; Takahashi, N.; Morita, Y.; Watanabe, K.; Fujinaga, H.; Maruyama, M.; Oka, T.; Shirayama, T.; Amano, T.; Fukui, K.; Ando, K.; Oshima, S.; Kagiyama, S.; Teragawa, H.; Yuge, M.; Ono, S.; Koga, T.; Fujiu, K.; Kuwabara, M.; Oya, Y.; Yumoto, Y.; Kuji, N.; Ikemura, M.; Kario, K.; Chatani, K.; Sato, K.; Miyagi, H.; Murakami, M.; Saito, K.; Hoshiga, M.; Sato, S.; Kubo, N.; Sakamoto, Y.; Ashida, K.; Sakamoto, H.; Murasaki, S.; Uehara, H.; Akasaka, T.; Oba, Y.; Nakahara, S.; Hanaoka, Y.; Nishimiya, T.; Tsunoda, R.; Onuma, Y.; Higuchi, S.; Tani, A.; Wada, A.; Kato, M.; Obata, H.; Higuchi, Y.; Endo, T.; Kato, R.; Matsunaga, T.; Matsuoka, T.; Noguchi, H.; Usui, M.; Hayashi, T.; Otsuji, Y.; Osaki, T.; Zaizen, H.; Yoshihara, H.; Kadota, K.; Hirose, T.; Miyazawa, T.; Mori, A.; Takano, M.; Shimizu, W.; Wake, M.; Oriso, S.; Yoshiyama, M.; Kakinoki, S.; Nishioka, T.; Ozaki, T.; Nomoto, K.; Seki, K.; Kawai, K.; Ozaki, Y.; Miura, S.; Kawasaki, M.; Funada, R.; Dote, K.; Okamoto, S.; Owada, T.; Doke, T.; Matsumura, T.; Kubo, T.; Horiuchi, M.; Nagano, T.; Takaishi, A.; Yamamoto, M.; Nakashima, H.; Murozono, Y.; Munemasa, M.; Sakata, Y.; Inoue, N.; Ota, T.; Hamano, Y.; Abe, N.; Tsubokura, T.; Goto, M.; Kubota, I.; Yano, M.; Umetani, K.; Date, T.; Morimoto, H.; Noda, T.; Goto, S.; Hibi, K.; Nakano, A.; Hiramitsu, S.; Kihara, Y.; Sugi, M.; Shiba, N.; Izumi, D.; Sato, T.; Ajiki, K.; Oishi, M.; Kiryu, M.; Ko, T.; Ando, H.; Miyazaki, S.; Kinugawa, T.; Otake, H.; Kitaoka, H.; Tayama, S.; Hirata, Y.; Honda, S.; Manita, M.; Ishii, Y.; Oka, H.; Nanba, Y.; Nishino, M.; Sakamoto, T.; Saito, T.; Sakai, H.; Ichikawa, M.; Namiuchi, S.; Matsui, T.; Inoue, K.; Komiyama, N.; Akashi, Y.; Nakamura, Y.; Komaru, T.; Hosokawa, T.; Chikamori, T.; Tanaka, H.; Suzuki, A.; Arasaki, O.; Aonuma, K.; Wakasa, Y.; Yoshizawa, T.; Sugano, T.; Yokota, N.; Kakutani, A.; Suzuki, T.; Abe, Y.; Kataoka, T.; Okayama, H.; Yokoi, H.; Chin, K.; Hasegawa, K.; Tomita, H.; Honzyo, H.; Kawai, H.; Yamamoto, K.; Morino, Y.; Tsujiyama, S.; Yoshimura, M.; Hamasaki, S.; Niijima, Y.; Aoyama, T.; Mizuno, Y.; Maki, A.; Tanabe, K.; Murohara, T.; Nakamura, T.; Naomi, S.; Matsumoto, N.; Minamino, T.; Sairenji, H.; Miyamoto, N.; Arikawa, M.; Ito, H.; Matsuura, Y.; Hata, S.; Nakatsu, Y.; Onodera, T.; Kato, T.; Amano, H.; Tokutake, E.; Kasao, M.; Moriguchi, M.; Yamamoto, K.; Tsuji, M.; Yamamoto, H.; Yanbe, Y.; Iwasawa, T.; Suzuki, M.; Mori, H. Rivaroxaban monotherapy vs combination therapy with antiplatelets on total thrombotic and bleeding events in atrial fibrillation with stable coronary artery disease. JAMA Cardiol., 2022, 7(8), 787-794.
[http://dx.doi.org/10.1001/jamacardio.2022.1561] [PMID: 35704345]
[7]
Ajmal, M.; Friedman, J.; Sipra, Q.U.A.R.; Lassar, T. Rivaroxaban: Expanded role in cardiovascular disease management—a literature review. Cardiovasc. Ther., 2021, 2021, 1-9.
[http://dx.doi.org/10.1155/2021/8886210] [PMID: 33505518]
[8]
Ray, W.A.; Chung, C.P.; Stein, C.M.; Smalley, W.; Zimmerman, E.; Dupont, W.D.; Hung, A.M.; Daugherty, J.R.; Dickson, A.; Murray, K.T. Association of rivaroxaban vs apixaban with major ischemic or hemorrhagic events in patients with atrial fibrillation. JAMA, 2021, 326(23), 2395-2404.
[http://dx.doi.org/10.1001/jama.2021.21222] [PMID: 34932078]
[9]
Weinz, C.; Schwarz, T.; Kubitza, D.; Mueck, W.; Lang, D. Metabolism and excretion of rivaroxaban, an oral, direct factor Xa inhibitor, in rats, dogs, and humans. Drug Metab Dispos, 2009, 37(5), 1056-1064.
[10]
Mueck, W.; Kubitza, D.; Becka, M. Co-administration of rivaroxaban with drugs that share its elimination pathways: pharmacokinetic effects in healthy subjects. Br. J. Clin. Pharmacol., 2013, 76(3), 455-466.
[http://dx.doi.org/10.1111/bcp.12075] [PMID: 23305158]
[11]
Gnoth, M.J.; Buetehorn, U.; Muenster, U.; Schwarz, T.; Sandmann, S. In vitro and in vivo P-glycoprotein transport characteristics of rivaroxaban. J. Pharmacol. Exp. Ther., 2011, 338(1), 372-380.
[http://dx.doi.org/10.1124/jpet.111.180240] [PMID: 21515813]
[12]
Hanigan, S.; Das, J.; Pogue, K.; Barnes, G.D.; Dorsch, M.P. The real world use of combined P-glycoprotein and moderate CYP3A4 inhibitors with rivaroxaban or apixaban increases bleeding. J. Thromb. Thrombolysis, 2020, 49(4), 636-643.
[http://dx.doi.org/10.1007/s11239-020-02037-3] [PMID: 31925665]
[13]
Bistervels, I.M.; Bavalia, R.; Gebel, M.; Lensing, A.W.A.; Middeldorp, S.; Prins, M.H.; Coppens, M. Effect of polypharmacy on bleeding with rivaroxaban versus vitamin K antagonist for treatment of venous thromboembolism. J. Thromb. Haemost., 2022, 20(6), 1376-1384.
[http://dx.doi.org/10.1111/jth.15692] [PMID: 35253983]
[14]
Scholz, I.; Liakoni, E.; Hammann, F.; Grafinger, K.E.; Duthaler, U.; Nagler, M.; Krähenbühl, S.; Haschke, M. Effects ofHYPERICUM PERFORATUM (St John’s wort) on the pharmacokinetics and pharmacodynamics of rivaroxaban in humans. Br. J. Clin. Pharmacol., 2021, 87(3), 1466-1474.
[http://dx.doi.org/10.1111/bcp.14553] [PMID: 32959922]
[15]
Wójciak, M.; Feldo, M.; Borowski, G.; Kubrak, T.; Płachno, B.J.; Sowa, I. Antioxidant potential of diosmin and diosmetin against oxidative stress in endothelial cells. Molecules, 2022, 27(23), 8232.
[http://dx.doi.org/10.3390/molecules27238232] [PMID: 36500323]
[16]
Ali, T.M.; Abo-Salem, O.M.; El Esawy, B.H.; El Askary, A. The potential protective effects of diosmin on streptozotocin-induced diabetic cardiomyopathy in rats. Am. J. Med. Sci., 2020, 359(1), 32-41.
[http://dx.doi.org/10.1016/j.amjms.2019.10.005] [PMID: 31902439]
[17]
Zeya, B.; Nafees, S.; Imtiyaz, K.; Uroog, L.; Fakhri, K.; Rizvi, M. Diosmin in combination with naringenin enhances apoptosis in colon cancer cells. Oncol. Rep., 2021, 47(1), 4.
[http://dx.doi.org/10.3892/or.2021.8215] [PMID: 34738632]
[18]
Fattori, V.; Rasquel-Oliveira, F.S.; Artero, N.A.; Ferraz, C.R.; Borghi, S.M.; Casagrande, R.; Verri, W.A., Jr Diosmin treats lipopolysaccharide-induced inflammatory pain and peritonitis by blocking NF-κB activation in mice. J. Nat. Prod., 2020, 83(4), 1018-1026.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00887] [PMID: 32083866]
[19]
Casili, G.; Lanza, M.; Campolo, M.; Messina, S.; Scuderi, S.; Ardizzone, A.; Filippone, A.; Paterniti, I.; Cuzzocrea, S.; Esposito, E. Therapeutic potential of flavonoids in the treatment of chronic venous insufficiency. Vascul. Pharmacol., 2021, 137, 106825.
[http://dx.doi.org/10.1016/j.vph.2020.106825] [PMID: 33278582]
[20]
Zou, J.; Yuan, D.; Yang, J.; Yu, Y. Effects of diosmin on vascular leakage and inflammation in a mouse model of venous obstruction. Front. Nutr., 2022, 9, 831485.
[http://dx.doi.org/10.3389/fnut.2022.831485] [PMID: 35273990]
[21]
Guo, Z.; Du, X.; Zhang, Y.; Su, C.; Ran, F.; Lu, Q. Diosmin alleviates venous injury and muscle damage in a mouse model of iliac vein stenosis. Front. Cardiovasc. Med., 2022, 8, 785554.
[http://dx.doi.org/10.3389/fcvm.2021.785554] [PMID: 35097005]
[22]
Bedada, S.K.; Boga, P.K. Influence of diosmin on the metabolism and disposition of carbamazepine in healthy subjects. Xenobiotica, 2017, 47(10), 879-884.
[http://dx.doi.org/10.1080/00498254.2016.1244368] [PMID: 27690733]
[23]
Neerati, P.; Bedada, S.K. Effect of diosmin on the intestinal absorption and pharmacokinetics of fexofenadine in rats. Pharmacol. Rep., 2015, 67(2), 339-344.
[http://dx.doi.org/10.1016/j.pharep.2014.09.010] [PMID: 25712660]
[24]
Lobastov, K.; Schastlivtsev, I.; Barinov, V. Use of micronized purified flavonoid fraction together with rivaroxaban improves clinical and ultrasound outcomes in femoropopliteal venous thrombosis: Results of a pilot clinical trial. Adv. Ther., 2019, 36(1), 72-85.
[http://dx.doi.org/10.1007/s12325-018-0849-z] [PMID: 30539384]
[25]
Schastlivtsev, I.; Lobastov, K.; Barinov, V.; Kanzafarova, I. Diosmin 600 in adjunction to rivaroxaban reduces the risk of post-thrombotic syndrome after femoropopliteal deep vein thrombosis: Results of the RIDILOTT DVT study. Int. Angiol., 2020, 39(5), 361-371.
[http://dx.doi.org/10.23736/S0392-9590.20.04356-4] [PMID: 32348101]
[26]
Patel, K.; Fasanya, A.; Yadam, S.; Joshi, A.A.; Singh, A.C.; DuMont, T. Pathogenesis and epidemiology of venous thromboembolic disease. Crit. Care Nurs. Q., 2017, 40(3), 191-200.
[http://dx.doi.org/10.1097/CNQ.0000000000000158] [PMID: 28557890]
[27]
Yamashita, Y.; Morimoto, T.; Kimura, T. Venous thromboembolism: Recent advancement and future perspective. J. Cardiol., 2022, 79(1), 79-89.
[http://dx.doi.org/10.1016/j.jjcc.2021.08.026] [PMID: 34518074]
[28]
Bartholomew, J.R. Update on the management of venous thromboembolism. Cleve. Clin. J. Med., 2017, 84(12 suppl 3)(Suppl. 3), 39-46.
[http://dx.doi.org/10.3949/ccjm.84.s3.04] [PMID: 29257737]
[29]
Raskob, G.E.; Angchaisuksiri, P.; Blanco, A.N.; Buller, H.; Gallus, A.; Hunt, B.J.; Hylek, E.M.; Kakkar, A.; Konstantinides, S.V.; McCumber, M.; Ozaki, Y.; Wendelboe, A.; Weitz, J.I. Thrombosis. Arterioscler. Thromb. Vasc. Biol., 2014, 34(11), 2363-2371.
[http://dx.doi.org/10.1161/ATVBAHA.114.304488] [PMID: 25304324]
[30]
Schulman, S.; Ageno, W.; Konstantinides, S.V. Venous thromboembolism: Past, present and future. Thromb. Haemost., 2017, 117(7), 1219-1229.
[http://dx.doi.org/10.1160/TH16-10-0823] [PMID: 28594049]
[31]
Elsebaie, M.A.T.; van Es, N.; Langston, A.; Büller, H.R.; Gaddh, M. Direct oral anticoagulants in patients with venous thromboembolism and thrombophilia: A systematic review and meta-analysis. J. Thromb. Haemost., 2019, 17(4), 645-656.
[http://dx.doi.org/10.1111/jth.14398] [PMID: 30690830]
[32]
Lyman, G.H.; Carrier, M.; Ay, C.; Di Nisio, M.; Hicks, L.K.; Khorana, A.A.; Leavitt, A.D.; Lee, A.Y.Y.; Macbeth, F.; Morgan, R.L.; Noble, S.; Sexton, E.A.; Stenehjem, D.; Wiercioch, W.; Kahale, L.A.; Alonso-Coello, P. American society of hematology 2021 guidelines for management of venous thromboembolism: Prevention and treatment in patients with cancer. Blood Adv., 2021, 5(4), 927-974.
[http://dx.doi.org/10.1182/bloodadvances.2020003442] [PMID: 33570602]
[33]
Brill, A. Multiple facets of venous thrombosis. Int. J. Mol. Sci., 2021, 22(8), 3853.
[http://dx.doi.org/10.3390/ijms22083853] [PMID: 33917767]
[34]
Di Minno, A.; Frigerio, B.; Spadarella, G.; Ravani, A.; Sansaro, D.; Amato, M.; Kitzmiller, J.P.; Pepi, M.; Tremoli, E.; Baldassarre, D. Old and new oral anticoagulants: Food, herbal medicines and drug interactions. Blood Rev., 2017, 31(4), 193-203.
[http://dx.doi.org/10.1016/j.blre.2017.02.001] [PMID: 28196633]
[35]
Riva, N.; Ageno, W. Pros and cons of vitamin K antagonists and non-vitamin K antagonist oral anticoagulants. Semin. Thromb. Hemost., 2015, 41(2), 178-187.
[http://dx.doi.org/10.1055/s-0035-1544231] [PMID: 25703519]
[36]
Voukalis, C.; Lip, G.Y.H.; Shantsila, E. Non-vitamin K oral anticoagulants versus vitamin K antagonists in the treatment of venous thromboembolic disease. Expert Opin. Pharmacother., 2016, 17(15), 2033-2047.
[http://dx.doi.org/10.1080/14656566.2016.1232393] [PMID: 27667112]
[37]
Witt, D.M.; Clark, N.P.; Kaatz, S.; Schnurr, T.; Ansell, J.E. Guidance for the practical management of warfarin therapy in the treatment of venous thromboembolism. J. Thromb. Thrombolysis, 2016, 41(1), 187-205.
[http://dx.doi.org/10.1007/s11239-015-1319-y] [PMID: 26780746]
[38]
Wang, M.; Zeraatkar, D.; Obeda, M.; Lee, M.; Garcia, C.; Nguyen, L.; Agarwal, A.; Al-Shalabi, F.; Benipal, H.; Ahmad, A.; Abbas, M.; Vidug, K.; Holbrook, A. Drug–drug interactions with warfarin: A systematic review and meta-analysis. Br. J. Clin. Pharmacol., 2021, 87(11), 4051-4100.
[http://dx.doi.org/10.1111/bcp.14833] [PMID: 33769581]
[39]
Hwang, H.G.; Lee, J.H.; Kim, S.A.; Kim, Y.K.; Yhim, H.Y.; Hong, J.; Bang, S.M. Incidence of venous thromboembolism: The 3rd Korean Nationwide Study. J. Korean Med. Sci., 2022, 37(17), e130.
[http://dx.doi.org/10.3346/jkms.2022.37.e130] [PMID: 35502501]
[40]
Nasiri, A.; AlQahtani, A.; Rayes, N.; AlQahtani, R.; Alkharras, R.; Alghethber, H. Direct oral anticoagulant: Review article. J. Family Med. Prim. Care, 2022, 11(8), 4180-4183.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_2253_21] [PMID: 36352947]
[41]
Lee, S.; Lee, W.; Nguyen, T.; Um, I.; Bae, J.S.; Ma, E. Synthesis and thrombin, factor Xa and U46619 inhibitory effects of non-amidino and amidino N2-thiophenecarbonyl- and N2-tosylanthranilamides. Int. J. Mol. Sci., 2017, 18(6), 1144.
[http://dx.doi.org/10.3390/ijms18061144] [PMID: 28561744]
[42]
Pu, Y.; Liu, H.; Zhou, Y.; Peng, J.; Li, Y.; Li, P.; Li, Y.; Liu, X.; Zhang, L. In silico discovery of novel FXa inhibitors by pharmacophore modeling and molecular docking. Nat. Prod. Bioprospect., 2017, 7(3), 249-256.
[http://dx.doi.org/10.1007/s13659-017-0126-x] [PMID: 28577290]
[43]
Cabral, K.; Ansell, J. The role of factor Xa inhibitors in venous thromboembolism treatment. Vasc. Health Risk Manag., 2015, 11, 117-123.
[http://dx.doi.org/10.2147/VHRM.S39726] [PMID: 25673997]
[44]
Kocayigit, I.; Can, Y.; Sahinkus, S.; Aydin, E.; Vatan, M.; Kilic, H.; Gunduz, H. Spontaneous rectus sheath hematoma during rivaroxaban therapy. Indian J. Pharmacol., 2014, 46(3), 339-340.
[http://dx.doi.org/10.4103/0253-7613.132193] [PMID: 24987185]
[45]
Zhao, M.; Zhang, Q.; Wang, X.; Zhang, Q.; Tian, C.; Li, R.; Jia, X.; Gu, M.; Yang, L. Non-synonymous alterations in AKR7A3 and ABCA6 correlate with bleeding in aged patients treated with rivaroxaban. Clin. Transl. Sci., 2022, 15(4), 923-929.
[http://dx.doi.org/10.1111/cts.13205] [PMID: 34859601]
[46]
Ferri, N.; Colombo, E.; Tenconi, M.; Baldessin, L.; Corsini, A. Drug-drug interactions of direct oral anticoagulants (DOACs): From pharmacological to clinical practice. Pharmaceutics, 2022, 14(6), 1120.
[http://dx.doi.org/10.3390/pharmaceutics14061120] [PMID: 35745692]
[47]
Sharma, M.; Cornelius, V.R.; Patel, J.P.; Davies, J.G.; Molokhia, M. Efficacy and harms of direct oral anticoagulants in the elderly for stroke prevention in atrial fibrillation and secondary prevention of venous thromboembolism: Systematic review and meta-analysis. Circulation, 2015, 132(3), 194-204.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.013267] [PMID: 25995317]
[48]
Levy, J.H.; Spyropoulos, A.C.; Samama, C.M.; Douketis, J. Direct oral anticoagulants: New drugs and new concepts. JACC Cardiovasc. Interv., 2014, 7(12), 1333-1351.
[http://dx.doi.org/10.1016/j.jcin.2014.06.014] [PMID: 25523529]
[49]
Okumura, Y.; Yokoyama, K.; Matsumoto, N.; Tachibana, E.; Kuronuma, K.; Oiwa, K.; Matsumoto, M.; Kojima, T.; Arima, K.; Kotani, T.; Nomoto, K.; Ikeya, Y.; Fukushima, S.; Onikura, M.; Suzuki, Y.; Fujita, M.; Ando, H.; Ishikawa, N.; Hirayama, A. SAKURA AF registry investigators. Patient satisfaction with direct oral anticoagulants and warfarin findings from the SAKURA AF reglistry. Int. Heart J., 2018, 59(6), 1266-1274.
[http://dx.doi.org/10.1536/ihj.17-649] [PMID: 30369576]
[50]
Abdelnabi, M.; Benjanuwattra, J.; Okasha, O.; Almaghraby, A.; Saleh, Y.; Gerges, F. Switching from warfarin to direct-acting oral anticoagulants: It is time to move forward! Egypt. Heart J., 2022, 74(1), 18.
[http://dx.doi.org/10.1186/s43044-022-00259-9] [PMID: 35347478]
[51]
Lee, J.Y.; Oh, I.Y.; Lee, J.H.; Kim, S.Y.; Kwon, S.S.; Yang, H.J.; Kim, Y.K.; Bang, S.M. The increased risk of bleeding due to drug-drug interactions in patients administered direct oral anticoagulants. Thromb. Res., 2020, 195, 243-249.
[http://dx.doi.org/10.1016/j.thromres.2020.07.054] [PMID: 32823239]
[52]
Shurrab, M.; Jackevicius, C.A.; Austin, P.C.; Tu, K.; Qiu, F.; Caswell, J.; Michael, F.; Andrade, J.G.; Ko, D.T. Association between concurrent use of diltiazem and DOACs and risk of bleeding in atrial fibrillation patients. J. Interv. Card. Electrophysiol., 2023, 66(3), 629-635.
[PMID: 36149579]
[53]
Foerster, K.I.; Hermann, S.; Mikus, G.; Haefeli, W.E. Drug–drug interactions with direct oral anticoagulants. Clin. Pharmacokinet., 2020, 59(8), 967-980.
[http://dx.doi.org/10.1007/s40262-020-00879-x] [PMID: 32157630]
[54]
Kvasnicka, T.; Malikova, I.; Zenahlikova, Z.; Kettnerova, K.; Brzezkova, R.; Zima, T.; Ulrych, J.; Briza, J.; Netuka, I.; Kvasnicka, J. Rivaroxaban-metabolism, pharmacologic properties and drug interactions. Curr. Drug Metab., 2017, 18(7), 636-642.
[PMID: 28524005]
[55]
Otsuka, Y.; Poondru, S.; Bonate, P.L.; Rose, R.H.; Jamei, M.; Ushigome, F.; Minematsu, T. Physiologically-based pharmacokinetic modeling to predict drug-drug interaction of enzalutamide with combined P-gp and CYP3A substrates. J. Pharmacokinet. Pharmacodyn., 2023, 50(5), 365-376.
[http://dx.doi.org/10.1007/s10928-023-09867-7] [PMID: 37344637]
[56]
Zhao, T.; Li, X.; Chen, Y.; Du, J.; Chen, X.; Wang, D.; Wang, L.; Zhao, S.; Wang, C.; Meng, Q.; Sun, H.; Liu, K.; Wu, J. Risk assessment and molecular mechanism study of drug-drug interactions between rivaroxaban and tyrosine kinase inhibitors mediated by CYP2J2/3A4 and BCRP/P-gp. Front. Pharmacol., 2022, 13, 914842.
[http://dx.doi.org/10.3389/fphar.2022.914842] [PMID: 36071847]
[57]
Brings, A.; Lehmann, M.L.; Foerster, K.I.; Burhenne, J.; Weiss, J.; Haefeli, W.E.; Czock, D. Perpetrator effects of ciclosporin (P‐glycoprotein inhibitor) and its combination with fluconazole (CYP3A inhibitor) on the pharmacokinetics of rivaroxaban in healthy volunteers. Br. J. Clin. Pharmacol., 2019, 85(7), 1528-1537.
[http://dx.doi.org/10.1111/bcp.13934] [PMID: 30912163]
[58]
Sychev, D.; Mirzaev, K.; Cherniaeva, M.; Kulikova, M.; Bochkov, P.; Shevchenko, R.; Gorbatenkova, S.; Golovina, O.; Ostroumova, O.; Bahteeva, D.; Rytkin, E. Drug–drug interaction of rivaroxaban and calcium channel blockers in patients aged 80 years and older with nonvalvular atrial fibrillation. Drug Metabol. Drug Interact., 2020, 35(3), 20200127.
[http://dx.doi.org/10.1515/dmpt-2020-0127] [PMID: 32975202]
[59]
Bedada, S.K.; Neerati, P. Modulation of CYP3A enzyme activity by diosmin and its consequence on carbamazepine pharmacokinetics in rats. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(2), 115-121.
[http://dx.doi.org/10.1007/s00210-017-1439-3] [PMID: 29134244]
[60]
Palta, S.; Saroa, R.; Palta, A. Overview of the coagulation system. Indian J. Anaesth., 2014, 58(5), 515-523.
[http://dx.doi.org/10.4103/0019-5049.144643] [PMID: 25535411]
[61]
Xu, W.; Fei, L.; Huang, C.L.; Li, W.X.; Xie, X.D.; Li, Q.; Chen, L. Dynamic changes in coagulation parameters and correlation with disease severity and mortality in patients with COVID-19. Aging (Albany NY), 2021, 13(10), 13393-13404.
[http://dx.doi.org/10.18632/aging.203052] [PMID: 34031269]
[62]
Adrien, A.; Bonnet, A.; Dufour, D.; Baudouin, S.; Maugard, T.; Bridiau, N. Anticoagulant activity of sulfated ulvan isolated from the green macroalga Ulva rigida. Mar. Drugs, 2019, 17(5), 291.
[http://dx.doi.org/10.3390/md17050291] [PMID: 31091758]
[63]
Zaragozá, C.; Álvarez-Mon, M.Á.; Zaragozá, F.; Villaescusa, L. Flavonoids: Antiplatelet effect as inhibitors of COX-1. Molecules, 2022, 27(3), 1146.
[http://dx.doi.org/10.3390/molecules27031146] [PMID: 35164411]
[64]
Zaragozá, C.; Monserrat, J.; Mantecón, C.; Villaescusa, L.; Álvarez-Mon, M.Á.; Zaragozá, F.; Álvarez-Mon, M. Binding and antiplatelet activity of quercetin, rutin, diosmetin, and diosmin flavonoids. Biomed. Pharmacother., 2021, 141, 111867.
[http://dx.doi.org/10.1016/j.biopha.2021.111867] [PMID: 34229245]
[65]
Kumar, R.M.; Van Gompel, J.J.; Bower, R.; Rabinstein, A.A. Spontaneous intraventricular hemorrhage associated with prolonged diosmin therapy. Neurocrit. Care, 2011, 14(3), 438-440.
[http://dx.doi.org/10.1007/s12028-011-9524-9] [PMID: 21400007]
[66]
Branchford, B.R.; Carpenter, S.L. The role of inflammation in venous thromboembolism. Front Pediatr., 2018, 6, 142.
[http://dx.doi.org/10.3389/fped.2018.00142] [PMID: 29876337]
[67]
Malik, Z.; Abbas, M.; Al Kury, L.T.; Shah, F.A.; Alam, M.; Khan, A.; Nadeem, H.; Alghamdi, S.; Sahibzada, M.U.K.; Li, S. Thiazolidine derivatives attenuate carrageenan-induced inflammatory pain in mice. Drug Des. Devel. Ther., 2021, 15, 369-384.
[http://dx.doi.org/10.2147/DDDT.S281559] [PMID: 33574656]
[68]
Kondreddy, V.; Keshava, S.; Das, K.; Magisetty, J.; Rao, L.V.M.; Pendurthi, U.R. The Gab2–MALT1 axis regulates thromboinflammation and deep vein thrombosis. Blood, 2022, 140(13), 1549-1564.
[http://dx.doi.org/10.1182/blood.2022016424] [PMID: 35895897]
[69]
Zeng, S.; Yi, R.; Tan, F.; Sun, P.; Cheng, Q.; Zhao, X. Lactobacillus plantarum HFY05 attenuates carrageenan-induced thrombosis in mice by regulating NF-κB pathway-associated inflammatory responses. Front. Nutr., 2022, 9, 813899.
[http://dx.doi.org/10.3389/fnut.2022.813899] [PMID: 35308280]
[70]
Pai, R.; Fang, Q.; Tian, G.; Zhu, B.; Ge, X. Expression and role of interleukin-1β and associated biomarkers in deep vein thrombosis. Exp. Ther. Med., 2021, 22(6), 1366.
[http://dx.doi.org/10.3892/etm.2021.10800] [PMID: 34659512]
[71]
Johnson, E.D.; Schell, J.C.; Rodgers, G.M. The D-dimer assay. Am. J. Hematol., 2019, 94(7), 833-839.
[http://dx.doi.org/10.1002/ajh.25482] [PMID: 30945756]
[72]
Dong, X.; Liu, X.; Liu, Y.; Jiang, L.; Zhang, H.; Liu, B. Clinical efficacy of conventional heparin anticoagulation combined with Apixaban in the treatment of patients with cerebral venous thrombosis and its effect on serum D-dimer and FIB expression. Comput. Math. Methods Med., 2021, 2021, 1-8.
[http://dx.doi.org/10.1155/2021/4979210] [PMID: 35003321]
[73]
Ageno, W.; Bertù, L.; Bucherini, E.; Camporese, G.; Dentali, F.; Iotti, M.; Lessiani, G.; Parisi, R.; Prandoni, P.; Sartori, M.; Visonà, A.; Bigagli, E.; Palareti, G. Rivaroxaban treatment for six weeks versus three months in patients with symptomatic isolated distal deep vein thrombosis: Randomised controlled trial. BMJ, 2022, 379, e072623.
[http://dx.doi.org/10.1136/bmj-2022-072623] [PMID: 36520715]
[74]
Kang, J.M.; Park, K.H.; Ahn, S.; Cho, S.; Han, A.; Lee, T.; Jung, I.M.; Kim, J.Y.; Min, S.K. Rivaroxaban after thrombolysis in acute iliofemoral venous thrombosis: A randomized, open-labeled, multicenter trial. Sci. Rep., 2019, 9(1), 20356.
[http://dx.doi.org/10.1038/s41598-019-56887-w] [PMID: 31889152]
[75]
Fernandez, S.; Lenoir, C.; Samer, C.F.; Rollason, V. Drug-drug interactions leading to adverse drug reactions with rivaroxaban: A systematic review of the literature and analysis of VigiBase. J. Pers. Med., 2021, 11(4), 250.
[http://dx.doi.org/10.3390/jpm11040250] [PMID: 33808367]
[76]
Zhang, Q.; Ding, Q.; Yan, S.; Yue, Q.Y. Fatal adverse events of rivaroxaban combined with aspirin: an analysis using data from VigiBase. Eur. J. Clin. Pharmacol., 2022, 78(9), 1521-1526.
[http://dx.doi.org/10.1007/s00228-022-03357-4] [PMID: 35776157]
[77]
Li, K.X.; Diendéré, G.; Galanaud, J.P.; Mahjoub, N.; Kahn, S.R. Micronized purified flavonoid fraction for the treatment of chronic venous insufficiency, with a focus on postthrombotic syndrome: A narrative review. Res. Pract. Thromb. Haemost., 2021, 5(4), e12527.
[http://dx.doi.org/10.1002/rth2.12527] [PMID: 34027293]
[78]
Bedada, S.K.; Boga, P.K.; Kotakonda, H.K. The effect of diosmin on the pharmacokinetics of fexofenadine in healthy human volunteers. Xenobiotica, 2017, 47(3), 230-235.
[http://dx.doi.org/10.1080/00498254.2016.1180564] [PMID: 27151911]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy