Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

[Cu(dimethylbpy)2Cl]PF6 Complex as an Antibacterial Agent

Author(s): Naghmeh Satarzadeh, Ali Asadipour and Bagher Amirheidari*

Volume 22, Issue 5, 2024

Published on: 27 April, 2024

Article ID: e270424229465 Pages: 5

DOI: 10.2174/0122113525294195240415061854

Price: $65

conference banner
Abstract

Background: Antibiotic resistance is currently considered a major public health problem. This subject underscores the critical need for novel and enhanced antibacterial agents with a novel molecular structure and a new target to prevent cross-resistance. Copper exhibits antimicrobial properties by disrupting bacterial cell membranes and interfering with cellular processes. Copper complexes enhance these properties, offering improved stability and targeted antibacterial activity. Their ability to release copper ions can gradually enhance efficacy while minimizing toxicity. Therefore, investigating the antibacterial properties of new copper complexes is of significance.

Methods: In this study, the antibacterial activity of [Cu(dimethylbpy)2Cl]PF6 complex was examined against several Gram-negative bacteria, Pseudomonas aeruginosa, Escherichia coli, klebsiella pneumoniae, salmonella typhi and Gram-positive bacteria Staphylococcus aureus and Micrococcus luteus by determining the minimum inhibitory concentration (MIC). The antibacterial activity of [Cu(dimethylbpy)2Cl]PF6 complex and Gentamicin (as standard compound) were determined using the microplate method. All concentrations were repeated three times. The minimum inhibitory concentration was determined both using the unaided eye and absorbance at 490 nm.

Results: The [Cu(dimethylbpy)2Cl]PF6 complex showed higher antibacterial activity against Gram-positive bacteria than Gram-negative bacteria. Among the assayed bacterial strains, the complex was most effective against Micrococcus luteus and Staphylococcus aureus with MIC values of 100 and 250 μM, respectively.

Conclusion: This complex displayed antimicrobial potential against some bacterial strains. Therefore, this complex may be used as an effective antibacterial agent in the treatment of infection caused by some bacterial strains, but further research is needed.

Keywords: Antibacterial activity, copper, Cu complex, gram-negative bacteria, gram-positive bacteria, antibacterial agent.

Graphical Abstract
[1]
Alzahrani, K.; Niazy, A.; Alswieleh, A.; Wahab, R.; El-Toni, A.; Alghamdi, H. Antibacterial activity of trimetal (CuZnFe) oxide nanoparticles. Int. J. Nanomedicine, 2017, 13, 77-87.
[http://dx.doi.org/10.2147/IJN.S154218] [PMID: 29317817]
[2]
Nazirkar, B.; Mandewale, M.; Yamgar, R. Synthesis, characterization and antibacterial activity of Cu (II) and Zn (II) complexes of 5-aminobenzofuran-2-carboxylate Schiff base ligands. J. Taibah Univ. Sci., 2019, 13(1), 440-449.
[http://dx.doi.org/10.1080/16583655.2019.1592316]
[3]
Moellering, R.C. Jr Discovering new antimicrobial agents. Int. J. Antimicrob. Agents, 2011, 37(1), 2-9.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.08.018] [PMID: 21075608]
[4]
Terreni, M.; Taccani, M.; Pregnolato, M. New antibiotics for multidrug-resistant bacterial strains: latest research developments and future perspectives. Molecules, 2021, 26(9), 2671.
[http://dx.doi.org/10.3390/molecules26092671] [PMID: 34063264]
[5]
Blagodatskikh, I.V.; Vyshivannaya, O.V.; Alexandrova, A.V.; Bezrodnykh, E.A.; Zelenikhin, P.V.; Kulikov, S.N.; Tikhonov, V.E. Antibacterial activity and cytotoxicity of betainated oligochitosane derivatives. Microbiology, 2018, 87(5), 725-731.
[http://dx.doi.org/10.1134/S0026261718050041]
[6]
Arjmand, F.; Mohani, B.; Ahmad, S. Synthesis, antibacterial, antifungal activity and interaction of CT-DNA with a new benzimidazole derived Cu(II) complex. Eur. J. Med. Chem., 2005, 40(11), 1103-1110.
[http://dx.doi.org/10.1016/j.ejmech.2005.05.005] [PMID: 16006016]
[7]
El-Asmy, A.; Khalifa, M.; Hassanian, M. Synthesis and characterization of transition metal complexes containing oxime, amido and thioamido groups. Indian J. Chem., 2004, 43(1), 92-37.
[8]
Ekegren, J.K.; Roth, P.; Källström, K.; Tarnai, T.; Andersson, P.G. Synthesis and evaluation of N,S-compounds as chiral ligands for transfer hydrogenation of acetophenoneElectronic supplementary information (ESI) available: NMR spectra. See http://www.rsc.org/suppdata/ob/b2/b208907f/ Org. Biomol. Chem., 2003, 1(2), 358-366.
[http://dx.doi.org/10.1039/b208907f] [PMID: 12929431]
[9]
Yu, X.; Wang, Y.; Zhang, J.; Liu, J.; Wang, A.; Ding, L. Recent development of copper‐based nanozymes for biomedical applications. Adv. Healthc. Mater., 2024, 13(1), 2302023.
[http://dx.doi.org/10.1002/adhm.202302023] [PMID: 37742127]
[10]
Anjomshoa, M.; Torkzadeh-Mahani, M.; Janczak, J.; Rizzoli, C.; Sahihi, M.; Ataei, F.; Dehkhodaei, M. Synthesis, crystal structure and Hirshfeld surface analysis of copper(II) complexes: DNA- and BSA-binding, molecular modeling, cell imaging and cytotoxicity. Polyhedron, 2016, 119, 23-38.
[http://dx.doi.org/10.1016/j.poly.2016.08.018]
[11]
Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.; Marzano, C. Advances in copper complexes as anticancer agents. Chem. Rev., 2014, 114(1), 815-862.
[http://dx.doi.org/10.1021/cr400135x] [PMID: 24102434]
[12]
Maheswari, P.U.; Roy, S.; den Dulk, H.; Barends, S.; van Wezel, G.; Kozlevčar, B.; Gamez, P.; Reedijk, J. The square-planar cytotoxic [Cu(II)(pyrimol)Cl] complex acts as an efficient DNA cleaver without reductant. J. Am. Chem. Soc., 2006, 128(3), 710-711.
[http://dx.doi.org/10.1021/ja056970+] [PMID: 16417347]
[13]
Mustafa, S.K.; AlSharif, M.A. Copper (Cu) an essential redox-active transition metal in living system—a review article. Am. J. Anal. Chem., 2018, 9(1), 15-26.
[http://dx.doi.org/10.4236/ajac.2018.91002]
[14]
Patel, R.N.; Singh, N.; Shukla, K.K.; Gundla, V.L.N.; Chauhan, U.K. Synthesis, characterization and biological activity of ternary copper(II) complexes containing polypyridyl ligands. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2006, 63(1), 21-26.
[http://dx.doi.org/10.1016/j.saa.2005.04.030] [PMID: 16307903]
[15]
Ji, P.; Wang, P.; Chen, H.; Xu, Y.; Ge, J.; Tian, Z.; Yan, Z. Potential of copper and copper compounds for anticancer applications. Pharmaceuticals, 2023, 16(2), 234.
[http://dx.doi.org/10.3390/ph16020234] [PMID: 37259382]
[16]
Tsang, T.; Davis, C.I.; Brady, D.C. Copper biology. Curr. Biol., 2021, 31(9), R421-R427.
[http://dx.doi.org/10.1016/j.cub.2021.03.054] [PMID: 33974864]
[17]
Chen, J.; Jiang, Y.; Shi, H.; Peng, Y.; Fan, X.; Li, C. The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch., 2020, 472(10), 1415-1429.
[http://dx.doi.org/10.1007/s00424-020-02412-2] [PMID: 32506322]
[18]
Dalecki, A.G.; Crawford, C.L.; Wolschendorf, F. Copper and antibiotics: Discovery, modes of action, and opportunities for medicinal applications. In: Advances in microbial physiology; Elsevier, 2017; pp. 193-260.
[19]
Hood, M.I.; Skaar, E.P. Nutritional immunity: Transition metals at the pathogen-host interface. Nat. Rev. Microbiol., 2012, 10(8), 525-537.
[http://dx.doi.org/10.1038/nrmicro2836] [PMID: 22796883]
[20]
Potrykus, J.; Ballou, E.R.; Childers, D.S.; Brown, A.J.P. Conflicting interests in the pathogen-host tug of war: fungal micronutrient scavenging versus mammalian nutritional immunity. PLoS Pathog., 2014, 10(3), e1003910.
[http://dx.doi.org/10.1371/journal.ppat.1003910] [PMID: 24626223]
[21]
Il’ina, A.V.; Shagdarova, B.T.; Lun’kov, A.P.; Kulikov, S.N.; Varlamov, V.P. In vitro antifungal activity of metal complexes of a quaternized chitosan derivative with copper ions. Microbiology, 2017, 86(5), 590-595.
[http://dx.doi.org/10.1134/S0026261717050101]
[22]
Haeili, M.; Moore, C.; Davis, C.J.C.; Cochran, J.B.; Shah, S.; Shrestha, T.B.; Zhang, Y.; Bossmann, S.H.; Benjamin, W.H.; Kutsch, O.; Wolschendorf, F. Copper complexation screen reveals compounds with potent antibiotic properties against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 2014, 58(7), 3727-3736.
[http://dx.doi.org/10.1128/AAC.02316-13] [PMID: 24752262]
[23]
Beyene, B.B.; Wassie, G.A. Antibacterial activity of Cu(II) and Co(II) porphyrins: Role of ligand modification. BMC Chem., 2020, 14(1), 51.
[http://dx.doi.org/10.1186/s13065-020-00701-6] [PMID: 32818202]
[24]
Fatullayeva, P.A. Copper (II) complexes with (E)-N′(3, 5-di-tert-butyl-2-hydroxybenzilidene)-2-hydroxybenzohydrazide, their bactericidal and fungicidal activity; Transition Metal Chemistry, 2024, pp. 1-8.
[25]
Rajalakshmi, S.; Fathima, A.; Rao, J.R.; Nair, B.U. Antibacterial activity of copper(II) complexes against Staphylococcus aureus. RSC Advances, 2014, 4(60), 32004-32012.
[http://dx.doi.org/10.1039/C4RA03241A]
[26]
Gur’eva, Y.A.; Zalevskaya, O.A.; Shevchenko, O.G.; Slepukhin, P.A.; Makarov, V.A.; Kuchin, A.V. Copper(II) complexes with terpene derivatives of ethylenediamine: synthesis, and antibacterial, antifungal and antioxidant activity. RSC Advances, 2022, 12(15), 8841-8851.
[http://dx.doi.org/10.1039/D2RA00223J] [PMID: 35424859]
[27]
Djoko, K.Y.; Paterson, B.M.; Donnelly, P.S.; McEwan, A.G. Antimicrobial effects of copper(II) bis(thiosemicarbazonato) complexes provide new insight into their biochemical mode of action. Metallomics, 2014, 6(4), 854-863.
[http://dx.doi.org/10.1039/C3MT00348E] [PMID: 24435165]
[28]
Alshater, H.; Al-Sulami, A.I.; Aly, S.A.; Abdalla, E.M.; Sakr, M.A.; Hassan, S.S. Antitumor and antibacterial activity of Ni(II), Cu(II), Ag(I), and Hg(II) complexes with ligand derived from thiosemicarbazones: Characterization and theoretical studies. Molecules, 2023, 28(6), 2590.
[http://dx.doi.org/10.3390/molecules28062590] [PMID: 36985561]
[29]
Zalevskaya, O.A.; Gur’eva, Y.A. Recent studies on the antimicrobial activity of copper complexes. Russ. J. Coord. Chem., 2021, 47(12), 861-880.
[http://dx.doi.org/10.1134/S1070328421120046]
[30]
Dalecki, A.G.; Haeili, M.; Shah, S.; Speer, A.; Niederweis, M.; Kutsch, O.; Wolschendorf, F. Disulfiram and copper ions kill mycobacterium tuberculosis in a synergistic manner. Antimicrob. Agents Chemother., 2015, 59(8), 4835-4844.
[http://dx.doi.org/10.1128/AAC.00692-15] [PMID: 26033731]
[31]
Festa, R.A.; Helsel, M.E.; Franz, K.J.; Thiele, D.J. Exploiting innate immune cell activation of a copper-dependent antimicrobial agent during infection. Chem. Biol., 2014, 21(8), 977-987.
[http://dx.doi.org/10.1016/j.chembiol.2014.06.009] [PMID: 25088681]
[32]
Nur Amin Bitu, M. Anti-pathogenic activity of cu (II) complexes incorporating Schiff bases: A short review. American J. Heter. Chem., 2019, 5(1), 11-23.
[http://dx.doi.org/10.11648/j.ajhc.20190501.14]
[33]
Gomes da Silva Dantas, F.; Araújo de Almeida-Apolonio, A.; Pires de Araújo, R.; Regiane Vizolli Favarin, L.; Fukuda de Castilho, P.; de Oliveira Galvão, F.; Inez Estivalet Svidzinski, T.; Antônio Casagrande, G.; Mari Pires de Oliveira, K. A promising copper (II) complex as antifungal and antibiofilm drug against yeast infection. Molecules, 2018, 23(8), 1856.
[http://dx.doi.org/10.3390/molecules23081856] [PMID: 30049937]
[34]
Darwin, K.H. Mycobacterium tuberculosis and Copper: A newly appreciated defense against an old foe? J. Biol. Chem., 2015, 290(31), 18962-18966.
[http://dx.doi.org/10.1074/jbc.R115.640193] [PMID: 26055711]
[35]
Zhao, X.F.; Ouyang, Y.; Liu, Y-Z.; Su, Q-J.; Tian, H.; Xie, C-Z.; Xu, J-Y. Two polypyridyl copper(ii) complexes: Synthesis, crystal structure and interaction with DNA and serum protein in vitro. New J. Chem., 2014, 38(3), 955-965.
[http://dx.doi.org/10.1039/c3nj01107k]
[36]
Rani J, J.; Roy, S. Recent development of copper (II) complexes of polypyridyl ligands in chemotherapy and photodynamic therapy. Chem. Med. Chem., 2023, 18(8), e202200652.
[http://dx.doi.org/10.1002/cmdc.202200652]
[37]
Sharma, A.N.; Verma, R. Source, synthesis, and biological evaluation of natural occurring 2,2′‐bipyridines. Chem. Biodivers., 2023, 20(12), e202300764.
[http://dx.doi.org/10.1002/cbdv.202300764] [PMID: 37996963]
[38]
Alimirzaei, S.; Behzad, M.; Abolmaali, S.; Abbasi, Z. Mixed-ligand copper complexes with unsymmetrical tridentate Schiff base ligands and 2,2′-bipyridine: Synthesis, x-ray crystallography and antibacterial properties. J. Mol. Struct., 2020, 1200, 127148.
[http://dx.doi.org/10.1016/j.molstruc.2019.127148]
[39]
Vasile Scăețeanu, G.; Chifiriuc, M.; Bleotu, C.; Kamerzan, C.; Măruţescu, L.; Daniliuc, C.; Maxim, C.; Calu, L.; Olar, R.; Badea, M. Synthesis, structural characterization, antimicrobial activity, and in vitro biocompatibility of new unsaturated carboxylate complexes with 2, 2′-bipyridine. Molecules, 2018, 23(1), 157.
[http://dx.doi.org/10.3390/molecules23010157] [PMID: 29329277]
[40]
Ibragimov, A.B.; Ashurov, J.M.; Ibragimov, B.T.; Eshimbetov, A.G.; Azimova, S.S.; Tilyakov, Z.G.; Dusmatov, A.F. Synthesis, structure, Hirshfeld surface analysis of the new copper complex of 3,5-dinitrobenzoic acid and docking study of its metal complexes bioactivity. J. Mol. Struct., 2023, 1292, 136105.
[http://dx.doi.org/10.1016/j.molstruc.2023.136105]
[41]
Hangan, A.C.; Lucaciu, R.L.; Turza, A.; Dican, L.; Sevastre, B.; Páll, E.; Oprean, L.S.; Borodi, G. New copper complexes with antibacterial and cytotoxic activity. Int. J. Mol. Sci., 2023, 24(18), 13819.
[http://dx.doi.org/10.3390/ijms241813819] [PMID: 37762121]
[42]
Balsa, L.M.; Baran, E.J.; León, I.E. Copper complexes as antitumor agents: in vitro and in vivo evidence. Curr. Med. Chem., 2023, 30(5), 510-557.
[http://dx.doi.org/10.2174/0929867328666211117094550] [PMID: 34789122]
[43]
Jafari, M.; Rokhbakhsh-Zamin, F.; Shakibaie, M.; Moshafi, M.H.; Ameri, A.; Rahimi, H.R.; Forootanfar, H. Cytotoxic and antibacterial activities of biologically synthesized gold nanoparticles assisted by Micrococcus yunnanensis strain J2. Biocatal. Agric. Biotechnol., 2018, 15, 245-253.
[http://dx.doi.org/10.1016/j.bcab.2018.06.014]
[44]
Jantová, S.; Labuda, J.; Vollek, V.; Zastková, M. Antimicrobial effects of the macrocyclic Cu(II)-tetraanhydroaminobenzaldehyde complex. Folia Microbiol., 1997, 42(4), 324-326.
[http://dx.doi.org/10.1007/BF02816943] [PMID: 9449779]
[45]
Ding, P.; Wang, Y.; Kou, H.; Li, J.; Shi, B. Synthesis of heterobinuclear Cu(II)-Ni(II) complex: Structure, CT-DNA interaction, hydrolytic function and antibacterial studies. J. Mol. Struct., 2019, 1196, 836-843.
[http://dx.doi.org/10.1016/j.molstruc.2019.06.081]
[46]
Moghadam, M.E.; Divsalar, A.; Zare, M.S.; Gholizadeh, R.; Mahalleh, D.; Saghatforosh, L.; Sanati, S. Anticancer, antibacterial and antifungal activity of new ni (ii) and cu (ii) complexes of imidazole-phenanthroline derivatives. Nucleosides Nucleotides Nucleic Acids, 2017, 36(11), 667-675.
[http://dx.doi.org/10.1080/15257770.2017.1388393] [PMID: 29185856]
[47]
Pasdar, H.; Foroughifar, N.; Hedayati Saghavaz, B. Investigation into the antibacterial activity of metal complexes derived from substituted chromone in comparison with tetracycline, and cephradine as standard drugs against Escherichia coli and Staphylococcus aureus. J. Med. Microbio. Infec. Dis., 2015, 3(3), 75-79.
[48]
Pasdar, H.; Foroughifar, N.; Saghavaz, B.H. Synthesis, characterization and antibacterial activity of Co (II), Ni (II), Mn (II), Cu (II) and Zn (II) complexes with 2-amino-7, 7-dimethyl-5-oxo-4-chlorobenzen 5, 6, 7, 8-tetra hydro-4H-chromene-3-carbonitrile; Biotechnology and Biopharma, 2017, 1, 1(1), :64-71.
[49]
Climova, A.; Pivovarova, E.; Szczesio, M.; Gobis, K.; Ziembicka, D.; Korga-Plewko, A.; Kubik, J.; Iwan, M.; Antos-Bielska, M.; Krzyżowska, M.; Czylkowska, A. Anticancer and antimicrobial activity of new copper (II) complexes. J. Inorg. Biochem., 2023, 240, 112108.
[http://dx.doi.org/10.1016/j.jinorgbio.2022.112108] [PMID: 36592510]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy