Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Research Article

In silico Characterization of an Initiation Factor 2 Kinase of Black Fungi: A Potential Drug Target for Mycosis

Author(s): Cláudia Barbosa Assunção, Edgar Lacerda de Aguiar*, Miguel A. Chávez-Fumagalli, Emanuelle Rutren La Santrer, Sandro Renato Dias, Thiago de Souza Rodrigues and Rachel Basques Caligiorne

Volume 13, Issue 2, 2024

Published on: 18 April, 2024

Page: [107 - 118] Pages: 12

DOI: 10.2174/0122115501285434240409040348

Price: $65

conference banner
Abstract

Fungi infections are responsible for more than 1.6 million deaths per year worldwide. Treatment is time-consuming, compromising the kidney and liver functions. In silico analyses have facilitated the discovery of new drugs that may present fewer side effects. In this connection, kinases that phosphorylate the translation initiation factor eIF-2 are candidate proteins for potent new drugs, which have been recognized as important in maintaining protein synthesis. Substances that interfere with the phosphorylation of the eIF2α factor may be the way to inhibit the production of proteins and accelerate the fungi's death. To determine whether this enzyme can be used as a new drug target, this study aimed to perform In silico functional annotation and characterization of eIF2 factor kinase´s three-dimensional structure from three species of black fungi. In addition, inhibitors that could interact and bind to the active site of the enzyme were explored. The hypothetical protein was submitted to the databases and bioinformatics tools for its characterization, whose analysis of protein-protein interactions was modeled and inhibitors anchored. Protein interaction analysis linked the kinases with other molecules in protein translation and ribosome recycling. However, centrality analysis showed only one kinase as a possible drug target. The inhibitors showed coupling with the active site of protein kinases, and these results indicate a possible blockade of the enzymatic function that can accelerate the response to the drugs. This study demonstrates that biochemical characterization and In silico validation studies of potential drugs can be more efficient and yield faster results

Keywords: eIF-2 Kinase, drug target prediction, black fungi, mycoses, antifungal agents, network.

Next »
Graphical Abstract
[1]
Rokas A. Evolution of the human pathogenic lifestyle in fungi. Nat Microbiol 2022; 7(5): 607-19.
[http://dx.doi.org/10.1038/s41564-022-01112-0] [PMID: 35508719]
[2]
Oliveira EP, de Sousa BR, de Freitas JF, Neves RP, Jucá MB, de Araújo PSR. Clinical and epidemiological characteristics of neurocryptococcosis associated with HIV in Northeastern Brazil. Viruses 2023; 15(5): 1206.
[http://dx.doi.org/10.3390/v15051206]
[3]
Enoch DA, Yang H, Aliyu SH, Micallef C. The changing epidemiology of invasive fungal infections. Methods Mol Biol 2017; 1508: 17-65.
[http://dx.doi.org/10.1007/978-1-4939-6515-1_2] [PMID: 27837497]
[4]
Seyedmousavi S, Netea MG, Mouton JW, Melchers WJG, Verweij PE, de Hoog GS. Black yeasts and their filamentous relatives: Principles of pathogenesis and host defense. Clin Microbiol Rev 2014; 27(3): 527.
[5]
Borjian Boroujeni Z, Shamsaei S, Yarahmadi M, et al. Distribution of invasive fungal infections: Molecular epidemiology, etiology, clinical conditions, diagnosis and risk factors: A 3-year experience with 490 patients under intensive care. Microb Pathog 2021; 152: 104616.
[http://dx.doi.org/10.1016/j.micpath.2020.104616] [PMID: 33212195]
[6]
Teixeira MMR, Assunção CB, Lyon S, et al. A case of subcutaneous phaeohyphomycosis associated with leprosy. Infect Disord Drug Targets 2017; 17(3): 223-6.
[PMID: 28558644]
[7]
Reddy GKK, Padmavathi AR, Nancharaiah YV. Fungal infections: Pathogenesis, antifungals and alternate treatment approaches. Curr Res Microb Sci 2022; 27(3): 100137.
[PMID: 35909631]
[8]
Carmo A, Rocha M, Pereirinha P, Tomé R, Costa E. Antifungals: From pharmacokinetics to clinical practice. Antibiotics 2023; 12: 884.
[9]
Tverdek FP, Kofteridis D, Kontoyiannis DP. Antifungal agents and liver toxicity: A complex interaction. Expert Rev Anti Infect Ther 2016; 14(8): 765-76.
[http://dx.doi.org/10.1080/14787210.2016.1199272] [PMID: 27275514]
[10]
Tragiannidis A, Gkampeta A, Vousvouki M, Vasileiou E, Groll AH. Antifungal agents and the kidney: Pharmacokinetics, clinical nephrotoxicity, and interactions. Expert Opin Drug Saf 2021; 20(9): 1061-74.
[http://dx.doi.org/10.1080/14740338.2021.1922667] [PMID: 33896310]
[11]
Rodrigues AM, de Figueiredo SM, La Santrer EFR, et al. Study and development of an anthroposophical formula based on phosphorus and formica rufa for onychomycosis´s treatment. Recent Pat Drug Deliv Formul 2020; 14(2): 98-107.
[http://dx.doi.org/10.2174/1872211314999200917150018] [PMID: 32942982]
[12]
Yin Z, Canada HO. What contribution does bioinformatic analysis perform in the advancement of conventional biochemical research. Proceedings of the 2021 International Conference on Public Art and Human Development ( ICPAHD 2021), . Atlantis Press SARL, 28 January 2022, pp. 85-92.
[http://dx.doi.org/10.2991/assehr.k.220110.018]
[13]
Assunção CB, de Aguiar EL, Al-Hatmi AMS, et al. New molecular marker for phylogenetic reconstruction of black yeast-like fungi (Chaetothyriales) with hypothetical EIF2AK2 kinase gene. Fungal Biol 2020; 124(12): 1032-8.
[http://dx.doi.org/10.1016/j.funbio.2020.09.007] [PMID: 33213783]
[14]
Krishna KH, Kumar MS. Molecular evolution and functional divergence of eukaryotic translation initiation factor 2-alpha kinases. PLoS One 2018; 13(3): e0194335.
[http://dx.doi.org/10.1371/journal.pone.0194335] [PMID: 29538447]
[15]
Castilho BA, Shanmugam R, Silva RC, Ramesh R, Himme BM, Sattlegger E. Keeping the eIF2 alpha kinase Gcn2 in check. Biochim Biophys Acta Mol Cell Res 2014; 1843(9): 1948-68.
[http://dx.doi.org/10.1016/j.bbamcr.2014.04.006] [PMID: 24732012]
[16]
Jackson RJ, Hellen CUT, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 2010; 11(2): 113-27.
[http://dx.doi.org/10.1038/nrm2838] [PMID: 20094052]
[17]
Mohiuddin IS, Kang MH. DNA-PK as an emerging therapeutic target in cancer. Front Oncol 2019; 9: 635.
[http://dx.doi.org/10.3389/fonc.2019.00635] [PMID: 31380275]
[18]
Caplan T, Lorente-Macías Á, Stogios PJ, et al. Overcoming fungal echinocandin resistance through inhibition of the non-essential stress kinase Yck2. Cell Chem Biol 2020; 27(3): 269-282.e5.
[http://dx.doi.org/10.1016/j.chembiol.2019.12.008] [PMID: 31924499]
[19]
Ochoa R, Ortega-Pajares A, Castello FA, Serral F, Fernández Do Porto D, Villa-Pulgarin JA. Identification of potential kinase inhibitors within the pi3k/akt pathway of leishmania species. Biomolecules 2021; 11(7): 1037.
[20]
Nakamura A, Nambu T, Ebara S, et al. Inhibition of GCN2 sensitizes ASNS-low cancer cells to asparaginase by disrupting the amino acid response. Proc Natl Acad Sci USA 2018; 115(33): E7776-85.
[http://dx.doi.org/10.1073/pnas.1805523115] [PMID: 30061420]
[21]
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005; 21(18): 3674-6.
[http://dx.doi.org/10.1093/bioinformatics/bti610] [PMID: 16081474]
[22]
Mitchell AL, Attwood TK, Babbitt PC, et al. InterPro in 2019: Improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 2019; 47(D1): D351-60.
[http://dx.doi.org/10.1093/nar/gky1100] [PMID: 30398656]
[23]
Sigrist CJA, Cerutti L, Hulo N, et al. PROSITE: A documented database using patterns and profiles as motif descriptors. Brief Bioinform 2002; 3(3): 265-74.
[http://dx.doi.org/10.1093/bib/3.3.265] [PMID: 12230035]
[24]
Wilkins MR, Gasteiger E, Bairoch A, et al. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 1999; 112: 531-52. [Internet].
[PMID: 10027275]
[25]
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 2023; 47: D607-13.
[26]
Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[27]
Bader GD, Hogue CWV. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003; 4(1): 2.
[http://dx.doi.org/10.1186/1471-2105-4-2] [PMID: 12525261]
[28]
Patil AR, Leung MY, Roy S. Identification of hub genes in different stages of colorectal cancer through an integrated bioinformatics approach. Int J Environ Res Public Health 2021; 18(11): 5564.
[http://dx.doi.org/10.3390/ijerph18115564] [PMID: 34070979]
[29]
Chávez-Fumagalli MA, Schneider MS, Lage DP, Machado-de-Ávila RA, Coelho EAF. An in silico functional annotation and screening of potential drug targets derived from Leishmania spp. hypothetical proteins identified by immunoproteomics. Exp Parasitol 2017; 176: 66-74.
[http://dx.doi.org/10.1016/j.exppara.2017.03.005] [PMID: 28327439]
[30]
ENG J, Análise ROC. Calculadora de curva ROC on-line. 2014. Available from: http://www.rad.jhmi.edu/jeng/javarad/roc/JROCFITi.html [cited 2023 May 10].
[31]
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215(3): 403-10.
[http://dx.doi.org/10.1016/S0022-2836(05)80360-2] [PMID: 2231712]
[32]
Finn RD, Coggill P, Eberhardt RY, et al. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Res 2016; 44(D1): D279-85.
[http://dx.doi.org/10.1093/nar/gkv1344] [PMID: 26673716]
[33]
Bateman A, Martin MJ, O’Donovan C, Magrane M, Apweiler R, Alpi E. UniProt: A hub for protein information. Nucleic Acids Res 2015; 43: D204-12.
[PMID: 25348405]
[34]
Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res 2019; 47(D1): D419-26.
[http://dx.doi.org/10.1093/nar/gky1038] [PMID: 30407594]
[35]
Hunter S, Apweiler R, Attwood TK, et al. InterPro: The integrative protein signature database. Nucleic Acids Res 2009; 37(Database): D211-5.
[http://dx.doi.org/10.1093/nar/gkn785] [PMID: 18940856]
[36]
Schultz J, Milpetz F, Bork P, Ponting CP. SMART, a simple modular architecture research tool: Identification of signaling domains. Proc Natl Acad Sci USA 1998; 95(11): 5857-64.
[http://dx.doi.org/10.1073/pnas.95.11.5857] [PMID: 9600884]
[37]
Sonego P, Kocsor A, Pongor S. ROC analysis: Applications to the classification of biological sequences and 3D structures. Brief Bioinform 2008; 9(3): 198-209.
[http://dx.doi.org/10.1093/bib/bbm064] [PMID: 18192302]
[38]
Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 2008; 9(1): 40.
[http://dx.doi.org/10.1186/1471-2105-9-40] [PMID: 18215316]
[39]
Zhang Y, Skolnick J. Scoring function for automated assessment of protein structure template quality. Proteins 2004; 57(4): 702-10.
[http://dx.doi.org/10.1002/prot.20264] [PMID: 15476259]
[40]
Xu J, Zhang Y. How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics 2010; 26(7): 889.
[41]
Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem 2004; 25(13): 1605-12.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[42]
Sasisekharan V. Stereochemical criteria for polypeptide and protein structures Collagen. Madras, India: Wiley 1962; pp. 39-78.
[43]
Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Cryst 1993; 26(2): 283-91.
[http://dx.doi.org/10.1107/S0021889892009944]
[44]
Yahiro K, Tsutsuki H, Ogura K, Nagasawa S, Moss J, Noda M. Regulation of subtilase cytotoxin-induced cell death by an RNA dependent protein kinase-like endoplasmic reticulum kinase-dependent proteasome pathway in HeLa cells. Infect Immun 2012; 80(5): 1803-14.
[http://dx.doi.org/10.1128/IAI.06164-11] [PMID: 22354021]
[45]
Sayers EW, Beck J, Bolton EE, et al. Database resources of the national center for biotechnology information. Nucleic Acids Res 2021; 49(D1): D10-7.
[http://dx.doi.org/10.1093/nar/gkaa892] [PMID: 33095870]
[46]
Grosdidier A, Zoete V, Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 2011; 39: W270-7.
[http://dx.doi.org/10.1093/nar/gkr366]
[47]
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455-61.
[48]
Gough J. The SUPERFAMILY database in structural genomics. Acta Crystallogr D Biol Crystallogr 2002; 58(11): 1897-900.
[http://dx.doi.org/10.1107/S0907444902015160] [PMID: 12393919]
[49]
Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res 2016; 44: D67.
[50]
Brenke R, Kozakov D, Chuang GY, et al. Fragment-based identification of druggable ‘hot spots’ of proteins using Fourier domain correlation techniques. Bioinformatics 2009; 25(5): 621-7.
[http://dx.doi.org/10.1093/bioinformatics/btp036] [PMID: 19176554]
[51]
Schnoes AM, Ream DC, Thorman AW, Babbitt PC, Friedberg I. Biases in the experimental annotations of protein function and their effect on our understanding of protein function space. PLOS Comput Biol 2013; 9(5): e1003063.
[http://dx.doi.org/10.1371/journal.pcbi.1003063] [PMID: 23737737]
[52]
LifeTein . Custom peptide synthesis service company at competitive peptide prices: LifeTein. 2023. Available from: https://www.lifetein.com/peptide_synthesis_services.html [cited 2023 Nov 22].
[53]
Shahbaaz M, Hassan MI, Ahmad F. Functional annotation of conserved hypothetical proteins from Haemophilus influenzae Rd KW20. PLoS One 2013; 8(12): e84263.
[http://dx.doi.org/10.1371/journal.pone.0084263] [PMID: 24391926]
[54]
Martin J, Anamika K, Srinivasan N. Classification of protein kinases on the basis of both kinase and non-kinase regions. PLoS One 2010; 5(9): e12460.
[http://dx.doi.org/10.1371/journal.pone.0012460] [PMID: 20856812]
[55]
Gordiyenko Y, Llácer JL, Ramakrishnan V. Structural basis for the inhibition of translation through eIF2α phosphorylation. Nat Commun 2019; 10(1): 1-11.
[http://dx.doi.org/10.1038/s41467-019-10606-1]
[56]
Bitar M, Franco GR. A basic protein comparative three-dimensional modeling methodological workflow theory and practice. IEEE/ACM Trans Comput Biol Bioinform 2014; 11(6): 1052-65.
[http://dx.doi.org/10.1109/TCBB.2014.2325018]
[57]
Schwede T. Homology modeling of protein structures. Encyclopedia of Biophysics 2013; 992-8.
[http://dx.doi.org/10.1007/978-3-642-16712-6_417]
[58]
Rashidi S, Fernández-Rubio C, Manzano-Román R, Mansouri R, Shafiei R, Ali-Hassanzadeh M. Potential therapeutic targets shared between leishmaniasis and cancer. J Parasitol 2021; 148(6): 655-71.
[http://dx.doi.org/10.1017/S0031182021000160]
[59]
Herrick EJ, Hashmi MF. Antifungal Ergosterol Synthesis Inhibitors. StatPearls. Treasure Island (FL): StatPearls Publishing 2023.
[60]
Donnelly N, Gorman AM, Gupta S, Samali A. The eIF2α kinases: Their structures and functions. Cell Mol Life Sci 2013; 70(19): 3493-511.
[http://dx.doi.org/10.1007/s00018-012-1252-6] [PMID: 23354059]
[61]
Freitas MCD, Sá NP, Lopes GA, Almeida BM, Almeida JJ, Abreu JA. Antifungal activity of green and red propolis extracts and its potential use in Candidiasis control. 2019.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy