Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Review Article

Structural Insights into Potent Anti-ulcer Agents for the Eradication of Helicobacter pylori

Author(s): Snehal Sambhaji Misal, Vedant Balasaheb Bhor and Ramaa Subramanian Chelakara*

Volume 22, Issue 5, 2024

Published on: 18 April, 2024

Article ID: e180424229064 Pages: 14

DOI: 10.2174/0122113525296549240402074618

Price: $65

conference banner
Abstract

Helicobacter pylori is the primary bacterium in the development of gastric cancer; thus, its eradication for the prevention and management of peptic ulcers is of utmost importance. Most primary or unexplained peptic ulcers are brought on by Helicobacter pylori infection, which also causes chronic inflammation. The lack of therapeutic compliance, antibiotic resistance, and the breakdown of antibiotics at gastric pH all contribute to the current eradication rates. Therefore, a recent area of focus is the hunt for novel therapeutics with great selectivity against H. pylori.

This review focuses on elucidating the landscape of anti-H. pylori compounds derived from both synthetic drug design programs and natural sources. Emphasis is placed on understanding the structure-activity relationships of these compounds and their mechanisms of action.

Furthermore, the potential of drug repurposing strategies to combat H. pylori infection is explored. By providing a comprehensive overview of major classes of anti-H. pylori compounds, this study aims to guide the development of new medications for the treatment of Helicobacter pylori infection. Ultimately, this review highlights promising avenues for future research and therapeutic interventions in the management of H. pylori -associated gastric cancer.

Keywords: Antibiotic resistance, drug design, drug repurposing, Helicobacter pylori, natural products, peptic ulcer, synthetic products.

Graphical Abstract
[1]
Marshall, B.; Warren, J.R. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet, 1984, 323(8390), 1311-1315.
[http://dx.doi.org/10.1016/S0140-6736(84)91816-6] [PMID: 6145023]
[2]
Maleki Kakelar, H.; Barzegari, A.; Dehghani, J.; Hanifian, S.; Saeedi, N.; Barar, J.; Omidi, Y. Pathogenicity of helicobacter pylori in cancer development and impacts of vaccination. Gastric Cancer, 2019, 22(1), 23-36.
[http://dx.doi.org/10.1007/s10120-018-0867-1] [PMID: 30145749]
[3]
Saravanakumar, K.; Chellia, R.; Hu, X.; Kathiresan, K.; Oh, D.H.; Wang, M.H. Eradication of helicobacter pylori through the inhibition of urease and peptide deformylase: Computational and biological studies. Microb. Pathog., 2019, 128, 236-244.
[http://dx.doi.org/10.1016/j.micpath.2019.01.001] [PMID: 30611769]
[4]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOcan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[5]
Arnold, M.; Ferlay, J.; van Berge Henegouwen, M.I.; Soerjomataram, I. Global burden of oesophageal and gastric cancer by histology and subsite in 2018. Gut, 2020, 69(9), 1564-1571.
[http://dx.doi.org/10.1136/gutjnl-2020-321600] [PMID: 32606208]
[6]
Mukaisho K, I.; Nakayama, T.; Hagiwara, T.; Hattori, T. Two distinct etiologies of gastric cardia adenocarcinoma: interactions among pH, Helicobacter pylori, and bile acids. Front. Microbiol., 2015, 11, 1-6.
[7]
Plummer, M.; de Martel, C.; Vignat, J.; Ferlay, J.; Bray, F.; Franceschi, S. Global burden of cancers attributable to infections in 2012: A synthetic analysis. Lancet Glob. Health, 2016, 4(9), e609-e616.
[http://dx.doi.org/10.1016/S2214-109X(16)30143-7] [PMID: 27470177]
[8]
Morgan, E.; Arnold, M.; Camargo, M.C.; Gini, A.; Kunzmann, A.T.; Matsuda, T.; Meheus, F.; Verhoeven, R.H.A.; Vignat, J.; Laversanne, M.; Ferlay, J.; Soerjomataram, I. The current and future incidence and mortality of gastric cancer in 185 countries, 2020–40: A population-based modelling study. EClinical Med., 2022, 47, 101404.
[http://dx.doi.org/10.1016/j.eclinm.2022.101404] [PMID: 35497064]
[9]
Kusters, J.G.; van Vliet, A.H.M.; Kuipers, E.J. Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev., 2006, 19(3), 449-490.
[http://dx.doi.org/10.1128/CMR.00054-05] [PMID: 16847081]
[10]
Ghobadi, E.; Ghanbarimasir, Z.; Emami, S. A review on the structures and biological activities of anti-Helicobacter pylori agents. Eur. J. Med. Chem., 2021, 223, 113669.
[http://dx.doi.org/10.1016/j.ejmech.2021.113669] [PMID: 34218084]
[11]
Bashir, S.K.; Khan, M.B. Overview of Helicobacter pylori infection, prevalence, risk factors, and its prevention. Advan. Gut & Microbi. Res., 2023, 2023, 1-9.
[http://dx.doi.org/10.1155/2023/9747027]
[12]
Singh, A.K.; Singh, S.K.; Singh, P.P.; Srivastava, A.K.; Pandey, K.D.; Kumar, A.; Yadav, H. Biotechnological aspects of plants metabolites in the treatment of ulcer: A new prospective. Biotechnol. Rep., 2018, 18, e00256.
[http://dx.doi.org/10.1016/j.btre.2018.e00256] [PMID: 29876305]
[13]
Cardos, A.I.; Maghiar, A.; Zaha, D.C.; Pop, O.; Fritea, L.; Miere Groza, F.; Cavalu, S. Evolution of diagnostic methods for Helicobacter pylori infections: From traditional tests to high technology, advanced sensitivity and discrimination tools. Diagnostics, 2022, 12(2), 508.
[http://dx.doi.org/10.3390/diagnostics12020508] [PMID: 35204598]
[14]
Keskin, M.; Yavuz, A. A novel rapid and accurate method for detecting Helicobacter Pylori: The modified antigen test. Eur. Rev. Med. Pharmacol. Sci., 2022, 26(4), 1148-1155.
[PMID: 35253170]
[15]
Chey, W.D.; Leontiadis, G.I.; Howden, C.W.; Moss, S.F. ACG clinical guideline: Treatment of Helicobacter pylori infection. Am. J. Gastroenterol., 2017, 112(2), 212-239.
[http://dx.doi.org/10.1038/ajg.2016.563] [PMID: 28071659]
[16]
Malfertheiner, P.; Megraud, F.; Rokkas, T.; Gisbert, J.P.; Liou, J.M.; Schulz, C.; Gasbarrini, A.; Hunt, R.H.; Leja, M.; O’Morain, C.; Rugge, M.; Suerbaum, S.; Tilg, H.; Sugano, K.; El-Omar, E.M. Management of Helicobacter pylori infection: The Maastricht VI/Florence consensus report. Gut, 2022, 71(9), 1724-1762.
[http://dx.doi.org/10.1136/gutjnl-2022-327745] [PMID: 35944925]
[17]
Aumpan, N.; Mahachai, V.; Vilaichone, R. Management of Helicobacter pylori infection. JGH Open, 2023, 7(1), 3-15.
[http://dx.doi.org/10.1002/jgh3.12843] [PMID: 36660052]
[18]
Vilaichone, R.K.; Prapitpaiboon, H.; Gamnarai, P. Seven-day bismuth-based quadruple therapy as an initial treatment for Helicobacter pylori infection in a high metronidazole resistant area. Asian Pac. J. Can. Pre., 2015, 16(14), 6089-6092.
[19]
Lin, T.F.; Hsu, P.I. Second-line rescue treatment of Helicobacter pylori infection: Where are we now? World J. Gastroenterol., 2018, 24(40), 4548-4553.
[http://dx.doi.org/10.3748/wjg.v24.i40.4548] [PMID: 30386104]
[20]
Kim, S.E.; Park, M.I.; Park, S.J.; Moon, W.; Kim, J.H.; Jung, K.; Kim, H.K.; Lee, Y.D. Second-line bismuth-containing quadruple therapy for Helicobacter pylori eradication and impact of diabetes. World J. Gastroenterol., 2017, 23(6), 1059-1066.
[http://dx.doi.org/10.3748/wjg.v23.i6.1059] [PMID: 28246480]
[21]
Garnock-Jones, K.P. Vonoprazan: first global approval. Drugs, 2015, 75(4), 439-443.
[http://dx.doi.org/10.1007/s40265-015-0368-z] [PMID: 25744862]
[22]
Scarpignato, C.; Hunt, R.H. The potential role of potassium-competitive acid blockers in the treatment of gastroesophageal reflux disease. Curr. Opin. Gastroenterol., 2019, 35(4), 344-355.
[http://dx.doi.org/10.1097/MOG.0000000000000543] [PMID: 31045597]
[23]
Murakami, K.; Sakurai, Y.; Shiino, M.; Funao, N.; Nishimura, A.; Asaka, M. Vonoprazan, a novel potassium-competitive acid blocker, as a component of first-line and second-line triple therapy for Helicobacter pylori eradication: A phase III, randomised, double-blind study. Gut, 2016, 65(9), 1439-1446.
[http://dx.doi.org/10.1136/gutjnl-2015-311304] [PMID: 26935876]
[24]
Sue, S.; Kuwashima, H.; Iwata, Y.; Oka, H.; Arima, I.; Fukuchi, T.; Sanga, K.; Inokuchi, Y.; Ishii, Y.; Kanno, M.; Terada, M.; Amano, H.; Naito, M.; Iwase, S.; Okazaki, H.; Komatsu, K.; Kokawa, A.; Kawana, I.; Morimoto, M.; Saito, T.; Kunishi, Y.; Ikeda, A.; Takahashi, D.; Miwa, H.; Sasaki, T.; Tamura, T.; Kondo, M.; Shibata, W.; Maeda, S. The superiority of vonoprazan-based first-line triple therapy with clarithromycin: A prospective multi-center cohort study on <i>helicobacter pylori</i> eradication. Intern. Med., 2017, 56(11), 1277-1285.
[http://dx.doi.org/10.2169/internalmedicine.56.7833] [PMID: 28566587]
[25]
Maruyama, M.; Tanaka, N.; Kubota, D.; Miyajima, M.; Kimura, T.; Tokutake, K.; Imai, R.; Fujisawa, T.; Mori, H.; Matsuda, Y.; Wada, S.; Horiuchi, A.; Kiyosawa, K. Vonoprazan-based regimen is more useful than PPI-based one as a first-line Helicobacter pylori eradication: A randomized controlled trial. Can. J. Gastroenterol. Hepatol., 2017, 2017, 1-7.
[http://dx.doi.org/10.1155/2017/4385161] [PMID: 28349044]
[26]
Goderska, K.; Agudo Pena, S.; Alarcon, T. Helicobacter pylori treatment: Antibiotics or probiotics. Appl. Microbiol. Biotechnol., 2018, 102(1), 1-7.
[http://dx.doi.org/10.1007/s00253-017-8535-7] [PMID: 29075827]
[27]
Baker, D.A. Plants against Helicobacter pylori to combat resistance: An ethnopharmacological review. Biotechnol. Rep., 2020, 26, e00470.
[http://dx.doi.org/10.1016/j.btre.2020.e00470] [PMID: 32477900]
[28]
Benini, S.; Rypniewski, W.R.; Wilson, K.S.; Miletti, S.; Ciurli, S.; Mangani, S. A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Structure, 1999, 7(2), 205-216.
[http://dx.doi.org/10.1016/S0969-2126(99)80026-4] [PMID: 10368287]
[29]
Benini, S.; Rypniewski, W.R.; Wilson, K.S.; Mangani, S.; Ciurli, S. Molecular details of urease inhibition by boric acid: insights into the catalytic mechanism. J. Am. Chem. Soc., 2004, 126(12), 3714-3715.
[http://dx.doi.org/10.1021/ja049618p] [PMID: 15038715]
[30]
Kosikowska, P.; Berlicki, Ł. Urease inhibitors as potential drugs for gastric and urinary tract infections: A patent review. Expert Opin. Ther. Pat., 2011, 21(6), 945-957.
[http://dx.doi.org/10.1517/13543776.2011.574615]
[31]
Adu-Aryee, N.A.; Aabakken, L.; Dedey, F.; Nsaful, J.; Kudzi, W. Comparison of endoscopic based diagnosis with Helicobacter urease test for Helicobacter pylori infection. BMC Res. Notes, 2016, 9(1), 421.
[http://dx.doi.org/10.1186/s13104-016-2237-6] [PMID: 27576901]
[32]
Macegoniuk, K.; Grela, E.; Palus, J.; Rudzińska-Szostak, E.; Grabowiecka, A.; Biernat, M.; Berlicki, Ł. 1,2-Benzisoselenazol-3(2 H)-one derivatives as a new class of bacterial urease inhibitors. J. Med. Chem., 2016, 59(17), 8125-8133.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00986] [PMID: 27524377]
[33]
Stingl, K.; Altendorf, K.; Bakker, E.P. Acid survival of Helicobacter pylori: How does urease activity trigger cytoplasmic pH homeostasis? Trends Microbiol., 2002, 10(2), 70-74.
[http://dx.doi.org/10.1016/S0966-842X(01)02287-9] [PMID: 11827807]
[34]
Hameed, A.; Al-Rashida, M.; Uroos, M.; Qazi, S.U.; Naz, S.; Ishtiaq, M. A patent update on therapeutic applications of urease inhibitors. Expert Opin. Ther. Pat., 2019, 29(3), 181-189.
[35]
Zhang, Y.; Fang, H.; Feng, J.; Jia, Y.; Wang, X.; Xu, W. Discovery of a tetrahydroisoquinoline-based hydroxamic acid derivative (ZYJ-34c) as histone deacetylase inhibitor with potent oral antitumor activities. J. Med. Chem., 2011, 54(15), 5532-5539.
[http://dx.doi.org/10.1021/jm200577a] [PMID: 21714538]
[36]
Xiao, Z.P.; Peng, Z.Y.; Dong, J.J.; Deng, R.C.; Wang, X.D.; Ouyang, H.; Yang, P.; He, J.; Wang, Y.F.; Zhu, M.; Peng, X.C.; Peng, W.X.; Zhu, H.L. Synthesis, molecular docking and kinetic properties of β-hydroxy-β-phenylpropionyl-hydroxamic acids as Helicobacter pylori urease inhibitors. Eur. J. Med. Chem., 2013, 68, 212-221.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.047] [PMID: 23974021]
[37]
Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem., 1967, 39(8), 971-974.
[http://dx.doi.org/10.1021/ac60252a045]
[38]
Shi, W.K.; Deng, R.C.; Wang, P.F.; Yue, Q.Q.; Liu, Q.; Ding, K.L.; Yang, M.H.; Zhang, H.Y.; Gong, S.H.; Deng, M.; Liu, W.R.; Feng, Q.J.; Xiao, Z.P.; Zhu, H.L. 3-Arylpropionylhydroxamic acid derivatives as Helicobacter pylori urease inhibitors: Synthesis, molecular docking and biological evaluation. Bioorg. Med. Chem., 2016, 24(19), 4519-4527.
[http://dx.doi.org/10.1016/j.bmc.2016.07.052] [PMID: 27492194]
[39]
Ni, W.W.; Liu, Q.; Ren, S.Z.; Li, W.Y.; Yi, L.L.; Jing, H.; Sheng, L.X.; Wan, Q.; Zhong, P.F.; Fang, H.L.; Ouyang, H.; Xiao, Z.P.; Zhu, H.L. The synthesis and evaluation of phenoxyacylhydroxamic acids as potential agents for Helicobacter pylori infections. Bioorg. Med. Chem., 2018, 26(14), 4145-4152.
[http://dx.doi.org/10.1016/j.bmc.2018.07.003] [PMID: 29983280]
[40]
Pathak, A.; Blair, V.L.; Ferrero, R.L.; Junk, P.C.; Tabor, R.F.; Andrews, P.C. Synthesis and structural characterisation of bismuth(III) hydroxamates and their activity against Helicobacter pylori. Dalton Trans., 2015, 44(38), 16903-16913.
[http://dx.doi.org/10.1039/C5DT02259B] [PMID: 26352159]
[41]
Puca, V.; Turacchio, G.; Marinacci, B.; Supuran, C.T.; Capasso, C.; Di Giovanni, P.; D’Agostino, I.; Carradori, S.; Grande, R. Antimicrobial and antibiofilm activities of carvacrol, amoxicillin and salicylhydroxamic acid alone and in combination vs. helicobacter pylori: Towards a new multi-targeted therapy. Int. J. Mol. Sci., 2023, 24(5), 4455.
[http://dx.doi.org/10.3390/ijms24054455] [PMID: 36901886]
[42]
Supuran, C.T. Structure and function of carbonic anhydrases. Biochem. J., 2016, 473(14), 2023-2032.
[http://dx.doi.org/10.1042/BCJ20160115] [PMID: 27407171]
[43]
Supuran, C.T. Emerging role of carbonic anhydrase inhibitors. Clin. Sci., 2021, 135(10), 1233-1249.
[http://dx.doi.org/10.1042/CS20210040] [PMID: 34013961]
[44]
Supuran, C.T. Carbonic anhydrase inhibition and the management of neuropathic pain. Expert Rev. Neurother., 2016, 16(8), 961-968.
[http://dx.doi.org/10.1080/14737175.2016.1193009] [PMID: 27211329]
[45]
Supuran, C.T. Drug interaction considerations in the therapeutic use of carbonic anhydrase inhibitors. Expert Opin. Drug Metab. Toxicol., 2016, 12(4), 423-431.
[http://dx.doi.org/10.1517/17425255.2016.1154534] [PMID: 26878088]
[46]
Supuran, C.T. Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opin. Drug Discov., 2017, 12(1), 61-88.
[http://dx.doi.org/10.1080/17460441.2017.1253677] [PMID: 27783541]
[47]
Tsikas, D. Acetazolamide and human carbonic anhydrases: Retrospect, review and discussion of an intimate relationship. J. Enzyme Inhib. Med. Chem., 2024, 39(1), 2291336.
[http://dx.doi.org/10.1080/14756366.2023.2291336] [PMID: 38078375]
[48]
Nishimori, I.; Minakuchi, T.; Kohsaki, T.; Onishi, S.; Takeuchi, H.; Vullo, D.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors: The β-carbonic anhydrase from Helicobacter pylori is a new target for sulfonamide and sulfamate inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(13), 3585-3594.
[http://dx.doi.org/10.1016/j.bmcl.2007.04.063] [PMID: 17482815]
[49]
Maresca, A.; Vullo, D.; Scozzafava, A.; Supuran, C.T. Inhibition of the alpha- and beta-carbonic anhydrases from the gastric pathogen Helycobacter pylori with anions. J. Enzyme Inhib. Med. Chem., 2013, 28(2), 388-391.
[http://dx.doi.org/10.3109/14756366.2011.649268] [PMID: 22299578]
[50]
Angeli, A.; Ferraroni, M.; Supuran, C.T. Famotidine, an antiulcer agent, strongly inhibits Helicobacter pylori and human carbonic anhydrases. ACS Med. Chem. Lett., 2018, 9(10), 1035-1038.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00334] [PMID: 30344913]
[51]
Maren, T.H.; Brechue, W.F.; Bar-Ilan, A. Relations among IOP reduction, ocular disposition and pharmacology of the carbonic anhydrase inhibitor ethoxzolamide. Exp. Eye Res., 1992, 55(1), 73-79.
[http://dx.doi.org/10.1016/0014-4835(92)90094-9] [PMID: 1397133]
[52]
Drance, S.M. Ethoxzolamide (cardrase) in the management of chronic simple glaucoma. Arch. Ophthalmol., 1960, 64(3), 433-437.
[http://dx.doi.org/10.1001/archopht.1960.01840010435017] [PMID: 13817990]
[53]
Modak, J.K.; Tikhomirova, A.; Gorrell, R.J.; Rahman, M.M.; Kotsanas, D.; Korman, T.M.; Garcia-Bustos, J.; Kwok, T.; Ferrero, R.L.; Supuran, C.T.; Roujeinikova, A. Anti-Helicobacter pylori activity of ethoxzolamide. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1660-1667.
[http://dx.doi.org/10.1080/14756366.2019.1663416] [PMID: 31530039]
[54]
Krajewska, B.; Ureases, I.; Ureases, I. Functional, catalytic and kinetic properties: A review. J. Mol. Catal., B Enzym., 2009, 59(1-3), 9-21.
[http://dx.doi.org/10.1016/j.molcatb.2009.01.003]
[55]
Follmer, C. Ureases as a target for the treatment of gastric and urinary infections. J. Clin. Pathol., 2010, 63(5), 424-430.
[http://dx.doi.org/10.1136/jcp.2009.072595] [PMID: 20418234]
[56]
Maroney, M.J.; Ciurli, S. Nonredox nickel enzymes. Chem. Rev., 2014, 114(8), 4206-4228.
[http://dx.doi.org/10.1021/cr4004488] [PMID: 24369791]
[57]
Li, H.Q.; Xu, C.; Li, H.S.; Xiao, Z.P.; Shi, L.; Zhu, H.L. Metronidazole-flavonoid derivatives as anti-Helicobacter pylori agents with potent inhibitory activity against HPE-induced interleukin-8 production by AGS cells. Chem. Med. Chem., 2007, 2(9), 1361-1369.
[http://dx.doi.org/10.1002/cmdc.200700097] [PMID: 17628869]
[58]
Mao, W.J.; Lv, P.C.; Shi, L.; Li, H.Q.; Zhu, H.L. Synthesis, molecular docking and biological evaluation of metronidazole derivatives as potent Helicobacter pylori urease inhibitors. Bioorg. Med. Chem., 2009, 17(21), 7531-7536.
[http://dx.doi.org/10.1016/j.bmc.2009.09.018] [PMID: 19804978]
[59]
Letafat, B.; Emami, S.; Aliabadi, A.; Mohammadhosseini, N.; Moshafi, M.H.; Asadipour, A.; Shafiee, A.; Foroumadi, A. Synthesis and in-vitro antibacterial activity of 5-substituted 1-methyl-4-nitro-1H-imidazoles. Arch. Pharm., 2008, 341(8), 497-501.
[http://dx.doi.org/10.1002/ardp.200800022] [PMID: 18618489]
[60]
Mirzaei, J.; Siavoshi, F.; Emami, S.; Safari, F.; Khoshayand, M.R.; Shafiee, A.; Foroumadi, A. Synthesis and in vitro anti-Helicobacter pylori activity of N-[5-(5-nitro-2-heteroaryl)-1,3,4-thiadiazol-2-yl]thiomorpholines and related compounds. Eur. J. Med. Chem., 2008, 43(8), 1575-1580.
[http://dx.doi.org/10.1016/j.ejmech.2007.11.019] [PMID: 18192086]
[61]
Mohammadhosseini, N.; Asadipor, A. Synthesis and in vitro anti-Helicobacter pylori activity of 2-(substituted benzylthio)-5-(5-nitro-2- furyl)-1, 3, 4-thiadiazole derivatives. Turk. J. Chem., 2009, 33, 471-478.
[62]
Asadipour, A.; Edraki, N.; Nakhjiri, M.; Yahya-Meymandi, A.; Alipour, E.; Saniee, P.; Siavoshi, F.; Shafiee, A.; Foroumadi, A. Anti-helicobacter pylori activity and structure-activity relationship study of 2-alkylthio-5-(nitroaryl)-1,3,4-thiadiazole derivatives. Iran. J. Pharm. Res., 2013, 12(3), 281-287.
[PMID: 24250634]
[63]
De Monte, C.; Bizzarri, B.; Gidaro, M.C.; Carradori, S.; Mollica, A.; Luisi, G.; Granese, A.; Alcaro, S.; Costa, G.; Basilico, N.; Parapini, S.; Scaltrito, M.M.; Masia, C.; Sisto, F. Bioactive compounds of Crocus sativus L. and their semi-synthetic derivatives as promising anti-Helicobacter pylori, anti-malarial and anti-leishmanial agents. J. Enzyme Inhib. Med. Chem., 2015, 30(6), 1027-1033.
[http://dx.doi.org/10.3109/14756366.2014.1001755] [PMID: 25766747]
[64]
He, L.; Zhang, L.; Liu, X.; Li, X.; Zheng, M.; Li, H.; Yu, K.; Chen, K.; Shen, X.; Jiang, H.; Liu, H. Discovering potent inhibitors against the β-hydroxyacyl-acyl carrier protein dehydratase (FabZ) of Helicobacter pylori: structure-based design, synthesis, bioassay, and crystal structure determination. J. Med. Chem., 2009, 52(8), 2465-2481.
[http://dx.doi.org/10.1021/jm8015602] [PMID: 19309082]
[65]
Kovaříková, P.; Mrkvičková, Z.; Klimeš, J. Investigation of the stability of aromatic hydrazones in plasma and related biological material. J. Pharm. Biomed. Anal., 2008, 47(2), 360-370.
[http://dx.doi.org/10.1016/j.jpba.2008.01.011] [PMID: 18294799]
[66]
Kölmel, D.K.; Kool, E.T. Oximes and hydrazones in bioconjugation: Mechanism and catalysis. Chem. Rev., 2017, 117(15), 10358-10376.
[http://dx.doi.org/10.1021/acs.chemrev.7b00090] [PMID: 28640998]
[67]
Kalia, J.; Raines, R.T. Hydrolytic stability of hydrazones and oximes. Angew. Chem. Int. Ed., 2008, 47(39), 7523-7526.
[http://dx.doi.org/10.1002/anie.200802651] [PMID: 18712739]
[68]
Abut, E.; Yaşar, B.; Güveli, H.; Bölükbaş, C.; Bölükbaş, F.F.; Dalay, A.R.; Kurdaş, O.Ö. Effect of the mucolytic erdosteine on the success rate of PPI-based first-line triple therapy for Helicobacter pylori eradication: a prospective, double-blind, randomized, placebo-controlled study. Scand. J. Gastroenterol., 2010, 45(6), 677-683.
[http://dx.doi.org/10.3109/00365521003702726] [PMID: 20334478]
[69]
Bang, C.S.; Kim, Y.S.; Park, S.H.; Kim, J.B.; Baik, G.H.; Suk, K.T.; Yoon, J.H.; Kim, D.J. Additive effect of pronase on the eradication rate of first-line therapy for helicobacter pylori infection. Gut Liver, 2015, 9(3), 340-345.
[http://dx.doi.org/10.5009/gnl13399] [PMID: 25167799]
[70]
Cammarota, G.; Sanguinetti, M.; Gallo, A.; Posteraro, B. Review article: Biofilm formation by H elicobacter pylori as a target for eradication of resistant infection. Aliment. Pharmacol. Ther., 2012, 36(3), 222-230.
[http://dx.doi.org/10.1111/j.1365-2036.2012.05165.x] [PMID: 22650647]
[71]
Makipour, K.; Friedenberg, F.K. The potential role of N-acetylcysteine for the treatment of Helicobacter pylori. J. Clin. Gastroenterol., 2011, 45(10), 841-843.
[http://dx.doi.org/10.1097/MCG.0b013e31822be4d6] [PMID: 21989277]
[72]
Graham, D.Y.; Shiotani, A. New concepts of resistance in the treatment of Helicobacter pylori infections. Nat. Clin. Pract. Gastroenterol. Hepatol., 2008, 5(6), 321-331.
[http://dx.doi.org/10.1038/ncpgasthep1138] [PMID: 18446147]
[73]
Moonens, K.; Gideonsson, P.; Subedi, S.; Bugaytsova, J.; Romaõ, E.; Mendez, M.; Nordén, J.; Fallah, M.; Rakhimova, L.; Shevtsova, A.; Lahmann, M.; Castaldo, G.; Brännström, K.; Coppens, F.; Lo, A.W.; Ny, T.; Solnick, J.V.; Vandenbussche, G.; Oscarson, S.; Hammarström, L.; Arnqvist, A.; Berg, D.E.; Muyldermans, S.; Borén, T.; Remaut, H. Structural insights into polymorphic ABO glycan binding by helicobacter pylori. Cell Host Microbe, 2016, 19(1), 55-66.
[http://dx.doi.org/10.1016/j.chom.2015.12.004] [PMID: 26764597]
[74]
Tardiolo, G.; Bramanti, P.; Mazzon, E. Overview on the effects of N-acetylcysteine in neurodegenerative diseases. Molecules, 2018, 23(12), 3305.
[http://dx.doi.org/10.3390/molecules23123305] [PMID: 30551603]
[75]
Tran, C.D.; Kritas, S.; Campbell, M.A.F.; Huynh, H.Q.; Lee, S.S.; Butler, R.N. Novel combination therapy for the eradication of Helicobacter pylori infection in a mouse model. Scand. J. Gastroenterol., 2010, 45(12), 1424-1430.
[http://dx.doi.org/10.3109/00365521.2010.506245] [PMID: 20653490]
[76]
Gurbuz, A.K.; Ozel, A.M.; Ozturk, R.; Yildirim, S.; Yazgan, Y.; Demirturk, L. Effect of N-acetyl cysteine on Helicobacter pylori. South. Med. J., 2005, 98(11), 1095-1097.
[http://dx.doi.org/10.1097/01.smj.0000182486.39913.da] [PMID: 16351030]
[77]
Klesiewicz, K.; Karczewska, E.; Budak, A.; Marona, H.; Szkaradek, N. Anti-Helicobacter pylori activity of some newly synthesized derivatives of xanthone. J. Antibiot., 2016, 69(11), 825-834.
[http://dx.doi.org/10.1038/ja.2016.36] [PMID: 27025351]
[78]
Wang, X.D.; Wei, W.; Wang, P.F.; Yi, L.C.; Shi, W.K.; Xie, Y.X.; Wu, L.Z.; Tang, N.; Zhu, L.S.; Peng, J.; Liu, C.; Li, X.H.; Tang, S.; Xiao, Z.P.; Zhu, H.L. Synthesis, molecular docking and biological evaluation of 3-arylfuran-2(5H)-ones as anti-gastric ulcer agent. Bioorg. Med. Chem., 2015, 23(15), 4860-4865.
[http://dx.doi.org/10.1016/j.bmc.2015.05.026] [PMID: 26048027]
[79]
Xiao, Z.P.; Shi, W.K.; Wang, P.F.; Wei, W.; Zeng, X.T.; Zhang, J.R.; Zhu, N.; Peng, M.; Peng, B.; Lin, X.Y.; Ouyang, H.; Peng, X.C.; Wang, G.C.; Zhu, H.L. Synthesis and evaluation of N-analogs of 1,2-diarylethane as Helicobacter pylori urease inhibitors. Bioorg. Med. Chem., 2015, 23(15), 4508-4513.
[http://dx.doi.org/10.1016/j.bmc.2015.06.014] [PMID: 26113187]
[80]
Salehi, B.; Ata, A.; Sharopov, ; Ramírez-Alarcón, ; Ruiz-Ortega, ; Abdulmajid Ayatollahi, ; Tsouh Fokou, ; Kobarfard, ; Amiruddin Zakaria, ; Iriti, ; Taheri, ; Martorell, ; Sureda, ; Setzer, ; Durazzo, ; Lucarini, ; Santini, ; Capasso, ; Ostrander, ; Atta-ur-Rahman, ; Choudhary, M.I.; Cho, W.C.; Sharifi-Rad, J. Antidiabetic potential of medicinal plants and their active components. Biomolecules, 2019, 9(10), 551.
[http://dx.doi.org/10.3390/biom9100551] [PMID: 31575072]
[81]
Salehi, B.; Zakaria, Z.A.; Gyawali, R.; Ibrahim, S.A.; Rajkovic, J.; Shinwari, Z.K.; Khan, T.; Sharifi-Rad, J.; Ozleyen, A.; Turkdonmez, E.; Valussi, M.; Tumer, T.B.; Monzote Fidalgo, L.; Martorell, M.; Setzer, W.N. Piper Species: A comprehensive review on their phytochemistry, biological activities and applications. Molecules, 2019, 24(7), 1364.
[http://dx.doi.org/10.3390/molecules24071364] [PMID: 30959974]
[82]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[83]
Lai, C.H.; Rao, Y.K.; Fang, S.H.; Sing, Y.T.; Tzeng, Y.M. Identification of 3′,4′,5′-trimethoxychalcone analogues as potent inhibitors of Helicobacter pylori-induced inflammation in human gastric epithelial cells. Bioorg. Med. Chem. Lett., 2010, 20(18), 5462-5465.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.094] [PMID: 20705463]
[84]
Chandra, S.; Roy, A.; Jana, M.; Pahan, K. Cinnamic acid activates PPARα to stimulate Lysosomal biogenesis and lower Amyloid plaque pathology in an Alzheimer’s disease mouse model. Neurobiol. Dis., 2019, 124, 379-395.
[http://dx.doi.org/10.1016/j.nbd.2018.12.007] [PMID: 30578827]
[85]
Zhang, W.X.; Wang, H.; Cui, H.R.; Guo, W.B.; Zhou, F.; Cai, D.S.; Xu, B.; Jia, X.H.; Huang, X.M.; Yang, Y.Q.; Chen, H.S.; Qi, J.C.; Wang, P.L.; Lei, H.M. Design, synthesis and biological evaluation of cinnamic acid derivatives with synergetic neuroprotection and angiogenesis effect. Eur. J. Med. Chem., 2019, 183, 111695.
[http://dx.doi.org/10.1016/j.ejmech.2019.111695] [PMID: 31541868]
[86]
Epifano, F.; Menghini, L.; Pagiotti, R.; Angelini, P.; Genovese, S.; Curini, M. In vitro inhibitory activity of boropinic acid against Helicobacter pylori. Bioorg. Med. Chem. Lett., 2006, 16(21), 5523-5525.
[http://dx.doi.org/10.1016/j.bmcl.2006.08.043] [PMID: 16945527]
[87]
Paracatu, L.; Bonacorsi, C.; Quinello Gomes de Farias, C.; Nazaré, A.; Petrônio, M.; Regasini, L.; Siqueira Silva, D.; Gonçalves Raddi, M.; da Fonseca, L.; Ximenes, V. Alkyl caffeates as anti-Helicobacter pylori and scavenger of oxidants produced by neutrophils. Med. Chem., 2013, 10(1), 74-80.
[http://dx.doi.org/10.2174/157340641001131226125042] [PMID: 23628087]
[88]
Beserra, F.P.; Rozza, A.L.; Vieira, A.J.; Sérgio Gushiken, L.F.; Pellizzon, C.H. Antiulcerogenic compounds isolated from medicinal plants. Stud. Nat. Prod. Chem., 2016, 47, 215-234.
[http://dx.doi.org/10.1016/B978-0-444-63603-4.00006-1]
[89]
Bonifácio, B.V.; dos Santos Ramos, M.A.; da Silva, P.B.; Bauab, T.M. Antimicrobial activity of natural products against Helicobacter pylori: A review. Ann. Clin. Microbiol. Antimicrob., 2014, 13(1), 54.
[PMID: 25406585]
[90]
Li, C.; Huang, P.; Wong, K.; Xu, Y.; Tan, L.; Chen, H.; Lu, Q.; Luo, C.; Tam, C.; Zhu, L.; Su, Z.; Xie, J. Coptisine-induced inhibition of Helicobacter pylori: Elucidation of specific mechanisms by probing urease active site and its maturation process. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1362-1375.
[http://dx.doi.org/10.1080/14756366.2018.1501044] [PMID: 30191728]
[91]
Ochi, T.; Shibata, H.; Higuti, T.; Kodama, K.; Kusumi, T.; Takaishi, Y. Anti- Helicobacter p ylori Compounds from Santalum a lbum. J. Nat. Prod., 2005, 68(6), 819-824.
[http://dx.doi.org/10.1021/np040188q] [PMID: 15974602]
[92]
Manayi, A.; Heidari, S.; Goahri, A.R.; Saeidnia, S.; Mighani, H.; Esfahani, H.R.M. Chemical constituents of Cymbocarpum erythraeum (DC.) Boiss. and evaluation of its anti-Helicobacter pylori activity. Planta Med., 2014, 80(16)
[http://dx.doi.org/10.1055/s-0034-1394882]
[93]
Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[94]
Dey, G. An overview of drug repurposing: Review article. J. Med. Sci. clin. Res., 2019, 7(2), 1-970.
[95]
Savoldi, A.; Carrara, E.; Graham, D.Y.; Conti, M.; Tacconelli, E. Prevalence of antibiotic resistance in helicobacter pylori: A systematic review and meta-analysis in world health organization regions. Gastroenterology, 2018, 155(5), 1372-1382.e17.
[http://dx.doi.org/10.1053/j.gastro.2018.07.007] [PMID: 29990487]
[96]
Theuretzbacher, U.; Outterson, K.; Engel, A.; Karlén, A. The global preclinical antibacterial pipeline. Nat. Rev. Microbiol., 2020, 18(5), 275-285.
[http://dx.doi.org/10.1038/s41579-019-0288-0] [PMID: 31745331]
[97]
Tharmalingam, N.; Port, J.; Castillo, D.; Mylonakis, E. Repurposing the anthelmintic drug niclosamide to combat Helicobacter pylori. Sci. Rep., 2018, 8(1), 3701.
[http://dx.doi.org/10.1038/s41598-018-22037-x ] [PMID: 29487357]
[98]
Ahmad Bhat, M.; Al-Omar, M.A.; Naglah, A.M. Synthesis and in vivo anti-ulcer evaluation of some novel piperidine linked dihydropyrimidinone derivatives. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 978-988.
[http://dx.doi.org/10.1080/14756366.2018.1474212] [PMID: 29792357]
[99]
Patil, A.; Ganguly, S.; Surana, S. Synthesis and antiulcer activity of 2-[5-substituted-1-H-benzo(d) imidazol-2-yl sulfinyl]methyl-3-substituted quinazoline-4-(3H) ones. J. Chem. Sci., 2010, 122(3), 443-450.
[http://dx.doi.org/10.1007/s12039-010-0052-5]
[100]
González, A.; Casado, J.; Chueca, E.; Salillas, S.; Velázquez-Campoy, A.; Espinosa Angarica, V.; Bénejat, L.; Guignard, J.; Giese, A.; Sancho, J.; Lehours, P.; Lanas, Á. Repurposing dihydropyridines for treatment of Helicobacter pylori infection. Pharmaceutics, 2019, 11(12), 681.
[http://dx.doi.org/10.3390/pharmaceutics11120681] [PMID: 31847484]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy