Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

The Impact of Spironolactone Co-administration on Cyclosporin Initial Dosage Optimization for Pediatric Refractory Nephrotic Syndrome

Author(s): Huan-Huan Han, Min Rui, Yang Yang*, Jia-Fang Cui, Xue-Ting Huang, Shi-Jia Zhang, Su-Mei He, Dong-Dong Wang* and Xiao Chen*

Volume 30, Issue 18, 2024

Published on: 18 April, 2024

Page: [1419 - 1432] Pages: 14

DOI: 10.2174/0113816128307797240416053723

Abstract

Objectives: Cyclosporin has been used for the treatment of pediatric refractory nephrotic syndrome (PRNS). However, the narrow therapeutic window and large pharmacokinetic variability make it difficult to individualize cyclosporin administration. Meanwhile, spironolactone has been reported to affect cyclosporin metabolism in PRNS patients. This study aims to explore the initial dosage optimization of cyclosporin in PRNS based on the impact of spironolactone co-administration.

Methods: Monte Carlo simulation based on a previously established cyclosporin population pharmacokinetic model for PRNS was used to design cyclosporin dosing regimen.

Results: In this study, the probability of drug concentration reaching the target and the convenience of times of administration were considered comprehensively. The optimal administration regimen in PRNS without spironolactone was 6, 5, 4 and 3 mg/kg cyclosporin split into two doses for the body weight of 5-8, 8-18, 18-46 and 46-70 kg, respectively. The optimal administration regimen in PRNS with spironolactone was 4, 3, 2 mg/kg cyclosporin split into two doses for body weight of 5-14, 14-65, and 65-70 kg, respectively.

Conclusion: The cyclosporin dosing regimen for PRNS based on Monte Carlo simulation was systematically developed and the initial dosage optimization of cyclosporin in PRNS was recommended for the first time.

Keywords: Cyclosporin, dosing proposal, spironolactone, pediatric refractory nephrotic syndrome, Monte Carlo simulation, population pharmacokinetic model.

[1]
Certikova-Chabova V, Tesar V. Recent insights into the pathogenesis of nephrotic syndrome. Minerva Med 2013; 104(3): 333-47.
[PMID: 23748287]
[2]
Eddy AA, Symons JM. Nephrotic syndrome in childhood. Lancet 2003; 362(9384): 629-39.
[http://dx.doi.org/10.1016/S0140-6736(03)14184-0] [PMID: 12944064]
[3]
McKinney PA, Feltbower RG, Brocklebank JT, Fitzpatrick MM. Time trends and ethnic patterns of childhood nephrotic syndrome in Yorkshire, UK. Pediatr Nephrol 2001; 16(12): 1040-4.
[http://dx.doi.org/10.1007/s004670100021] [PMID: 11793096]
[4]
Lombel RM, Gipson DS, Hodson EM. Treatment of steroid-sensitive nephrotic syndrome: New guidelines from KDIGO. Pediatr Nephrol 2013; 28(3): 415-26.
[http://dx.doi.org/10.1007/s00467-012-2310-x] [PMID: 23052651]
[5]
Wang DD, Chen X, Li ZP. Tacrolimus ameliorates proteinuria in Chinese pediatric lupus nephritis patients. Int J Clin Exp Med 2019; 12(8): 10931-7.
[6]
Allison AC. Immunosuppressive drugs: The first 50 years and a glance forward. Immunopharmacology 2000; 47(2-3): 63-83.
[http://dx.doi.org/10.1016/S0162-3109(00)00186-7] [PMID: 10878284]
[7]
Tedesco D, Haragsim L. Cyclosporine: A review. J Transplant 2012; 2012: 1-7.
[http://dx.doi.org/10.1155/2012/230386] [PMID: 22263104]
[8]
Flores C, Fouquet G, Moura IC, Maciel TT, Hermine O. Lessons to learn from low-dose cyclosporin-A: A new approach for unexpected clinical applications. Front Immunol 2019; 10: 588.
[http://dx.doi.org/10.3389/fimmu.2019.00588] [PMID: 30984176]
[9]
Chan JK, Bhattacharyya D, Lassen KG, Ruelas D, Greene WC. Calcium/calcineurin synergizes with prostratin to promote NF-κB dependent activation of latent HIV. PLoS One 2013; 8(10): e77749.
[http://dx.doi.org/10.1371/journal.pone.0077749] [PMID: 24204950]
[10]
Forsythe P, Paterson S. Ciclosporin 10 years on: Indications and efficacy. Vet Rec 2014; 174(Suppl 2): 13-21.
[http://dx.doi.org/10.1136/vr.102484]
[11]
Fric J, Zelante T, Wong AYW, Mertes A, Yu HB, Ricciardi-Castagnoli P. NFAT control of innate immunity. Blood 2012; 120(7): 1380-9.
[http://dx.doi.org/10.1182/blood-2012-02-404475] [PMID: 22611159]
[12]
Guaguère E, Steffan J, Olivry T. Cyclosporin A: A new drug in the field of canine dermatology. Vet Dermatol 2004; 15(2): 61-74.
[http://dx.doi.org/10.1111/j.1365-3164.2004.00376.x] [PMID: 15030555]
[13]
Jesus JB, Sena CBC, Macchi BM, do Nascimento JLM. Cyclosporin A as an alternative neuroimmune strategy to control neurites and recover neuronal tissues in leprosy. Neuroimmunomodulation 2022; 29(1): 15-20.
[http://dx.doi.org/10.1159/000517993] [PMID: 34350891]
[14]
Macian F. NFAT proteins: Key regulators of T-cell development and function. Nat Rev Immunol 2005; 5(6): 472-84.
[http://dx.doi.org/10.1038/nri1632] [PMID: 15928679]
[15]
Matsuda S, Koyasu S. Mechanisms of action of cyclosporine. Immunopharmacology 2000; 47(2-3): 119-25.
[http://dx.doi.org/10.1016/S0162-3109(00)00192-2] [PMID: 10878286]
[16]
Yang Y, Li YF, Hu K, et al. The dosage recommendation of cyclosporin in children with hemophagocytic lymphohistiocytosis based on population pharmacokinetic model. Curr Pharm Des 2023; 29(37): 2996-3004.
[http://dx.doi.org/10.2174/0113816128286290231124055116] [PMID: 38062660]
[17]
Wang DD, Ye QF, Chen X, Xu H, Li ZP. Population pharmacokinetics and initial dosing regimen optimization of cyclosporin in pediatric hemophagocytic lymphohistiocytosis patients. Xenobiotica 2020; 50(4): 435-41.
[http://dx.doi.org/10.1080/00498254.2019.1651419] [PMID: 31382792]
[18]
Ling J, Yang XP, Dong LL, et al. Population pharmacokinetics of ciclosporin in allogeneic hematopoietic stem cell transplant recipients: C-reactive protein as a novel covariate for clearance. J Clin Pharm Ther 2022; 47(4): 483-92.
[http://dx.doi.org/10.1111/jcpt.13569] [PMID: 34779003]
[19]
Song L, Huang CR, Pan SZ, et al. A model based on machine learning for the prediction of cyclosporin A trough concentration in Chinese allo-HSCT patients. Expert Rev Clin Pharmacol 2023; 16(1): 83-91.
[http://dx.doi.org/10.1080/17512433.2023.2142561] [PMID: 36373407]
[20]
Wilhelm AJ, de Graaf P, Veldkamp AI, Janssen JJWM, Huijgens PC, Swart EL. Population pharmacokinetics of ciclosporin in haematopoietic allogeneic stem cell transplantation with emphasis on limited sampling strategy. Br J Clin Pharmacol 2012; 73(4): 553-63.
[http://dx.doi.org/10.1111/j.1365-2125.2011.04116.x] [PMID: 21988410]
[21]
Xue L, Zhang W, Tian J, et al. Multicenter-based population pharmacokinetic analysis of ciclosporin in hematopoietic stem cell transplantation patients. Pharm Res 2020; 37(1): 15.
[http://dx.doi.org/10.1007/s11095-019-2740-2] [PMID: 31873806]
[22]
Ni S, Zhao W, Wang J, et al. Population pharmacokinetics of ciclosporin in Chinese children with aplastic anemia: Effects of weight, renal function and stanozolol administration. Acta Pharmacol Sin 2013; 34(7): 969-75.
[http://dx.doi.org/10.1038/aps.2013.9] [PMID: 23624757]
[23]
Wang DD, He SM, Yang Y, et al. Effects of cimetidine on ciclosporin population pharmacokinetics and initial dose optimization in aplastic anemia patients. Eur J Pharm Sci 2022; 174: 106183.
[http://dx.doi.org/10.1016/j.ejps.2022.106183] [PMID: 35398292]
[24]
Bourgoin H, Paintaud G, Büchler M, et al. Bayesian estimation of cyclosporin exposure for routine therapeutic drug monitoring in kidney transplant patients. Br J Clin Pharmacol 2005; 59(1): 18-27.
[http://dx.doi.org/10.1111/j.1365-2125.2005.02200.x] [PMID: 15606436]
[25]
Falck P, Midtvedt K, Vân Lê TT, et al. A population pharmacokinetic model of ciclosporin applicable for assisting dose management of kidney transplant recipients. Clin Pharmacokinet 2009; 48(9): 615-23.
[http://dx.doi.org/10.2165/11313380-000000000-00000] [PMID: 19725595]
[26]
Fanta S, Jönsson S, Backman JT, Karlsson MO, Hoppu K. Developmental pharmacokinetics of ciclosporin – A population pharmacokinetic study in paediatric renal transplant candidates. Br J Clin Pharmacol 2007; 64(6): 772-84.
[http://dx.doi.org/10.1111/j.1365-2125.2007.03003.x] [PMID: 17662086]
[27]
Mao J, Jiao Z, Qiu X, Zhang M, Zhong M. Incorporating nonlinear kinetics to improve predictive performance of population pharmacokinetic models for ciclosporin in adult renal transplant recipients: A comparison of modelling strategies. Eur J Pharm Sci 2020; 153: 105471.
[http://dx.doi.org/10.1016/j.ejps.2020.105471] [PMID: 32682934]
[28]
Mao JJ, Jiao Z, Yun HY, et al. External evaluation of population pharmacokinetic models for ciclosporin in adult renal transplant recipients. Br J Clin Pharmacol 2018; 84(1): 153-71.
[http://dx.doi.org/10.1111/bcp.13431] [PMID: 28891596]
[29]
Schädeli F, Marti HP, Frey FJ, Uehlinger DE. Population pharmacokinetic model to predict steady-state exposure to once-daily cyclosporin microemulsion in renal transplant recipients. Clin Pharmacokinet 2002; 41(1): 59-69.
[http://dx.doi.org/10.2165/00003088-200241010-00005] [PMID: 11825097]
[30]
Fruit D, Rousseau A, Amrein C, et al. Ciclosporin population pharmacokinetics and Bayesian estimation in thoracic transplant recipients. Clin Pharmacokinet 2013; 52(4): 277-88.
[http://dx.doi.org/10.1007/s40262-013-0037-x] [PMID: 23400901]
[31]
Langers P, Cremers SCLM, den Hartigh J, et al. Easy-to-use, accurate and flexible individualized Bayesian limited sampling method without fixed time points for ciclosporin monitoring after liver transplantation. Aliment Pharmacol Ther 2005; 21(5): 549-57.
[http://dx.doi.org/10.1111/j.1365-2036.2005.02364.x] [PMID: 15740538]
[32]
Parke J, Charles BG. Factors affecting oral cyclosporin disposition after heart transplantation: Bootstrap validation of a population pharmacokinetic model. Eur J Clin Pharmacol 2000; 56(6-7): 481-7.
[http://dx.doi.org/10.1007/s002280000164] [PMID: 11049011]
[33]
Goumenos DS, Katopodis KP, Passadakis P, et al. Corticosteroids and ciclosporin A in idiopathic membranous nephropathy: Higher remission rates of nephrotic syndrome and less adverse reactions than after traditional treatment with cytotoxic drugs. Am J Nephrol 2007; 27(3): 226-31.
[http://dx.doi.org/10.1159/000101367] [PMID: 17389782]
[34]
Stefanidis CJ, Querfeld U. The podocyte as a target: Cyclosporin A in the management of the nephrotic syndrome caused by WT1 mutations. Eur J Pediatr 2011; 170(11): 1377-83.
[http://dx.doi.org/10.1007/s00431-011-1397-6] [PMID: 21298518]
[35]
Oiwa A, Hiwatashi D, Takeda T, et al. Efficacy and safety of low- dose spironolactone for chronic kidney disease in type 2 diabetes. J Clin Endocrinol Metab 2023; 108(9): 2203-10.
[http://dx.doi.org/10.1210/clinem/dgad144] [PMID: 36916985]
[36]
Hammer F, Buehling SS, Masyout J, et al. Protective effects of spironolactone on vascular calcification in chronic kidney disease. Biochem Biophys Res Commun 2021; 582: 28-34.
[http://dx.doi.org/10.1016/j.bbrc.2021.10.023] [PMID: 34678593]
[37]
Wang D, Chen X, Li Z. Cyclosporin population pharmacokinetics in pediatric refractory nephrotic syndrome based on real-world studies: Effects of body weight and spirolactone administration. Exp Ther Med 2019; 17(4): 3015-20.
[http://dx.doi.org/10.3892/etm.2019.7325] [PMID: 30936972]
[38]
Li T, Hu L, Ma X, et al. Population pharmacokinetics of cyclosporine in Chinese children receiving hematopoietic stem cell transplantation. Acta Pharmacol Sin 2019; 40(12): 1603-10.
[http://dx.doi.org/10.1038/s41401-019-0277-x] [PMID: 31341257]
[39]
Okada A, Ushigome H, Kanamori M, et al. Population pharmacokinetics of cyclosporine A in Japanese renal transplant patients: Comprehensive analysis in a single center. Eur J Clin Pharmacol 2017; 73(9): 1111-9.
[http://dx.doi.org/10.1007/s00228-017-2279-2] [PMID: 28620753]
[40]
Chen X, Wang D, Wang G, et al. Optimization of initial dose regimen for sirolimus in pediatric patients with lymphangioma. Front Pharmacol 2021; 12: 668952.
[http://dx.doi.org/10.3389/fphar.2021.668952] [PMID: 34819851]
[41]
Chen X, Wang D, Zheng F, Zhai X, Xu H, Li Z. Population pharmacokinetics and initial dose optimization of tacrolimus in children with severe combined immunodeficiency undergoing hematopoietic stem cell transplantation. Front Pharmacol 2022; 13: 869939.
[http://dx.doi.org/10.3389/fphar.2022.869939] [PMID: 35935844]
[42]
Chen X, Wang D, Zheng F, et al. Effects of posaconazole on tacrolimus population pharmacokinetics and initial dose in children with crohn’s disease undergoing hematopoietic stem cell transplantation. Front Pharmacol 2022; 13: 758524.
[http://dx.doi.org/10.3389/fphar.2022.758524] [PMID: 35496296]
[43]
Hu K, He SM, Zhang C, et al. Optimizing the initial tacrolimus dosage in Chinese children with lung transplantation within normal hematocrit levels. Front Pediatr 2024; 12: 1090455.
[http://dx.doi.org/10.3389/fped.2024.1090455] [PMID: 38357508]
[44]
Wang DD, Mei YQ, Yang L, et al. Optimization of initial dose regimen of tacrolimus in paediatric lung transplant recipients based on Monte Carlo simulation. J Clin Pharm Ther 2022; 47(10): 1659-66.
[http://dx.doi.org/10.1111/jcpt.13717] [PMID: 35716040]
[45]
Zhang C, Jiang L, Hu K, et al. Effects of aripiprazole on olanzapine population pharmacokinetics and initial dosage optimization in schizophrenia patients. Neuropsychiatr Dis Treat 2024; 20: 479-90.
[http://dx.doi.org/10.2147/NDT.S455183] [PMID: 38469209]
[46]
Zietse R, Wenting GJ, Kramer P, Mulder P, Schalekamp MA, Weimar W. Contrasting response to cyclosporin in refractory nephrotic syndrome. Clin Nephrol 1989; 31(1): 22-5.
[PMID: 2914407]
[47]
Schachtner T, Otto NM, Reinke P. Cyclosporine use and male gender are independent determinants of avascular necrosis after kidney transplantation: A cohort study. Nephrol Dial Transplant 2018; 33(11): 2060-6.
[http://dx.doi.org/10.1093/ndt/gfy148] [PMID: 29868874]
[48]
Hibi T, Tanabe M, Hoshino K, et al. Cyclosporine A-based immunotherapy in adult living donor liver transplantation: Accurate and improved therapeutic drug monitoring by 4-hr intravenous infusion. Transplantation 2011; 92(1): 100-5.
[http://dx.doi.org/10.1097/TP.0b013e31821dcae3] [PMID: 21546866]
[49]
Kraeuter M, Helmschrott M, Erbel C, et al. Conversion to generic cyclosporine A in stable chronic patients after heart transplantation. Drug Des Devel Ther 2013; 7: 1421-6.
[PMID: 24348018]
[50]
Leclerc V, Ducher M, Ceraulo A, Bertrand Y, Bleyzac N. A clinical decision support tool to find the best initial intravenous cyclosporine regimen in pediatric hematopoietic stem cell transplantation. J Clin Pharmacol 2021; 61(11): 1485-92.
[http://dx.doi.org/10.1002/jcph.1924] [PMID: 34105165]
[51]
Sumethkul K, Kitumnuaypong T, Angthararak S, Pichaiwong W. Low-dose cyclosporine for active lupus nephritis: A dose titration approach. Clin Rheumatol 2019; 38(8): 2151-9.
[http://dx.doi.org/10.1007/s10067-019-04469-6] [PMID: 30937637]
[52]
Patocka J, Nepovimova E, Kuca K, Wu W. Cyclosporine A: Chemistry and toxicity - A review. Curr Med Chem 2021; 28(20): 3925-34.
[http://dx.doi.org/10.2174/1875533XMTEwpNDktz] [PMID: 33023428]
[53]
Umpiérrez M, Guevara N, Ibarra M, Fagiolino P, Vázquez M, Maldonado C. Development of a population pharmacokinetic model for cyclosporine from therapeutic drug monitoring data. BioMed Res Int 2021; 2021: 1-9.
[http://dx.doi.org/10.1155/2021/3108749] [PMID: 33928146]
[54]
Gaies E, Ben Sassi M, Charfi R, et al. Therapeutic durg monitoring of cyclosporin using area under the curve in nephrotic syndrome. Tunis Med 2019; 97(2): 360-4.
[PMID: 31539095]
[55]
Saint-Marcoux F, Marquet P, Jacqz-Aigrain E, et al. Patient characteristics influencing ciclosporin pharmacokinetics and accurate Bayesian estimation of ciclosporin exposure in heart, lung and kidney transplant patients. Clin Pharmacokinet 2006; 45(9): 905-22.
[http://dx.doi.org/10.2165/00003088-200645090-00003] [PMID: 16928152]
[56]
Ahmed K, Ibrahim A, Gonzalez D, Nur A. Population pharmacokinetics and model-based dose optimization of vancomycin in sudanese adult patients with renal impairment. Drug Des Devel Ther 2024; 18: 81-95.
[http://dx.doi.org/10.2147/DDDT.S432439] [PMID: 38260090]
[57]
Bulitta JB, Fang E, Stryjewski ME, et al. Population pharmacokinetic rationale for intravenous contezolid acefosamil followed by oral contezolid dosage regimens. Antimicrob Agents Chemother 2024; e01400-23.
[http://dx.doi.org/10.1128/aac.01400-23] [PMID: 38415667]
[58]
Ju G, Liu X, Yang W, et al. Model-informed precision dosing of isoniazid: Parametric population pharmacokinetics model repository. Drug Des Devel Ther 2024; 18: 801-18.
[http://dx.doi.org/10.2147/DDDT.S434919] [PMID: 38500691]
[59]
Selby PR, Heffernan AJ, Yeung D, et al. Population pharmacokinetics of posaconazole in allogeneic haematopoietic stem cell transplant patients. J Antimicrob Chemother 2024; 79(3): 567-77.
[http://dx.doi.org/10.1093/jac/dkae006] [PMID: 38217845]
[60]
Su W, Song S, Liu J, et al. Population pharmacokinetics and individualized dosing of tigecycline for critically ill patients: A prospective study with intensive sampling. Front Pharmacol 2024; 15: 1342947.
[http://dx.doi.org/10.3389/fphar.2024.1342947] [PMID: 38348395]
[61]
Wang P, Liu S, Sun T, Yang J. Daily fluid intake as a novel covariate affecting the population pharmacokinetics of polymyxin B in patients with sepsis. Int J Antimicrob Agents 2024; 63(3): 107099.
[http://dx.doi.org/10.1016/j.ijantimicag.2024.107099] [PMID: 38280575]
[62]
Yu Z, Liu J, Yu H, et al. Population pharmacokinetics and individualized dosing of vancomycin for critically ill patients receiving continuous renal replacement therapy: The role of residual diuresis. Front Pharmacol 2023; 14: 1298397.
[http://dx.doi.org/10.3389/fphar.2023.1298397] [PMID: 38223197]
[63]
Kang SW, Jo HG, Kim D, et al. Population pharmacokinetics and model-based dosing optimization of teicoplanin in elderly critically ill patients with pneumonia. J Crit Care 2023; 78: 154402.
[http://dx.doi.org/10.1016/j.jcrc.2023.154402] [PMID: 37634293]
[64]
Rexiti K, Jiang X, Kong Y, et al. Population pharmacokinetics of mycophenolic acid and dose optimisation in adult Chinese kidney transplant recipients. Xenobiotica 2023; 53(10-11): 603-12.
[http://dx.doi.org/10.1080/00498254.2023.2287168] [PMID: 37991412]
[65]
Wang J, Shen Y, Wu Z, Ge W. Population pharmacokinetics of voriconazole and dose optimization in elderly Chinese patients. J Clin Pharmacol 2024; 64(2): 253-63.
[http://dx.doi.org/10.1002/jcph.2357] [PMID: 37766506]
[66]
Yellepeddi VK, Lindley B, Radetich E, et al. Population pharmacokinetics and target attainment analysis of vancomycin after intermittent dosing in adults with cystic fibrosis. Antimicrob Agents Chemother 2024; 68(1): e00992-23.
[http://dx.doi.org/10.1128/aac.00992-23] [PMID: 38059634]
[67]
Wang Y, Yao F, Chen S, et al. Optimal teicoplanin dosage regimens in critically ill patients: Population pharmacokinetics and dosing simulations based on renal function and infection type. Drug Des Devel Ther 2023; 17: 2259-71.
[http://dx.doi.org/10.2147/DDDT.S413662] [PMID: 37546521]
[68]
Wei S, Li X, Zhang Q, et al. Population pharmacokinetics of topiramate in Chinese children with epilepsy. Eur J Clin Pharmacol 2023; 79(10): 1401-15.
[http://dx.doi.org/10.1007/s00228-023-03549-6] [PMID: 37597080]
[69]
Cojutti PG, Giuliano S, Pascale R, et al. Population pharmacokinetic and pharmacodynamic analysis for maximizing the effectiveness of ceftobiprole in the treatment of severe methicillin-resistant staphylococcal infections. Microorganisms 2023; 11(12): 2964.
[http://dx.doi.org/10.3390/microorganisms11122964] [PMID: 38138108]
[70]
Li X, Qi H, Jin F, et al. Population pharmacokinetics-pharmacodynamics of ceftazidime in neonates and young infants: Dosing optimization for neonatal sepsis. Eur J Pharm Sci 2021; 163: 105868.
[http://dx.doi.org/10.1016/j.ejps.2021.105868] [PMID: 33951483]
[71]
Li Y, Lu J, Kang Y, et al. Nemonoxacin dosage adjustment in patients with severe renal impairment based on population pharmacokinetic and pharmacodynamic analysis. Br J Clin Pharmacol 2021; 87(12): 4636-47.
[http://dx.doi.org/10.1111/bcp.14881] [PMID: 33928669]
[72]
Chen X, Wang D, Zhu L, et al. Population pharmacokinetics and initial dose optimization of sirolimus improving drug blood level for seizure control in pediatric patients with tuberous sclerosis complex. Front Pharmacol 2021; 12: 647232.
[http://dx.doi.org/10.3389/fphar.2021.647232] [PMID: 33995061]
[73]
Liu XQ, Yin YW, Wang CY, Li ZR, Zhu X, Jiao Z. How to handle the delayed or missed dose of rivaroxaban in patients with non-valvular atrial fibrillation: Model-informed remedial dosing. Expert Rev Clin Pharmacol 2021; 14(9): 1153-63.
[http://dx.doi.org/10.1080/17512433.2021.1937126] [PMID: 34058934]
[74]
Shimamoto Y, Verstegen RHJ, Mizuno T, Schechter T, Allen U, Ito S. Population pharmacokinetics of vancomycin in paediatric patients with febrile neutropenia and augmented renal clearance: Development of new dosing recommendations. J Antimicrob Chemother 2021; 76(11): 2932-40.
[http://dx.doi.org/10.1093/jac/dkab302] [PMID: 34480578]
[75]
Chen X, Yu X, Wang DD, Xu H, Li Z. Initial dosage optimization of ciclosporin in pediatric Chinese patients who underwent bone marrow transplants based on population pharmacokinetics. Exp Ther Med 2020; 20(1): 401-8.
[http://dx.doi.org/10.3892/etm.2020.8732] [PMID: 32537004]

© 2024 Bentham Science Publishers | Privacy Policy