[2]
Nazarov, I.N.; Zaretskaya, I.I. Izvestia of the USSR academy of sciences, chemical series. Izv. Akad. Nauk SSSR, 1941, 1941, 211-224.
[5]
a) Santelli-Rouvier, C.; Santelli, M. The Nazarov cyclisation.
Synthesis, 1983,
1983(6), 429-442.
[
http://dx.doi.org/10.1055/s-1983-30367];
b) Denmark, S.E.
Comprehensive Organic Synthesis; 2nd ed.; Paquette, L.A., Ed.; Elsevier: Oxford,
2014. Vol. 5, pp. Elsevier: Oxford, 1991, Vol. 5, pp. 751-784.
[
http://dx.doi.org/10.1016/B978-0-08-052349-1.00138-4];
c) Habermas, K.L.; Denmark, S.E. The Nazarov cyclization.
Org. React., 1994,
45(11971), 1-158.;
d) Pellissier, H. Recent developments in the Nazarov process.
Tetrahedron, 2005,
61(27), 6479-6517.
[
http://dx.doi.org/10.1016/j.tet.2005.04.014];
e) Grant, T.N.; Rieder, C.J.; West, F.G. Interrupting the Nazarov reaction: Domino and cascade processes utilizing cyclopentenyl cations.
Chem. Commun., 2009, (38), 5676-5688.
[
http://dx.doi.org/10.1039/b908515g] [PMID:
19774236];
f) Shimada, N.; Stewart, C.; Tius, M.A. Asymmetric Nazarov cyclizations.
Tetrahedron, 2011,
67(33), 5851-5870.
[
http://dx.doi.org/10.1016/j.tet.2011.05.062] [PMID:
21857751];
g) Vaidya, T.; Eisenberg, R.; Frontier, A.J. Catalytic Nazarov cyclization: The state of the art.
ChemCatChem, 2011,
3(10), 1531-1548.
[
http://dx.doi.org/10.1002/cctc.201100137];
h) Grandi, D.M.J. Nazarov-like cyclization reactions.
Org. Biomol. Chem., 2014,
12(29), 5331-5345.
[
http://dx.doi.org/10.1039/C4OB00804A] [PMID:
24947937];
i) Tius, M.A. Allene ether Nazarov cyclization.
Chem. Soc. Rev., 2014,
43(9), 2979-3002.
[
http://dx.doi.org/10.1039/C3CS60333D] [PMID:
24196585];
j) Wenz, D.R.; Read de Alaniz, J. The Nazarov cyclization: A valuable method to synthesize fully substituted carbon stereocenters.
Eur. J. Org. Chem., 2015,
2015(1), 23-37.
[
http://dx.doi.org/10.1002/ejoc.201402825]
[20]
a) Tietze, L.F. Domino Reactions - Concepts for Efficient Organic Synthesis; , 2014. ;
b) Pellissier, H. Recent developments in enantioselective metal-catalyzed domino reactions. Adv. Synth. Catal., 2016, 358, 2194-2259.;
c) Snyder, S.A. Science of Synthesis. Applications of Domino Transformations in Organic Synthesis; , 2016, p. 1-2.;
d) Pellissier, H. Recent developments in enantioselective metal-catalyzed domino reactions. Adv. Synth. Catal., 2019, 361, 1733-1755.;
e) Pellissier, H. Asymmetric Metal Catalysis in Enantioselective Domino Reactions; John Wiley & Sons, 2019. ;
f) Westphal, R.; Filho, E.V.; Medici, F.; Benaglia, M.; Greco, S.J. Stereoselective domino reactions in the synthesis of spiro compounds. Synthesis, 2022, 54, 2927-2975.;
g) Pellissier, H. Recent developments in enantioselective domino reactions. part A: Noble metal catalysts. Adv. Synth. Catal., 2023, 365, 620.;
h) Pellissier, H. Recent developments in enantioselective domino reactions. part B: First row metal catalysts. Adv. Synth. Catal., 2023, 365, 768-819.
[21]
a) Bender, J.A.; Blize, A.E.; Browder, C.C.; Giese, S.; West, F.G. Highly diastereoselective cycloisomerization of acyclic trienones. The interrupted Nazarov reaction. J. Org. Chem., 1998, 63, 2430-2431.;
b) Zuev, D.; Paquette, L.A.; Browder, C.C.; Giese, S.; West, F.G.; Wang, Y.; Arif, A.M. First examples of the interrupted Nazarov reaction. Chemtracts, 1999, 12, 1019-1025.
[33]
a) Doyle, A.G.; Jacobsen, E.N. Small-molecule H-bond donors in asymmetric catalysis. Chem. Rev., 2007, 107, 5713-5743.;
b) Mukherjee, S.; Yang, J.W.; Hoffmann, S.; List, B. Asymmetric enamine catalysis. Chem. Rev., 2007, 107, 5471-5569.;
c) Dondoni, A.; Massi, A.; Hoffmann, S.; List, B. Asymmetric organocatalysis: From infancy to adolescence. Angew. Chem. Int., 2008, 47, 4638-4660.;
d) Pellissier, H. Recent Developments in Asymmetric Organocatalysis; Royal Society of Chemistry: Cambridge, 2010. ;
e) Volla, C.M.R.; Atodiresei, I.; Rueping, M. Catalytic C–C bond-forming multi-component cascade or domino reactions: Pushing the boundaries of complexity in asymmetric organocatalysis. Chem. Rev., 2014, 114, 2390-2431.;
f) Tian, L.; Luo, Y.C.; Hu, X.Q.; Xu, P.F. Recent developments in the synthesis of chiral compounds with quaternary centers by organocatalytic cascade reactions. Asian J. Org. Chem., 2016, 5, 580-607.;
g) Chanda, T.; Zhao, J.C.G. Recent progress in organocatalytic asymmetric domino transformations. Adv. Synth. Catal., 2018, 360, 2-79.;
h) Guo, H.; Fan, Y.C.; Sun, Z.; Wu, Y.; Kwon, O. Phosphine organocatalysis. Chem. Rev., 2018, 118, 10049-10293.;
i) Sahoo, B.M.; Banik, B.K. Organocatalysis: Trends of drug synthesis in medicinal chemistry. Current Organocatal., 2019, 6, 92-105.
[56]
a) Cao, J.; Hu, M-Y.; Liu, S-Y.; Zhang, X-Y.; Zhu, S-F.; Zhou, Q-L. Enantioselective silicon-directed Nazarov cyclization. J. Am. Chem. Soc., 2021, 143, 6962-6968.;
b) Cao, J.; Zhu, S.F. Chiral proton-transfer shuttle catalysts promoted enantioselective Nazarov cyclization. Synlett, 2023, 34, 29-39.