Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Developments in Asymmetric Nazarov Reactions

Author(s): Hélène Pellissier*

Volume 28, Issue 10, 2024

Published on: 16 April, 2024

Page: [757 - 776] Pages: 20

DOI: 10.2174/0113852728296619240321060646

Price: $65

Open Access Journals Promotions 2
Abstract

The Nazarov reaction involves the cyclization of divinyl ketones into cyclopentenones under the influence of strong acids. The prevalence of five-membered carbocycles in a multitude of natural and bioactive products has triggered an intense development of efficient methods for their construction. In particular, asymmetric versions of the Nazarov reaction are achieved by using either a chiral auxiliary or a chiral catalyst, which can be an organocatalyst, a metal catalyst, or a multicatalytic system. This review aims to update the field of asymmetric Nazarov reactions published since 2017. It is divided into four sections, dealing successively with Nazarov reactions of chiral auxiliaries, organocatalytic enantioselective Nazarov reactions, metal/boron-catalyzed enantioselective Nazarov reactions, and multicatalytic enantioselective Nazarov reactions. Each section of the review is subdivided into simple asymmetric Nazarov reactions and Nazarov-based domino/tandem reactions, which have allowed numerous more complex functionalized chiral molecules to be synthesized in one-pot procedures.

Keywords: Asymmetric Nazarov reactions, asymmetric cyclizations, chiral auxiliaries, chiral catalysts, asymmetric catalysis, chirality, domino reactions.

Graphical Abstract
[1]
Simeonov, S.P.; Nunes, J.P.M.; Guerra, K.; Kurteva, V.B.; Afonso, C.A.M. Synthesis of chiral cyclopentenones. Chem. Rev., 2016, 116(10), 5744-5893.
[http://dx.doi.org/10.1021/cr500504w] [PMID: 27101336]
[2]
Nazarov, I.N.; Zaretskaya, I.I. Izvestia of the USSR academy of sciences, chemical series. Izv. Akad. Nauk SSSR, 1941, 1941, 211-224.
[3]
a) Woodward, R.B. Aromaticity; The Chemical Society: London, 1967, pp. 237-239.;
b) Shoppee, C.W.; Lack, R.E. Intramolecular electrocyclic reactions. Part I. Structure of ‘bromohydroxyphorone’: 3-bromo-5-hydroxy-4, 4, 5, 5-tetramethylcyclopent-2-enone. J. Chem. Soc. C Org., 1969, 10, 1346-1349.;
c) Shoppee, C.W.; Cooke, B.J.A. Intramolecular electrocyclic reactions. Part II. Reactions of 1,5-di-phenylpenta-1,4-dien-3-one. J. Chem. Soc. Perkin Trans., 1972, I, 2271-2276.
[http://dx.doi.org/10.1039/p19720002271];
d) Shoppee, C.W.; Cooke, B.J.A. Electrocyclic reactions. Part III. Some reactions of 2,4-dimethyl-1,5-diphenylpenta-1,4-dien-3-one (αα′-dimethyldibenzylideneacetone). J. Chem. Soc., Perkin Trans. 1, 1973, I(0), 1026-1030.
[http://dx.doi.org/10.1039/P19730001026]
[4]
Vinogradov, M.G.; Turova, O.V.; Zlotin, S.G. Nazarov reaction: Current trends and recent advances in the synthesis of natural compounds and their analogs. Org. Biomol. Chem., 2017, 15(39), 8245-8269.
[http://dx.doi.org/10.1039/C7OB01981E] [PMID: 28960012]
[5]
a) Santelli-Rouvier, C.; Santelli, M. The Nazarov cyclisation. Synthesis, 1983, 1983(6), 429-442.
[http://dx.doi.org/10.1055/s-1983-30367];
b) Denmark, S.E. Comprehensive Organic Synthesis; 2nd ed.; Paquette, L.A., Ed.; Elsevier: Oxford, 2014. Vol. 5, pp. Elsevier: Oxford, 1991, Vol. 5, pp. 751-784.
[http://dx.doi.org/10.1016/B978-0-08-052349-1.00138-4];
c) Habermas, K.L.; Denmark, S.E. The Nazarov cyclization. Org. React., 1994, 45(11971), 1-158.;
d) Pellissier, H. Recent developments in the Nazarov process. Tetrahedron, 2005, 61(27), 6479-6517.
[http://dx.doi.org/10.1016/j.tet.2005.04.014];
e) Grant, T.N.; Rieder, C.J.; West, F.G. Interrupting the Nazarov reaction: Domino and cascade processes utilizing cyclopentenyl cations. Chem. Commun., 2009, (38), 5676-5688.
[http://dx.doi.org/10.1039/b908515g] [PMID: 19774236];
f) Shimada, N.; Stewart, C.; Tius, M.A. Asymmetric Nazarov cyclizations. Tetrahedron, 2011, 67(33), 5851-5870.
[http://dx.doi.org/10.1016/j.tet.2011.05.062] [PMID: 21857751];
g) Vaidya, T.; Eisenberg, R.; Frontier, A.J. Catalytic Nazarov cyclization: The state of the art. ChemCatChem, 2011, 3(10), 1531-1548.
[http://dx.doi.org/10.1002/cctc.201100137];
h) Grandi, D.M.J. Nazarov-like cyclization reactions. Org. Biomol. Chem., 2014, 12(29), 5331-5345.
[http://dx.doi.org/10.1039/C4OB00804A] [PMID: 24947937];
i) Tius, M.A. Allene ether Nazarov cyclization. Chem. Soc. Rev., 2014, 43(9), 2979-3002.
[http://dx.doi.org/10.1039/C3CS60333D] [PMID: 24196585];
j) Wenz, D.R.; Read de Alaniz, J. The Nazarov cyclization: A valuable method to synthesize fully substituted carbon stereocenters. Eur. J. Org. Chem., 2015, 2015(1), 23-37.
[http://dx.doi.org/10.1002/ejoc.201402825]
[6]
Vivekanand, T.; Satpathi, B.; Bankar, S.K.; Ramasastry, S.S.V. Recent metal-catalysed approaches for the synthesis of cyclopenta[b]indoles. RSC Advances, 2018, 8(33), 18576-18588.
[http://dx.doi.org/10.1039/C8RA03480J] [PMID: 35541103]
[7]
Yadykov, A.V.; Shirinian, V.Z. Recent advances in the interrupted Nazarov reaction. Adv. Synth. Catal., 2020, 362(4), 702-723.
[http://dx.doi.org/10.1002/adsc.201901001]
[8]
Ru, G.X.; Zhang, T.T.; Zhang, M.; Jiang, X.L.; Wan, Z.K.; Zhu, X.H.; Shen, W.B.; Gao, G.Q. Recent progress towards the transition-metal-catalyzed Nazarov cyclization of alkynes via metal carbenes. Org. Biomol. Chem., 2021, 19(24), 5274-5283.
[http://dx.doi.org/10.1039/D1OB00744K] [PMID: 34060570]
[9]
Tu, M.S.; Chen, K.W.; Wu, P.; Zhang, Y.C.; Liu, X.Q.; Shi, F. Advances in organocatalytic asymmetric reactions of vinylindoles: Powerful access to enantioenriched indole derivatives. Org. Chem. Front., 2021, 8(11), 2643-2672.
[http://dx.doi.org/10.1039/D0QO01643H]
[10]
Pridgen, L.N.; Huang, K.; Shilcrat, S.; Eldridge, T.A.; DeBrosse, C.; Haltiwanger, R.C. An unprecedented asymmetric Nazarov cyclization for the synthesis of nonracemic indanes as endothelin receptor antagonists. Synlett, 1999, 1999(10), 1612-1614.
[http://dx.doi.org/10.1055/s-1999-2912]
[11]
Krieger, J.; Smeilus, T.; Schackow, O.; Giannis, A. Lewis acid mediated Nazarov cyclization as a convergent and enantioselective entry to C‐nor‐ D ‐homo‐steroids. Chemistry, 2017, 23(21), 5000-5004.
[http://dx.doi.org/10.1002/chem.201701008] [PMID: 28345780]
[12]
Manchala, N.; Law, H.Y.L.; Kerr, D.J.; Volpe, R.; Lepage, R.J.; White, J.M.; Krenske, E.H.; Flynn, B.L. Multistereocenter-containing cyclopentanoids from ynamides via oxazolidinone-controlled Nazarov cyclization. J. Org. Chem., 2017, 82(13), 6511-6527.
[http://dx.doi.org/10.1021/acs.joc.7b00082] [PMID: 28511015]
[13]
Volpe, R.; Lepage, R.J.; White, J.M.; Krenske, E.H.; Flynn, B.L. Asymmetric synthesis of multiple quaternary stereocentre-containing cyclopentyls by oxazolidinone-promoted Nazarov cyclizations. Chem. Sci., 2018, 9(20), 4644-4649.
[http://dx.doi.org/10.1039/C8SC00031J] [PMID: 29899958]
[14]
Frontier, A.; Carlsen, P.; Stoutenburg, E. SYNTHESIS–SYNLETT lecture: Toward the asymmetric synthesis of tetrapetalone A: Preparation of an enantioenriched indane intermediate and strategy for endgame glycosylation. Synthesis, 2018, 50(6), 1238-1245.
[http://dx.doi.org/10.1055/s-0036-1591747]
[15]
Grenet, E.; Martinez, J.; Roig, S.X.J. Torquoselective Nazarov cyclization mediated by a chiral sulfoxide: First enantioselective synthesis of two known anticancer agents. Asian J. Org. Chem., 2017, 6(2), 189-198.
[http://dx.doi.org/10.1002/ajoc.201600471]
[16]
Grenet, E.; Robidas, R.; van der Lee, A.; Legault, C.Y.; Roig, S.X.J. Mechanistic insights into lewis acid‐controlled torquoselective Nazarov cyclization of activated dienones bearing a chiral sulfoxide. Eur. J. Org. Chem., 2022, 2022(36), e202200828.
[http://dx.doi.org/10.1002/ejoc.202200828]
[17]
Salom-Roig, X.J.; Grenet, E.; van der Lee, A. Doubly switchable diastereodivergent strategy mediated by a chiral sulfoxide to access disubstituted tetrahydrocyclopenta-pyranone and hexahydrocyclopentapyranol scaffolds via Nazarov cyclization. Synthesis, 2023, 55(4), 580-597.
[http://dx.doi.org/10.1055/a-1983-2140]
[18]
Que, Y.; Shao, H.; He, H.; Gao, S. Total synthesis of farnesin through an excited‐state Nazarov reaction. Angew. Chem. Int. Ed., 2020, 59(19), 7444-7449.
[http://dx.doi.org/10.1002/anie.202001350] [PMID: 32052528]
[19]
a) Tietze, L.F.; Beifuss, U. Sequential transformations in organic chemistry: A synthetic strategy with a future. Angew. Chem. Int. Ed. Engl., 1993, 32(2), 131-163.
[http://dx.doi.org/10.1002/anie.199301313];
b) Tietze, L.F. Domino reactions in organic synthesis. Chem. Rev., 1996, 96(1), 115-136.
[http://dx.doi.org/10.1021/cr950027e] [PMID: 11848746]
[20]
a) Tietze, L.F. Domino Reactions - Concepts for Efficient Organic Synthesis; , 2014. ;
b) Pellissier, H. Recent developments in enantioselective metal-catalyzed domino reactions. Adv. Synth. Catal., 2016, 358, 2194-2259.;
c) Snyder, S.A. Science of Synthesis. Applications of Domino Transformations in Organic Synthesis; , 2016, p. 1-2.;
d) Pellissier, H. Recent developments in enantioselective metal-catalyzed domino reactions. Adv. Synth. Catal., 2019, 361, 1733-1755.;
e) Pellissier, H. Asymmetric Metal Catalysis in Enantioselective Domino Reactions; John Wiley & Sons, 2019. ;
f) Westphal, R.; Filho, E.V.; Medici, F.; Benaglia, M.; Greco, S.J. Stereoselective domino reactions in the synthesis of spiro compounds. Synthesis, 2022, 54, 2927-2975.;
g) Pellissier, H. Recent developments in enantioselective domino reactions. part A: Noble metal catalysts. Adv. Synth. Catal., 2023, 365, 620.;
h) Pellissier, H. Recent developments in enantioselective domino reactions. part B: First row metal catalysts. Adv. Synth. Catal., 2023, 365, 768-819.
[21]
a) Bender, J.A.; Blize, A.E.; Browder, C.C.; Giese, S.; West, F.G. Highly diastereoselective cycloisomerization of acyclic trienones. The interrupted Nazarov reaction. J. Org. Chem., 1998, 63, 2430-2431.;
b) Zuev, D.; Paquette, L.A.; Browder, C.C.; Giese, S.; West, F.G.; Wang, Y.; Arif, A.M. First examples of the interrupted Nazarov reaction. Chemtracts, 1999, 12, 1019-1025.
[22]
Liao, H.; Leng, W.L.; Le Hoang, M.K.; Yao, H.; He, J.; Voo, A.Y.H.; Liu, X.W. Asymmetric syntheses of 8-oxabicyclo[3,2,1]octane and 11-oxatricyclo[5.3.1.0]undecane from glycals. Chem. Sci., 2017, 8(9), 6656-6661.
[http://dx.doi.org/10.1039/C7SC02625K] [PMID: 28989693]
[23]
Brandstätter, M.; Freis, M.; Huwyler, N.; Carreira, E.M. Total synthesis of (−)‐Merochlorin A. Angew. Chem. Int. Ed., 2019, 58(8), 2490-2494.
[http://dx.doi.org/10.1002/anie.201813090] [PMID: 30575244]
[24]
Brandstätter, M.; Huwyler, N.; Carreira, E.M. Gold(I)-catalyzed stereoselective cyclization of 1,3-enyne aldehydes by a 1,3-acyloxy migration/Nazarov cyclization/aldol addition cascade. Chem. Sci., 2019, 10(35), 8219-8223.
[http://dx.doi.org/10.1039/C9SC02828E] [PMID: 31857887]
[25]
Kong, L.; Su, F.; Yu, H.; Jiang, Z.; Lu, Y.; Luo, T. Total synthesis of (−)-oridonin: An interrupted Nazarov approach. J. Am. Chem. Soc., 2019, 141(51), 20048-20052.
[http://dx.doi.org/10.1021/jacs.9b12034] [PMID: 31801344]
[26]
Komatsuki, K.; Kozuma, A.; Saito, K.; Yamada, T. Decarboxylative Nazarov cyclization-based chirality transfer for asymmetric synthesis of 2-cyclopentenones. Org. Lett., 2019, 21(17), 6628-6632.
[http://dx.doi.org/10.1021/acs.orglett.9b02107] [PMID: 31398044]
[27]
Kozuma, A.; Komatsuki, K.; Saito, K.; Yamada, T. Thermal decarboxylative Nazarov cyclization of cyclic enol carbonates involving chirality transfer. Chem. Lett., 2020, 49(1), 60-63.
[http://dx.doi.org/10.1246/cl.190763]
[28]
Alachouzos, G.; Holt, C.; Frontier, A.J. Stereochemical relay through a cationic intermediate: Helical preorganization dictates direction of conrotation in the halo-Nazarov cyclization. Org. Lett., 2020, 22(10), 4010-4015.
[http://dx.doi.org/10.1021/acs.orglett.0c01330] [PMID: 32352794]
[29]
a) Gao, J.; Rao, P.; Xu, K.; Wang, S.; Wu, Y.; He, C.; Ding, H. Total synthesis of (−)-rhodomollanol A. J. Am. Chem. Soc., 2020, 142(10), 4592-4597.
[http://dx.doi.org/10.1021/jacs.0c00308] [PMID: 32093468];
b) Gao, K.; Hu, J.; Ding, H. Tetracyclic diterpenoid synthesis facilitated by odi-cascade approaches to bicyclo[3.2.1]octane skeletons. Acc. Chem. Res., 2021, 54(4), 875-889.
[http://dx.doi.org/10.1021/acs.accounts.0c00798] [PMID: 33508196]
[30]
Amberg, W.M.; Carreira, E.M. Enantioselective total synthesis of (+)-aberrarone. J. Am. Chem. Soc., 2022, 144(34), 15475-15479.
[http://dx.doi.org/10.1021/jacs.2c07150] [PMID: 35985036]
[31]
Etling, C.; Tedesco, G.; Marco, D.A.; Kalesse, M. Asymmetric total synthesis of illisimonin A. J. Am. Chem. Soc., 2023, 145(12), 7021-7029.
[http://dx.doi.org/10.1021/jacs.3c01262] [PMID: 36926847]
[32]
a) Beller, M.; Bolm, C. Metals for Organic Synthesis, 2nd ed; Wiley-VCH: Weinheim, 2004. ;
b) Tietze, L.F.; Ila, H.; Bell, H.P. Enantioselective palladium-catalyzed transformations. Chem. Rev., 2004, 104(7), 3453-3516.
[http://dx.doi.org/10.1021/cr030700x] [PMID: 15250747];
c) Ramón, D.J.; Yus, M. In the arena of enantioselective synthesis, titanium complexes wear the laurel wreath. Chem. Rev., 2006, 106(6), 2126-2208.
[http://dx.doi.org/10.1021/cr040698p] [PMID: 16771446];
d) Pellissier, H. Enantioselective silver-catalyzed transformations. Chem. Rev., 2016, 116(23), 14868-14917.
[http://dx.doi.org/10.1021/acs.chemrev.6b00639] [PMID: 27960274];
e) Pellissier, H. Enantioselective magnesium-catalyzed transformations. Org. Biomol. Chem., 2017, 15(22), 4750-4782.
[http://dx.doi.org/10.1039/C7OB00903H] [PMID: 28513750];
f) Pellissier, H. Recent developments in enantioselective cobalt-catalyzed transformations. Coord. Chem. Rev., 2018, 360, 122-168.
[http://dx.doi.org/10.1016/j.ccr.2018.01.013];
g) Pellissier, H. Recent developments in enantioselective vanadium-catalyzed transformations. Coord. Chem. Rev., 2020, 418, 213395.;
h) Pellissier, H. Recent developments in enantioselective vanadium-catalyzed transformations. Coord. Chem. Rev., 2021, 284, 93-110.
[http://dx.doi.org/10.1055/a-1348-9122];
i) Pellissier, H. Recent developments in enantioselective zinc-catalyzed transformations. Coord. Chem. Rev., 2021, 439, 213926.
[http://dx.doi.org/10.1016/j.ccr.2021.213926];
j) Pellissier, H. Recent developments in enantioselective titanium-catalyzed transformations. Coord. Chem. Rev., 2022, 463, 214537.
[http://dx.doi.org/10.1016/j.ccr.2022.214537];
k) Pellissier, H. Recent developments in enantioselective nickel(II)-catalyzed conjugate additions. Org. Chem. Front., 2022, 9(23), 6717-6748.
[http://dx.doi.org/10.1039/D2QO01047J]
[33]
a) Doyle, A.G.; Jacobsen, E.N. Small-molecule H-bond donors in asymmetric catalysis. Chem. Rev., 2007, 107, 5713-5743.;
b) Mukherjee, S.; Yang, J.W.; Hoffmann, S.; List, B. Asymmetric enamine catalysis. Chem. Rev., 2007, 107, 5471-5569.;
c) Dondoni, A.; Massi, A.; Hoffmann, S.; List, B. Asymmetric organocatalysis: From infancy to adolescence. Angew. Chem. Int., 2008, 47, 4638-4660.;
d) Pellissier, H. Recent Developments in Asymmetric Organocatalysis; Royal Society of Chemistry: Cambridge, 2010. ;
e) Volla, C.M.R.; Atodiresei, I.; Rueping, M. Catalytic C–C bond-forming multi-component cascade or domino reactions: Pushing the boundaries of complexity in asymmetric organocatalysis. Chem. Rev., 2014, 114, 2390-2431.;
f) Tian, L.; Luo, Y.C.; Hu, X.Q.; Xu, P.F. Recent developments in the synthesis of chiral compounds with quaternary centers by organocatalytic cascade reactions. Asian J. Org. Chem., 2016, 5, 580-607.;
g) Chanda, T.; Zhao, J.C.G. Recent progress in organocatalytic asymmetric domino transformations. Adv. Synth. Catal., 2018, 360, 2-79.;
h) Guo, H.; Fan, Y.C.; Sun, Z.; Wu, Y.; Kwon, O. Phosphine organocatalysis. Chem. Rev., 2018, 118, 10049-10293.;
i) Sahoo, B.M.; Banik, B.K. Organocatalysis: Trends of drug synthesis in medicinal chemistry. Current Organocatal., 2019, 6, 92-105.
[34]
Rueping, M.; Ieawsuwan, W.; Antonchick, A.P.; Nachtsheim, B.J. Chiral brønsted acids in the catalytic asymmetric Nazarov cyclization-the first enantioselective organocatalytic electrocyclic reaction. Angew. Chem. Int. Ed., 2007, 46(12), 2097-2100.
[http://dx.doi.org/10.1002/anie.200604809] [PMID: 17278163]
[35]
Jolit, A.; Dickinson, C.F.; Kitamura, K.; Walleser, P.M.; Yap, G.P.A.; Tius, M.A. Catalytic enantioselective Nazarov cyclization. Eur. J. Org. Chem., 2017, 2017(40), 6067-6076.
[http://dx.doi.org/10.1002/ejoc.201701117]
[36]
Jin, J.; Zhao, Y.; Gouranourimi, A.; Ariafard, A.; Hong, Chan P.W. Chiral brønsted acid catalyzed enantioselective dehydrative Nazarov-type electrocyclization of aryl and 2-thienyl vinyl alcohols. J. Am. Chem. Soc., 2018, 140(17), 5834-5841.
[http://dx.doi.org/10.1021/jacs.8b02339] [PMID: 29631393]
[37]
Ouyang, J.; Kennemur, J.L.; De, C.K.; Farès, C.; List, B. Strong and confined acids enable a catalytic asymmetric Nazarov cyclization of simple divinyl ketones. J. Am. Chem. Soc., 2019, 141(8), 3414-3418.
[http://dx.doi.org/10.1021/jacs.8b13899] [PMID: 30768254]
[38]
Wang, C.S.; Wu, J.L.; Li, C.; Li, L.Z.; Mei, G.J.; Shi, F. Design of C3‐alkenyl‐substituted 2‐indolylmethanols for catalytic asymmetric interrupted Nazarov‐type cyclization. Adv. Synth. Catal., 2018, 360(5), 846-851.
[http://dx.doi.org/10.1002/adsc.201701521]
[39]
Wu, J.L.; Wang, J.Y.; Wu, P.; Wang, J.R.; Mei, G.J.; Shi, F. Diastereo- and enantioselective construction of chiral cyclopenta[b]indole framework via a catalytic asymmetric tandem cyclization of 2-indolymethanols with 2-naphthols. Org. Chem. Front., 2018, 5(9), 1436-1445.
[http://dx.doi.org/10.1039/C8QO00014J]
[40]
Wu, J.L.; Wang, C.S.; Wang, J.R.; Mei, G.J.; Shi, F. A catalytic asymmetric interrupted Nazarov-type cyclization of 2-indolylmethanols with cyclic enaminones. Org. Biomol. Chem., 2018, 16(30), 5457-5464.
[http://dx.doi.org/10.1039/C8OB01427B] [PMID: 30022181]
[41]
Liang, G.; Gradl, S.N.; Trauner, D. Efficient Nazarov cyclizations of 2-alkoxy-1,4-pentadien-3-ones. Org. Lett., 2003, 5(26), 4931-4934.
[http://dx.doi.org/10.1021/ol036019z] [PMID: 14682732]
[42]
Aggarwal, V.K.; Belfield, A.J. Catalytic asymmetric Nazarov reactions promoted by chiral Lewis acid complexes. Org. Lett., 2003, 5(26), 5075-5078.
[http://dx.doi.org/10.1021/ol036133h] [PMID: 14682768]
[43]
Süsse, L.; Vogler, M.; Mewald, M.; Kemper, B.; Irran, E.; Oestreich, M. Enantioselective Nazarov cyclizations catalyzed by an axial chiral C6F5‐substituted boron lewis acid. Angew. Chem. Int. Ed., 2018, 57(35), 11441-11444.
[http://dx.doi.org/10.1002/anie.201806011] [PMID: 29978948]
[44]
Mietke, T.; Cruchter, T.; Larionov, V.A.; Faber, T.; Harms, K.; Meggers, E. Asymmetric Nazarov cyclizations catalyzed by chiral‐at‐metal complexes. Adv. Synth. Catal., 2018, 360(11), 2093-2100.
[http://dx.doi.org/10.1002/adsc.201701546]
[45]
Brunen, S.; Grell, Y.; Steinlandt, P.S.; Harms, K.; Meggers, E. Bis-cyclometalated indazole and benzimidazole chiral-at-iridium complexes: Synthesis and asymmetric catalysis. Molecules, 2021, 26(7), 1822-1834.
[http://dx.doi.org/10.3390/molecules26071822] [PMID: 33804954]
[46]
Hong, Y.; Jarrige, L.; Harms, K.; Meggers, E. Chiral-at-iron catalyst: Expanding the chemical space for asymmetric earth-abundant metal catalysis. J. Am. Chem. Soc., 2019, 141(11), 4569-4572.
[http://dx.doi.org/10.1021/jacs.9b01352] [PMID: 30839201]
[47]
Dickinson, C.F.; Yap, G.P.A.; Tius, M.A. Anion-accelerated asymmetric Nazarov cyclization: Access to vicinal all-carbon quaternary stereocenters. Org. Biomol. Chem., 2023, 21(24), 5014-5020.
[http://dx.doi.org/10.1039/D3OB00735A] [PMID: 37265330]
[48]
Zhang, H.; Lu, Z. Nickel-catalyzed enantioselective sequential Nazarov cyclization/decarboxylation. Org. Chem. Front., 2018, 5(11), 1763-1767.
[http://dx.doi.org/10.1039/C8QO00279G]
[49]
Zhang, H.; Cheng, B.; Lu, Z. Enantioselective cobalt-catalyzed sequential Nazarov cyclization/electrophilic fluorination: Access to chiral α-fluorocyclopentenones. Org. Lett., 2018, 20(13), 4028-4031.
[http://dx.doi.org/10.1021/acs.orglett.8b01597] [PMID: 29923736]
[50]
Corbin, J.R.; Ketelboeter, D.R.; Fernández, I.; Schomaker, J.M. Biomimetic 2-imino-Nazarov cyclizations via eneallene aziridination. J. Am. Chem. Soc., 2020, 142(12), 5568-5573.
[http://dx.doi.org/10.1021/jacs.0c02441] [PMID: 32142272]
[51]
Solas, M.; Pantiga, S.S.; Sanz, R. Asymmetric gold(I)‐catalyzed tandem hydroarylation–Nazarov cyclization: Enantioselective access to cyclopentenones. Angew. Chem. Int. Ed., 2022, 61(35), e202207406.
[http://dx.doi.org/10.1002/anie.202207406] [PMID: 35785510]
[52]
Tian, Y.; Tang, M.; Lian, C.; Song, R.; Yang, D.; Lv, J. Asymmetric binary-acid catalysis: A diastereo- and enantioselective oxa-Nazarov cyclization-Michael addition of conjugated 1,2-diketones. Org. Chem. Front., 2023, 10(12), 3039-3044.
[http://dx.doi.org/10.1039/D3QO00558E]
[53]
a) Pellissier, H. Recent developments in enantioselective multicatalysed tandem reactions. Tetrahedron, 2013, 69(35), 7171-7210.
[http://dx.doi.org/10.1016/j.tet.2013.06.020];
b) Pellissier, H. Enantioselective Multicatalysed Tandem Reactions; Royal Society of Chemistry: Cambridge, 2014.
[http://dx.doi.org/10.1039/9781782621355];
c) Lohr, T.L.; Marks, T.J. Orthogonal tandem catalysis. Nat. Chem., 2015, 7(6), 477-482.
[http://dx.doi.org/10.1038/nchem.2262] [PMID: 25991525];
d) Zhou, J. Multicatalyst System in Asymmetric Catalysis; Wiley: Weinheim, 2015. ;
e) Afewerki, S.; Córdova, A. Combinations of aminocatalysts and metal catalysts: A powerful cooperative approach in selective organic synthesis. Chem. Rev., 2016, 116(22), 13512-13570.
[http://dx.doi.org/10.1021/acs.chemrev.6b00226] [PMID: 27723291];
f) Pellissier, H. Recent developments in enantioselective multicatalyzed tandem reactions. Adv. Synth. Catal., 2020, 362(12), 2289-2325.
[http://dx.doi.org/10.1002/adsc.202000210]
[54]
Wang, G.P.; Chen, M.Q.; Zhu, S.F.; Zhou, Q.L. Enantioselective Nazarov cyclization of indole enones cooperatively catalyzed by lewis acids and chiral brønsted acids. Chem. Sci., 2017, 8(10), 7197-7202.
[http://dx.doi.org/10.1039/C7SC03183A] [PMID: 29081952]
[55]
a) Denmark, S.E.; Jones, T.K. Silicon-directed Nazarov cyclization. J. Am. Chem. Soc., 1982, 104(9), 2642-2645.
[http://dx.doi.org/10.1021/ja00373a055];
b) Jones, T.K.; Denmark, S.E. Silicon‐directed Nazarov reactions II. Preparation and cyclization of β‐silyl‐substituted divinyl ketones. Helv. Chim. Acta, 1983, 66(8), 2377-2396.
[http://dx.doi.org/10.1002/hlca.19830660802];
c) Jones, T.K.; Denmark, S.E. Silicon‐directed Nazarov reactions III. stereochemical and mechanistic considerations. Helv. Chim. Acta, 1983, 66(8), 2397-2411.
[http://dx.doi.org/10.1002/hlca.19830660803];
d) Denmark, S.E.; Klix, R.C. Silicon-directed Nazarov cyclizations VII. Tetrahedron, 1988, 44(13), 4043-4060.
[http://dx.doi.org/10.1016/S0040-4020(01)86655-2];
e) Denmark, S.E.; Wallace, M.A.; Walker, C.B., Jr Silicon-directed Nazarov cyclizations. 8. Stereoelectronic control of torquoselectivity. J. Org. Chem., 1990, 55(21), 5543-5545.
[http://dx.doi.org/10.1021/jo00308a001]
[56]
a) Cao, J.; Hu, M-Y.; Liu, S-Y.; Zhang, X-Y.; Zhu, S-F.; Zhou, Q-L. Enantioselective silicon-directed Nazarov cyclization. J. Am. Chem. Soc., 2021, 143, 6962-6968.;
b) Cao, J.; Zhu, S.F. Chiral proton-transfer shuttle catalysts promoted enantioselective Nazarov cyclization. Synlett, 2023, 34, 29-39.
[57]
Metternich, J.B.; Reiterer, M.; Jacobsen, E.N. Asymmetric Nazarov cyclizations of unactivated dienones by hydrogen‐bond‐donor/lewis acid co–catalyzed, enantioselective proton‐transfer. Adv. Synth. Catal., 2020, 362(19), 4092-4097.
[http://dx.doi.org/10.1002/adsc.202000831] [PMID: 33162875]
[58]
Jin, J.; Zhao, Y.; Sze, E.M.L.; Kothandaraman, P.; Chan, P.W.H. Chiral brønsted acid and gold catalyzed enantioselective synthesis of 1,8‐dihydroindeno[2,1‐b]pyrroles. Adv. Synth. Catal., 2018, 360(24), 4744-4753.
[http://dx.doi.org/10.1002/adsc.201801178]
[59]
Tang, S.; Zhang, P.; Shao, Y.; Sun, J. Enyne diketones as substrate in asymmetric Nazarov cyclization for construction of chiral allene cyclopentenones. Nat. Commun., 2022, 13(1), 3146-3156.
[http://dx.doi.org/10.1038/s41467-022-30846-y] [PMID: 35672319]
[60]
Mankad, N.P. Selectivity effects in bimetallic catalysis. Chemistry, 2016, 22(17), 5822-5829.
[http://dx.doi.org/10.1002/chem.201505002] [PMID: 26879884]
[61]
Zhang, H.; Lu, Z. Nickel/copper dual catalysis for sequential Nazarov cyclization/decarboxylative aldol reaction. Org. Lett., 2018, 20(18), 5709-5713.
[http://dx.doi.org/10.1021/acs.orglett.8b02426] [PMID: 30160123]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy