Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Progress in the Synthesis and Biological Assessment of Benzimidazole-1,2,3- Triazole Hybrids

Author(s): Dileep Kumar Singh*, Haider Iqbal and Mohd. Ayub Ansari

Volume 28, Issue 10, 2024

Published on: 16 April, 2024

Page: [733 - 756] Pages: 24

DOI: 10.2174/0113852728303189240321084818

Price: $65

Open Access Journals Promotions 2
Abstract

In recent times, many research groups have focused their attention on nitrogencontaining heterocyclic compounds with the aim of gaining a deeper understanding of their biological characteristics. Among them, molecules based on 1,2,3-triazole and benzimidazole have exhibited diverse biological applications and are present in many drug molecules. The purpose of this review is to describe various benzimidazole-1,2,3-triazole hybrids and to provide a comprehensive evaluation of their biological properties. The compounds discussed in this study have been synthesized through a Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction between diverse azides and alkynes, utilizing a 1,2,3-triazole scaffold as a linkage between two connecting groups. The synthesis of several benzimidazole-1,2,3- triazole hybrids is covered in this review, along with a biological assessment of their anticancer, antiproliferative, antitubercular, antibacterial, antidepressant, and other activities. Moreover, in our opinion, this review may be useful for the development of various medicinally significant molecules.

Keywords: 1, 2, 3-triazole, click chemistry, benzimidazole, mercaptobenzimidazole, biological evaluations, alkyne-azide, CuAAC.

Next »
Graphical Abstract
[1]
Satija, G.; Sharma, B.; Madan, A.; Iqubal, A.; Shaquiquzzaman, M.; Akhter, M.; Parvez, S.; Khan, M.A.; Alam, M.M. Benzimidazole based derivatives as anticancer agents: Structure activity relationship analysis for various targets. J. Heterocycl. Chem., 2022, 59(1), 22-66.
[http://dx.doi.org/10.1002/jhet.4355]
[2]
Rashedy, E.A.A.; Enein, A.H.Y. Benzimidazole derivatives as potential anticancer agents. Mini Rev. Med. Chem., 2013, 13(3), 399-407.
[PMID: 23190032]
[3]
Pathak, S.; Sharma, R. A comprehensive review on the benzimidazole scaffold as a potential nucleus for anticancer activity. Lett. Org. Chem., 2023, 20(9), 802-817.
[http://dx.doi.org/10.2174/1570178620666230330105103]
[4]
Lee, Y.T.; Tan, Y.J.; Oon, C.E. Benzimidazole and its derivatives as cancer therapeutics: The potential role from traditional to precision medicine. Acta Pharm. Sin. B, 2023, 13(2), 478-497.
[http://dx.doi.org/10.1016/j.apsb.2022.09.010] [PMID: 36873180]
[5]
Deswal, L.; Verma, V.; Kumar, D.; Kaushik, C.P.; Kumar, A.; Deswal, Y.; Punia, S. Synthesis and antidiabetic evaluation of benzimidazole‐tethered 1,2,3‐triazoles. Arch. Pharm., 2020, 353(9), 2000090.
[http://dx.doi.org/10.1002/ardp.202000090] [PMID: 32567729]
[6]
Babkov, D.A.; Zhukowskaya, O.N.; Borisov, A.V.; Babkova, V.A.; Sokolova, E.V.; Brigadirova, A.A.; Litvinov, R.A.; Kolodina, A.A.; Morkovnik, A.S.; Sochnev, V.S.; Borodkin, G.S.; Spasov, A.A. Towards multi-target antidiabetic agents: Discovery of biphenyl-benzimidazole conjugates as AMPK activators. Bioorg. Med. Chem. Lett., 2019, 29(17), 2443-2447.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.035] [PMID: 31358465]
[7]
Shingalapur, R.V.; Hosamani, K.M.; Keri, R.S.; Hugar, M.H. Derivatives of benzimidazole pharmacophore: Synthesis, anticonvulsant, antidiabetic and DNA cleavage studies. Eur. J. Med. Chem., 2010, 45(5), 1753-1759.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.007] [PMID: 20122763]
[8]
Moharana, A.K.; Dash, R.N.; Mahanandia, N.C.; Subudhi, B.B. Synthesis and anti-inflammatory activity evaluation of some benzimidazole derivatives. Pharm. Chem. J., 2022, 56(8), 1070-1074.
[http://dx.doi.org/10.1007/s11094-022-02755-3] [PMID: 36405379]
[9]
Veerasamy, R.; Roy, A.; Karunakaran, R.; Rajak, H. Structure-activity relationship analysis of benzimidazoles as emerging anti-inflammatory agents: An overview. Pharm., 2021, 14(7), 663.
[http://dx.doi.org/10.3390/ph14070663] [PMID: 34358089]
[10]
Dziwornu, G.A.; Coertzen, D.; Leshabane, M.; Korkor, C.M.; Cloete, C.K.; Njoroge, M.; Gibhard, L.; Lawrence, N.; Reader, J.; Watt, V.D.M.; Wittlin, S.; Birkholtz, L.M.; Chibale, K. Antimalarial benzimidazole derivatives incorporating phenolic Mannich base side chains inhibit microtubule and hemozoin formation: Structure-activity relationship and in vivo oral efficacy studies. J. Med. Chem., 2021, 64(8), 5198-5215.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00354] [PMID: 33844521]
[11]
Worachartcheewan, A.; Nantasenamat, C.; Ayudhya, I.N.C.; Prachayasittikul, V. QSAR study of amidino bis-benzimidazole derivatives as potent anti-malarial agents against Plasmodium falciparum. Chem. Pap., 2013, 67(11), 1462-1473.
[http://dx.doi.org/10.2478/s11696-013-0398-5]
[12]
Surineni, G.; Gao, Y.; Hussain, M.; Liu, Z.; Lu, Z.; Chhotaray, C.; Islam, M.M.; Hameed, H.M.A.; Zhang, T. Design, synthesis, and in vitro biological evaluation of novel benzimidazole tethered allylidenehydrazinylmethylthiazole derivatives as potent inhibitors of Mycobacterium tuberculosis. MedChemComm, 2019, 10(1), 49-60.
[http://dx.doi.org/10.1039/C8MD00389K] [PMID: 30774854]
[13]
Pappachen, L.K.; Bhaskar, V.; Kumar, S.; Nair, A.S.; Rajappan, K.P.; Sudevan, S.T.; Parambi, D.G.T.; Sehemi, A.A.G.; Zachariah, S.M. A review on benzimidazole scaffolds as inhibitors of Mycobacterium tuberculosis mycolyl-arabinogalactan-peptidoglycan complex biosynthesis. Comb. Chem. High Throughput Screen., 2023, 26(4), 668-681.
[http://dx.doi.org/10.2174/1386207325666220415144511] [PMID: 35430964]
[14]
Parwani, D.; Bhattacharya, S.; Rathore, A.; Mallick, C.; Asati, V.; Agarwal, S.; Rajoriya, V.; Das, R.; Kashaw, S.K. Current insights into the chemistry and antitubercular potential of benzimidazole and imidazole derivatives. Mini Rev. Med. Chem., 2021, 21(5), 643-657.
[http://dx.doi.org/10.2174/18755607MTExjMDYfw] [PMID: 33138762]
[15]
Morcoss, M.M.; Abdelhafez, E.S.M.N.; Ibrahem, R.A.; Rahman, A.H.M.; Aziz, A.M.; Ella, A.E.D.A. Design, synthesis, mechanistic studies and in silico ADME predictions of benzimidazole derivatives as novel antifungal agents. Bioorg. Chem., 2020, 101, 103956.
[http://dx.doi.org/10.1016/j.bioorg.2020.103956] [PMID: 32512267]
[16]
Güzel, E.; Çevik, A.U.; Evren, A.E.; Bostancı, H.E.; Gül, Ü.D.; Kayış, U.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis of benzimidazole-1,2,4-triazole derivatives as potential antifungal agents targeting 14α-demethylase. ACS Omega, 2023, 8(4), 4369-4384.
[http://dx.doi.org/10.1021/acsomega.2c07755] [PMID: 36743066]
[17]
Keller, P.; Müller, C.; Engelhardt, I.; Hiller, E.; Lemuth, K.; Eickhoff, H.; Wiesmüller, K.H.; Kentischer, B.A.; Bracher, F.; Rupp, S. An antifungal benzimidazole derivative inhibits ergosterol biosynthesis and reveals novel sterols. Antimicrob. Agents Chemother., 2015, 59(10), 6296-6307.
[http://dx.doi.org/10.1128/AAC.00640-15] [PMID: 26248360]
[18]
Pardeshi, V.A.; Pathan, S.; Bhargava, A.; Chundawat, N.S.; Singh, G.P. Synthesis and evaluation of novel benzimidazole derivatives as potential anti bacterial and anti fungal agents. Egypt. J. Basic Appl. Sci., 2021, 8(1), 330-344.
[19]
Song, D.; Ma, S. Recent development of benzimidazole-containing antibacterial agents. ChemMedChem, 2016, 11(7), 646-659.
[http://dx.doi.org/10.1002/cmdc.201600041] [PMID: 26970352]
[20]
Picconi, P.; Hind, C.; Jamshidi, S.; Nahar, K.; Clifford, M.; Wand, M.E.; Sutton, J.M.; Rahman, K.M. Triaryl benzimidazoles as a new class of antibacterial agents against resistant pathogenic microorganisms. J. Med. Chem., 2017, 60(14), 6045-6059.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00108] [PMID: 28650661]
[21]
Nardi, M.; Cano, N.C.H.; Simeonov, S.; Bence, R.; Kurutos, A.; Scarpelli, R.; Wunderlin, D.; Procopio, A. A review on the green synthesis of benzimidazole derivatives and their pharmacological activities. Catalysts, 2023, 13(2), 392.
[http://dx.doi.org/10.3390/catal13020392]
[22]
Refaat, H.M.; Din, N.E.D.A. Chemical and biological evaluation of moxifloxacin-benzimidazole mixed ligands complexes: Anti-cancer and anti-oxidant activities. J. Mol. Struct., 2018, 1163, 103-113.
[http://dx.doi.org/10.1016/j.molstruc.2018.02.116]
[23]
Feng, L.S.; Su, W.Q.; Cheng, J.B.; Xiao, T.; Li, H.Z.; Chen, D.A.; Zhang, Z.L. Benzimidazole hybrids as anticancer drugs: An updated review on anticancer properties, structure-activity relationship, and mechanisms of action (2019-2021). Arch. Pharm., 2022, 355(6), 2200051.
[http://dx.doi.org/10.1002/ardp.202200051] [PMID: 35385159]
[24]
Garuti, L.; Roberti, M.; Bottegoni, G. Benzimidazole derivatives as kinase inhibitors. Curr. Med. Chem., 2014, 21(20), 2284-2298.
[http://dx.doi.org/10.2174/0929867321666140217105714] [PMID: 24533813]
[25]
Hayat, S.; Ullah, H.; Rahim, F.; Ullah, I.; Taha, M.; Iqbal, N.; Khan, F.; Khan, M.S.; Shah, S.A.A.; Wadood, A.; Sajid, M.; Abdalla, A.N. Synthesis, biological evaluation and molecular docking study of benzimidazole derivatives as α-glucosidase inhibitors and anti-diabetes candidates. J. Mol. Struct., 2023, 1276, 134774.
[http://dx.doi.org/10.1016/j.molstruc.2022.134774]
[26]
Marinescu, M. Recent advances in the use of benzimidazoles as corrosion inhibitors. BMC Chem., 2019, 13(1), 136.
[http://dx.doi.org/10.1186/s13065-019-0655-y] [PMID: 31891162]
[27]
Serafini, M.; Torre, E.; Aprile, S.; Grosso, E.D.; Gesù, A.; Griglio, A.; Colombo, G.; Travelli, C.; Paiella, S.; Adamo, A.; Orecchini, E.; Coletti, A.; Pallotta, M.T.; Ugel, S.; Massarotti, A.; Pirali, T.; Fallarini, S. Discovery of highly potent benzimidazole derivatives as indoleamine 2,3-dioxygenase-1 (IDO1) inhibitors: From structure-based virtual screening to in vivo pharmacodynamic activity. J. Med. Chem., 2020, 63(6), 3047-3065.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01809] [PMID: 32150677]
[28]
Rathore, A.; Rahman, M.U.; Siddiqui, A.A.; Ali, A.; Yar, M.S. Synthesis and evaluation of benzimidazole derivatives as selective COX-2 inhibitors. Med. Chem., 2015, 11(2), 188-199.
[http://dx.doi.org/10.2174/1573406410666140815121613] [PMID: 25134430]
[29]
Huisgen, R. 1,3-Dipolar cycloadditions. past and future. Angew. Chem. Int. Ed. Engl., 1963, 2(10), 565-598.
[http://dx.doi.org/10.1002/anie.196305651]
[30]
Huisgen, R. 1,3‐Dipolar cycloaddition ‐ introduction, survey, mechanism. Chem. ChemInform, 1985, 16(8)
[31]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[32]
Tiwari, V.K.; Mishra, B.B.; Mishra, K.B.; Mishra, N.; Singh, A.S.; Chen, X. Cu-catalyzed click reaction in carbohydrate chemistry. Chem. Rev., 2016, 116(5), 3086-3240.
[http://dx.doi.org/10.1021/acs.chemrev.5b00408] [PMID: 26796328]
[33]
Agrahari, A.K.; Bose, P.; Jaiswal, M.K.; Rajkhowa, S.; Singh, A.S.; Hotha, S.; Mishra, N.; Tiwari, V.K. Cu(I)-catalyzed click chemistry in glycoscience and their diverse applications. Chem. Rev., 2021, 121(13), 7638-7956.
[http://dx.doi.org/10.1021/acs.chemrev.0c00920] [PMID: 34165284]
[34]
Singh, D.K. CuAAC-inspired synthesis of 1,2,3-triazole-bridged porphyrin conjugates: An overview. Beilstein J. Org. Chem., 2023, 19(1), 349-379.
[http://dx.doi.org/10.3762/bjoc.19.29] [PMID: 36998309]
[35]
Singh, D.K.; Nath, M. meso-Phenyl-triazole bridged porphyrin-coumarin dyads: Synthesis, characterization and photophysical properties. Dyes Pigments, 2015, 121, 256-264.
[http://dx.doi.org/10.1016/j.dyepig.2015.05.027]
[36]
Singh, D.K.; Nath, M. Synthesis and photophysical properties of β-triazole bridged porphyrin-coumarin dyads. RSC Advances, 2015, 5(83), 68209-68217.
[http://dx.doi.org/10.1039/C5RA13955D]
[37]
Singh, D.K.; Nath, M. Synthesis and spectroscopic properties of β-triazoloporphyrin-xanthone dyads. Beilstein J. Org. Chem., 2015, 11(1), 1434-1440.
[http://dx.doi.org/10.3762/bjoc.11.155] [PMID: 26425199]
[38]
Singh, D.K.; Nath, M. Synthesis, characterization and photophysical studies of ß-triazolomethyl-bridged porphyrin-benzo- a-pyrone dyads. J. Chem. Sci., 2016, 128(4), 545-554.
[http://dx.doi.org/10.1007/s12039-016-1058-4]
[39]
Golas, P.L.; Matyjaszewski, K. Marrying click chemistry with polymerization: Expanding the scope of polymeric materials. Chem. Soc. Rev., 2010, 39(4), 1338-1354.
[http://dx.doi.org/10.1039/B901978M] [PMID: 20309490]
[40]
Qin, A.; Lam, J.W.Y.; Tang, B.Z. Click polymerization: Progresses, challenges, and opportunities. Macromol., 2010, 43(21), 8693-8702.
[http://dx.doi.org/10.1021/ma101064u]
[41]
Binder, W.H.; Sachsenhofer, R. ‘Click’ chemistry in polymer and material science: An update. Macromol. Rapid Commun., 2008, 29(12-13), 952-981.
[http://dx.doi.org/10.1002/marc.200800089]
[42]
Moorhouse, A.D.; Moses, J.E. Click chemistry and medicinal chemistry: A case of “cyclo-addiction”. ChemMedChem, 2008, 3(5), 715-723.
[http://dx.doi.org/10.1002/cmdc.200700334] [PMID: 18214878]
[43]
Jiang, X.; Hao, X.; Jing, L.; Wu, G.; Kang, D.; Liu, X.; Zhan, P. Recent applications of click chemistry in drug discovery. Expert Opin. Drug Discov., 2019, 14(8), 779-789.
[http://dx.doi.org/10.1080/17460441.2019.1614910] [PMID: 31094231]
[44]
Hou, J.; Liu, X.; Shen, J.; Zhao, G.; Wang, P.G. The impact of click chemistry in medicinal chemistry. Expert Opin. Drug Discov., 2012, 7(6), 489-501.
[http://dx.doi.org/10.1517/17460441.2012.682725] [PMID: 22607210]
[45]
Wang, Z.; Wei, L.; Zeng, L.; Feng, N.; Chen, J.; Chen, Y. Click chemistry-mediated particle counting sensing via Cu(II)-polyglutamic acid coordination chemistry and enzymatic reaction. Anal. Chem., 2022, 94(13), 5293-5300.
[http://dx.doi.org/10.1021/acs.analchem.1c05127] [PMID: 35319873]
[46]
Petrovskii, S.; Khistiaeva, V.; Paderina, A.; Abramova, E.; Grachova, E. Post-functionalization of organometallic complexes via click-reaction. Molecules, 2022, 27(19), 6494.
[http://dx.doi.org/10.3390/molecules27196494] [PMID: 36235030]
[47]
Héron, J.; Balcells, D. Concerted cycloaddition mechanism in the cuaac reaction catalyzed by 1,8-naphthyridine dicopper complexes. ACS Catal., 2022, 12(8), 4744-4753.
[http://dx.doi.org/10.1021/acscatal.2c00723]
[48]
Fantoni, N.Z.; Sagheer, E.A.H.; Brown, T. A Hitchhiker’s guide to click-chemistry with nucleic acids. Chem. Rev., 2021, 121(12), 7122-7154.
[http://dx.doi.org/10.1021/acs.chemrev.0c00928] [PMID: 33443411]
[49]
Sagheer, E.A.H.; Brown, T. Click chemistry with DNA. Chem. Soc. Rev., 2010, 39(4), 1388-1405.
[http://dx.doi.org/10.1039/b901971p] [PMID: 20309492]
[50]
Zhang, X.; Zhang, S.; Zhao, S.; Wang, X.; Liu, B.; Xu, H. Click chemistry in natural product modification. Front Chem., 2021, 9, 774977.
[http://dx.doi.org/10.3389/fchem.2021.774977] [PMID: 34869223]
[51]
Xi, W.; Scott, T.F.; Kloxin, C.J.; Bowman, C.N. Click chemistry in materials science. Adv. Funct. Mater., 2014, 24(18), 2572-2590.
[http://dx.doi.org/10.1002/adfm.201302847]
[52]
Xu, Z.; Bratlie, K.M. Click chemistry and material selection for in situ fabrication of hydrogels in tissue engineering applications. ACS Biomater. Sci. Eng., 2018, 4(7), 2276-2291.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00230] [PMID: 33435096]
[53]
Xu, L.; Li, Y.; Li, Y. Application of “click” chemistry to the construction of supramolecular functional systems. Asian J. Org. Chem., 2014, 3(5), 582-602.
[http://dx.doi.org/10.1002/ajoc.201300245]
[54]
Addonizio, C.J.; Gates, B.D.; Webber, M.J. Supramolecular “click chemistry” for targeting in the body. Bioconjug. Chem., 2021, 32(9), 1935-1946.
[http://dx.doi.org/10.1021/acs.bioconjchem.1c00326] [PMID: 34415139]
[55]
Jungnickel, P.W. Pantoprazole: A new proton pump inhibitor. Clin. Ther., 2000, 22(11), 1268-1293.
[http://dx.doi.org/10.1016/S0149-2918(00)83025-8] [PMID: 11117653]
[56]
Pjura, P.E.; Grzeskowiak, K.; Dickerson, R.E. Binding of Hoechst 33258 to the minor groove of B-DNA. J. Mol. Biol., 1987, 197(2), 257-271.
[http://dx.doi.org/10.1016/0022-2836(87)90123-9] [PMID: 2445998]
[57]
Bazhulina, N.P.; Nikitin, A.M.; Rodin, S.A.; Surovaya, A.N.; Kravatsky, Y.V.; Pismensky, V.F.; Archipova, V.S.; Martin, R.; Gursky, G.V. Binding of Hoechst 33258 and its derivatives to DNA. J. Biomol. Struct. Dyn., 2009, 26(6), 701-718.
[http://dx.doi.org/10.1080/07391102.2009.10507283] [PMID: 19385699]
[58]
Ramalingam, S.; Sinniah, B.; Krishnan, U. Albendazole, an effective single dose, broad spectrum anthelmintic drug. Am. J. Trop. Med. Hyg., 1983, 32(5), 984-989.
[http://dx.doi.org/10.4269/ajtmh.1983.32.984] [PMID: 6625078]
[59]
Wheless, J.W.; Vazquez, B. Rufinamide: A novel broad-spectrum antiepileptic drug. Epilepsy Curr., 2010, 10(1), 1-6.
[http://dx.doi.org/10.1111/j.1535-7511.2009.01336.x] [PMID: 20126329]
[60]
Shi, J.; Chen, C.; Ju, R.; Wang, Q.; Li, J.; Guo, L.; Ye, C.; Zhang, D. Carboxyamidotriazole combined with IDO1-Kyn-AhR pathway inhibitors profoundly enhances cancer immunotherapy. J. Immunother. Cancer, 2019, 7(1), 246.
[http://dx.doi.org/10.1186/s40425-019-0725-7] [PMID: 31511064]
[61]
Lodise, T.P., Jr; Lomaestro, B.; Drusano, G.L. Piperacillin-tazobactam for Pseudomonas aeruginosa infection: Clinical implications of an extended-infusion dosing strategy. Clin. Infect. Dis., 2007, 44(3), 357-363.
[http://dx.doi.org/10.1086/510590] [PMID: 17205441]
[62]
Youssif, B.G.M.; Mohamed, Y.A.M.; Salim, M.T.A.; Inagaki, F.; Mukai, C.; Allah, A.H.H.M. Synthesis of some benzimidazole derivatives endowed with 1,2,3-triazole as potential inhibitors of hepatitis C virus. Acta Pharm., 2016, 66(2), 219-231.
[http://dx.doi.org/10.1515/acph-2016-0014] [PMID: 27279065]
[63]
de Andrade, P.; de Fraga Dias, A.; Figueiró, F.; Torres, F.C.; Kawano, D.F.; Battastini, O.A.M.; Carvalho, I.; Silva, T.P.C.H.; Campos, J.M. 1,2,3-Triazole tethered 2-mercaptobenzimidazole derivatives: Design, synthesis and molecular assessment toward C6 glioma cell line. Future Med. Chem., 2020, 12(8), 689-708.
[http://dx.doi.org/10.4155/fmc-2019-0227] [PMID: 32193951]
[64]
Singu, P.S.; Chilakamarthi, U.; Mahadik, N.S.; Keerti, B.; Valipenta, N.; Mokale, S.N.; Nagesh, N.; Kumbhare, R.M. Benzimidazole-1,2,3-triazole hybrid molecules: Synthesis and study of their interaction with G-quadruplex DNA. RSC Med. Chem., 2021, 12(3), 416-429.
[http://dx.doi.org/10.1039/D0MD00414F] [PMID: 34046624]
[65]
Anand, A.; Kulkarni, M.V.; Joshi, S.D.; Dixit, S.R. One pot Click chemistry: A three component reaction for the synthesis of 2-mercaptobenzimidazole linked coumarinyl triazoles as anti-tubercular agents. Bioorg. Med. Chem. Lett., 2016, 26(19), 4709-4713.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.045] [PMID: 27595420]
[66]
Pršir, K.; Horak, E.; Kralj, M.; Uzelac, L.; Liekens, S.; Steinberg, I.M.; Krištafor, S. Design, synthesis, spectroscopic characterisation and in vitro cytostatic evaluation of novel bis(coumarin-1,2,3-triazolyl)benzenes and hybrid coumarin-1,2,3-triazolyl-aryl derivatives. Molecules, 2022, 27(3), 637.
[http://dx.doi.org/10.3390/molecules27030637] [PMID: 35163905]
[67]
Bourakadi, E.K.; Mekhzoum, M.E.M.; Saby, C.; Morjani, H.; Chakchak, H.; Merghoub, N.; Qaiss, A.; Bouhfid, R. Synthesis, characterization and in vitro anticancer activity of thiabendazole-derived 1,2,3-triazole derivatives. New J. Chem., 2020, 44(28), 12099-12106.
[http://dx.doi.org/10.1039/C9NJ05685H]
[68]
Goel, R.; Luxami, V.; Paul, K. Synthesis of new triazole based imidazo[1,2-a]pyrazine-benzimidazole conjugates: H-bonding assisted FRET efficient ratiometric detection of pyrophosphate. J. Photochem. Photobiol. Chem., 2017, 348, 102-109.
[http://dx.doi.org/10.1016/j.jphotochem.2017.08.009]
[69]
Alzahrani, A.S.S.; Nazreen, S.; Elhenawy, A.A.; Neamatallah, T.; Mahboob, M. Synthesis, biological evaluation, and molecular docking of new benzimidazole-1,2,3-triazole hybrids as antibacterial and antitumor agents. Polycycl. Aromat. Compd., 2023, 43(4), 3380-3391.
[http://dx.doi.org/10.1080/10406638.2022.2069133]
[70]
Deswal, L.; Verma, V.; Kumar, D.; Deswal, Y.; Kumar, A.; Kumar, R.; Parshad, M.; Bhatia, M. Synthesis, antimicrobial and α-glucosidase inhibition of new benzimidazole-1,2,3-triazole-indoline derivatives: A combined experimental and computational venture. Chem. Zvesti, 2022, 76(12), 7607-7622.
[http://dx.doi.org/10.1007/s11696-022-02436-1]
[71]
Deswal, L.; Verma, V.; Kirar, J.S.; Kumar, D.; Deswal, Y.; Kumar, A.; Bhatia, M. Benzimidazole-1,2,3-triazole-piperazine hybrids: Design, synthesis, antidiabetic evaluation and molecular modelling studies. Res. Chem. Intermed., 2023, 49(3), 1059-1083.
[http://dx.doi.org/10.1007/s11164-022-04921-4]
[72]
Djemoui, A.; Naouri, A.; Ouahrani, M.R.; Djemoui, D.; Lahcene, S.; Lahrech, M.B.; Boukenna, L.; Albuquerque, H.M.T.; Saher, L.; Rocha, D.H.A.; Monteiro, F.L.; Helguero, L.A.; Bachari, K.; Talhi, O.; Silva, A.M.S. A step-by-step synthesis of triazole-benzimidazole-chalcone hybrids: Anticancer activity in human cells+. J. Mol. Struct., 2020, 1204, 127487.
[http://dx.doi.org/10.1016/j.molstruc.2019.127487]
[73]
Vetriselvan, M.; Pramesh, M.; Jayanthi, S.; Gunasundari, K.; Shanmugam, P. One pot multicomponent synthesis of highly commutated 1,2,3-triazoles using some pyrazole aldehyde through “click” reaction. Orient. J. Chem., 2022, 38(2), 295-301.
[http://dx.doi.org/10.13005/ojc/380209]
[74]
John, M.E.; Karnik, A.V. Chiral benzimidazole derived bis‐phenyl triazoles as chiroptical sensors for iodide and chiral amines. J. Heterocycl. Chem., 2020, 57(7), 2844-2853.
[http://dx.doi.org/10.1002/jhet.3993]
[75]
Aparna, Y.; Nirmala, G.; Subhashini, N.J.P.; Sharada, L.N.; Sreekanth, S. Synthesis and antimicrobial activity of novel bis-1,2,3-triazol-1H-4-yl-substituted arylbenzimidazole-2-thiol derivatives. Russ. J. Gen. Chem., 2020, 90(8), 1501-1506.
[http://dx.doi.org/10.1134/S1070363220080186]
[76]
blewi, A.F.F.; Almehmadi, M.A.; Aouad, M.R.; Bardaweel, S.K.; Sahu, P.K.; Messali, M.; Rezki, N.; Ashry, E.E.S.H. Design, synthesis, ADME prediction and pharmacological evaluation of novel benzimidazole-1,2,3-triazole-sulfonamide hybrids as antimicrobial and antiproliferative agents. Chem. Cent. J., 2018, 12(1), 110.
[http://dx.doi.org/10.1186/s13065-018-0479-1] [PMID: 30387018]
[77]
Bakherad, M.; Keivanloo, A.; Amin, A.H.; Farkhondeh, A. Synthesis of 1,2,3 triazole-linked benzimidazole through a copper-catalyzed click reaction. Heterocycl. Commun., 2019, 25(1), 122-129.
[http://dx.doi.org/10.1515/hc-2019-0016]
[78]
Asemanipoor, N.; Khanaposhtani, M.M.; Moradi, S.; Vahidi, M.; Asadi, M.; Faramarzi, M.A.; Mahdavi, M.; Biglar, M.; Larijani, B.; Hamedifar, H.; Hajimiri, M.H. Synthesis and biological evaluation of new benzimidazole-1,2,3-triazole hybrids as potential α-glucosidase inhibitors. Bioorg. Chem., 2020, 95, 103482.
[http://dx.doi.org/10.1016/j.bioorg.2019.103482] [PMID: 31838286]
[79]
Alzahrani, H.A.; Alam, M.M.; Elhenawy, A.A.; Malebari, A.M.; Nazreen, S. Synthesis, antiproliferative, docking and DFT studies of benzimidazole derivatives as EGFR inhibitors. J. Mol. Struct., 2022, 1253, 132265.
[http://dx.doi.org/10.1016/j.molstruc.2021.132265]
[80]
Sharghi, H.; Aberi, M.; Shiri, P. Supported benzimidazole‐salen Cu(II) complex: An efficient, versatile and highly reusable nanocatalyst for one‐pot synthesis of hybrid molecules. Appl. Organomet. Chem., 2018, 32(10), e4446.
[http://dx.doi.org/10.1002/aoc.4446]
[81]
Ashok, D.; Gundu, S.; Aamate, V.K.; Devulapally, M.G. Conventional and microwave-assisted synthesis of new indole-tethered benzimidazole-based 1,2,3-triazoles and evaluation of their antimycobacterial, antioxidant and antimicrobial activities. Mol. Divers., 2018, 22(4), 769-778.
[http://dx.doi.org/10.1007/s11030-018-9828-1] [PMID: 29671194]
[82]
Tantray, M.A.; Khan, I.; Hamid, H.; Alam, M.S.; Dhulap, A.; Kalam, A. Synthesis of benzimidazole-based 1,3,4-oxadiazole-1,2,3-triazole conjugates as glycogen synthase kinase-3β inhibitors with antidepressant activity in in vivo models. RSC Advances, 2016, 6(49), 43345-43355.
[http://dx.doi.org/10.1039/C6RA07273A]
[83]
Rao, K.S.; Nalla, K.; Ramachandraiah, C.; Chandrasekhar, K.B.; Kanade, S.R.; Saha, S. Design and synthesis of new triazole-benzimidazole derivatives as potential PRMT5 inhibitors. ChemistrySelect, 2023, 8(11), e202204474.
[http://dx.doi.org/10.1002/slct.202204474]
[84]
Rao, Y.J.; Sowjanya, T.; Thirupathi, G.; Murthy, N.Y.S.; Kotapalli, S.S. Synthesis and biological evaluation of novel flavone/triazole/benzimidazole hybrids and flavone/isoxazole-annulated heterocycles as antiproliferative and antimycobacterial agents. Mol. Divers., 2018, 22(4), 803-814.
[http://dx.doi.org/10.1007/s11030-018-9833-4] [PMID: 29869169]
[85]
Mokariya, J.A.; Rajani, D.P.; Patel, M.P. 1,2,4‐Triazole and benzimidazole fused dihydropyrimidine derivatives: Design, green synthesis, antibacterial, antitubercular, and antimalarial activities. Arch. Pharm., 2023, 356(4), 2200545.
[http://dx.doi.org/10.1002/ardp.202200545] [PMID: 36534897]
[86]
Sahay, I.I.; Ghalsasi, P.S. Synthesis of new 1,2,3-triazole linked benzimidazole molecules as anti-proliferative agents. Synth. Commun., 2017, 47(8), 825-834.
[http://dx.doi.org/10.1080/00397911.2017.1289412]
[87]
Sahay, I.I.; Ghalsasi, P.S. Water-assisted self-aggregation of benzimidazole and triazole adducts. ACS Omega, 2019, 4(1), 437-443.
[http://dx.doi.org/10.1021/acsomega.8b02688] [PMID: 31459341]
[88]
Othman, D.I.A.; Hamdi, A.; Tawfik, S.S.; Elgazar, A.A.; Mostafa, A.S. Identification of new benzimidazole-triazole hybrids as anticancer agents: Multi-target recognition, in vitro and in silico studies. J. Enzyme Inhib. Med. Chem., 2023, 38(1), 2166037.
[http://dx.doi.org/10.1080/14756366.2023.2166037] [PMID: 36651111]
[89]
Singh, A.; Agarwal, A.; Chakraborty, A.; Bhardwaj, R.; Sutradhar, S.; Mittal, K.A.; Rajput, K.S.; Gupta, M.; Ray, D.; Mukherjee, M. Click chemistry tailored benzimidazole functionalized triazole block-co-polymer for emergence of exotic chimaeric nano-crystalsomes. Eur. Polym. J., 2022, 178, 111503.
[http://dx.doi.org/10.1016/j.eurpolymj.2022.111503]
[90]
Mattela, K.; Gutam, M.; Konda, S.K.; Vadiyala, N.R.; Yerrabelli, J.R.; Chitneni, P.R. Design and synthesis of chromenone-benzimidazole/bezoxazole-1,2,3-triazole hybrids and their antimicrobial activity. Asian J. Chem., 2022, 34(7), 1821-1824.
[http://dx.doi.org/10.14233/ajchem.2022.23828]
[91]
Harkala, K.J.; Eppakayala, L.; Maringanti, T.C. Synthesis and biological evaluation of benzimidazole-linked 1,2,3-triazole congeners as agents. Org. Med. Chem. Lett., 2014, 4(1), 14.
[http://dx.doi.org/10.1186/s13588-014-0014-x] [PMID: 26548990]
[92]
Rakendu, P.N.; Aneeja, T.; Anilkumar, G. Solvent-free synthesis of pyrroles: An overview. Asian J. Org. Chem., 2021, 10(9), 2318-2333.
[http://dx.doi.org/10.1002/ajoc.202100436]
[93]
Singh, D.K.; Kumar, R. Clauson-Kaas pyrrole synthesis using diverse catalysts: A transition from conventional to greener approach. Beilstein J. Org. Chem., 2023, 19(1), 928-955.
[http://dx.doi.org/10.3762/bjoc.19.71] [PMID: 37404802]
[94]
Shabalin, D.A.; Camp, J.E. Recent advances in the synthesis of imidazoles. Org. Biomol. Chem., 2020, 18(21), 3950-3964.
[http://dx.doi.org/10.1039/D0OB00350F] [PMID: 32419000]
[95]
Joshi, S.; Mehra, M.; Singh, R.; Kakar, S. Review on chemistry of oxazole derivatives: Current to future therapeutic prospective. Egypt. J. Basic Appl. Sci., 2023, 10(1), 218-239.
[96]
Ali, S.H.; Sayed, A.R. Review of the synthesis and biological activity of thiazoles. Synth. Commun., 2021, 51(5), 670-700.
[http://dx.doi.org/10.1080/00397911.2020.1854787]
[97]
Borah, B.; Chowhan, L.R. Recent advances in the transition-metal-free synthesis of quinoxalines. RSC Adv., 2021, 11(59), 37325-37353.
[http://dx.doi.org/10.1039/D1RA06942J] [PMID: 35496411]
[98]
Kim, J.; Park, M.; Choi, J.; Singh, D.K.; Kwon, H.J.; Kim, S.H.; Kim, I. Design, synthesis, and biological evaluation of novel pyrrolo[1,2-a]pyrazine derivatives. Bioorg. Med. Chem. Lett., 2019, 29(11), 1350-1356.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.044] [PMID: 30954427]
[99]
Singh, D.K.; Kim, I. Electrophilic acetylation and formylation of pyrrolo[1,2-a]pyrazines: Substituent effects on regioselectivity. ARKIVOC, 2019, 2019(3), 8-21.
[http://dx.doi.org/10.24820/ark.5550190.p010.807]
[100]
Kalinin, A.A.; Islamova, L.N.; Fazleeva, G.M. New achievements in the synthesis of pyrrolo[1,2-a]quinoxalines. Chem. Heterocycl. Compd., 2019, 55(7), 584-597.
[http://dx.doi.org/10.1007/s10593-019-02501-w]
[101]
Liu, S.Y.; Liu, H.; Shen, Z.Q.; Huang, W.Y.; Zhong, A.G.; Wen, H.R. Atom- and step-economic synthesis of π-conjugated large oligomers via C H activated oligomerization. Dyes Pigments, 2019, 162, 640-646.
[http://dx.doi.org/10.1016/j.dyepig.2018.10.075]
[102]
Liu, H.; Zhang, X.F.; Cheng, J.Z.; Zhong, A.G.; Wen, H.R.; Liu, S.Y. Novel diketopyrrolopyrrole-based π-conjugated molecules synthesized via one-pot direct arylation reaction. Molecules, 2019, 24(9), 1760.
[http://dx.doi.org/10.3390/molecules24091760] [PMID: 31067638]
[103]
Liu, S.Y.; Liu, W.Q.; Yuan, C.X.; Zhong, A.G.; Han, D.; Wang, B.; Shah, M.N.; Shi, M.M.; Chen, H. Diketopyrrolopyrrole-based oligomers accessed via sequential C H activated coupling for fullerene-free organic photovoltaics. Dyes Pigments, 2016, 134, 139-147.
[http://dx.doi.org/10.1016/j.dyepig.2016.07.007]
[104]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[105]
Hagar, F.F.; Abbas, S.H.; Gomaa, H.A.M.; Youssif, B.G.M.; Sayed, A.M.; Abdelhamid, D.; Aziz, A.M. Chalcone/1,3,4-oxadiazole/benzimidazole hybrids as novel anti-proliferative agents inducing apoptosis and inhibiting EGFR & BRAFV600E. BMC Chem., 2023, 17(1), 116.
[http://dx.doi.org/10.1186/s13065-023-01003-3] [PMID: 37716963]
[106]
Marinescu, M. Benzimidazole-triazole hybrids as antimicrobial and antiviral agents: A systematic review. Antibiotics, 2023, 12(7), 1220.
[http://dx.doi.org/10.3390/antibiotics12071220] [PMID: 37508316]
[107]
Arnold, M.; Abnet, C.C.; Neale, R.E.; Vignat, J.; Giovannucci, E.L.; McGlynn, K.A.; Bray, F. Global burden of 5 major types of gastrointestinal cancer. Gastroenterol., 2020, 159(1), 335-349.e15.
[http://dx.doi.org/10.1053/j.gastro.2020.02.068] [PMID: 32247694]
[108]
Manoharan, A.; Jayan, J.; Rangarajan, T.M.; Bose, K.; Benny, F.; Ipe, R.S.; Kumar, S.; Kukreti, N.; Abdelgawad, M.A.; Ghoneim, M.M.; Kim, H.; Mathew, B. “Click chemistry”: An emerging tool for developing a new class of structural motifs against various neurodegenerative disorders. ACS Omega, 2023, 8(47), 44437-44457.
[http://dx.doi.org/10.1021/acsomega.3c04960] [PMID: 38046293]
[109]
Wang, Y.F.; Wang, C.J.; Feng, Q.Z.; Zhai, J.J.; Qi, S.S.; Zhong, A.G.; Chu, M.M.; Xu, D.Q. Copper-catalyzed asymmetric 1,6-conjugate addition of in situ generated para-quinone methides with β-ketoesters. Chem. Commun., 2022, 58(46), 6653-6656.
[http://dx.doi.org/10.1039/D2CC00146B] [PMID: 35593224]
[110]
Hein, C.D.; Liu, X.M.; Wang, D. Click chemistry, a powerful tool for pharmaceutical sciences. Pharm. Res., 2008, 25(10), 2216-2230.
[http://dx.doi.org/10.1007/s11095-008-9616-1] [PMID: 18509602]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy