Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Review Article

Role of Artificial Intelligence in Diabetic Wound Screening and Early Detection

Author(s): Sanchit Dhankhar*, Nitika Garg, Samrat Chauhan* and Monika Saini

Volume 13, Issue 2, 2024

Published on: 15 April, 2024

Page: [93 - 106] Pages: 14

DOI: 10.2174/0122115501303253240408072559

Price: $65

Open Access Journals Promotions 2
Abstract

The morbidity and death rates linked to diabetes mellitus are substantially increased by foot ulcers, a prevalent consequence of the disease. Proper wound management is essential for controlling foot ulcers. This includes monitoring the ulcers' healing progress through clinical reviews, changing dressings as needed, treating infections with the right medications, and ensuring that the ulcer is offloaded correctly. Taking pictures of the ulcer was a dependable way to track how diabetic foot ulcers were healing in the past. Images of foot ulcers have recently experienced a tremendous change due to the emergence of digital cameras in cell phones. Artificial intelligence (AI) and other recent developments in digital health technology present a great chance to improve the efficiency of diabetes care, which might reduce the growth in healthcare costs associated with diabetes. Patients with diabetes can alleviate the burden on clinics and patients' transportation demands by electronically sharing photos of their ulcers, which diabetes care providers can remotely monitor. Improved remote monitoring of diabetic foot ulcers using smartphone apps is now possible with the help of a new generation of AI-powered solutions. This clinical update review aims to gather information on this trending topic so that medical professionals can be current on all the latest advancements in the field.

Keywords: Artificial intelligence, diabetic wound, diabetes, screening, early detection, ulcers.

Graphical Abstract
[1]
Wimalawansa S. Pathophysiology of obesity: Focused, cause-driven approach to control the epidemic. GARJPP 2013; 2(1): 1-13.
[2]
Kumar S, Behl T, Sachdeva M, et al. Implicating the effect of ketogenic diet as a preventive measure to obesity and diabetes mellitus. Life Sci 2021; 264: 118661.
[http://dx.doi.org/10.1016/j.lfs.2020.118661] [PMID: 33121986]
[3]
Corb Aron RA, Abid A, Vesa CM, et al. Recognizing the benefits of pre-/probiotics in metabolic syndrome and type 2 diabetes mellitus considering the influence of akkermansia muciniphila as a key gut bacterium. Microorganisms 2021; 9(3): 618.
[http://dx.doi.org/10.3390/microorganisms9030618] [PMID: 33802777]
[4]
Rehni AK, Singh TG, Singh N, Arora S. Tramadol-induced seizurogenic effect: A possible role of opioid-dependent histamine (H1) receptor activation-linked mechanism. Naunyn Schmiedebergs Arch Pharmacol 2010; 381(1): 11-9.
[http://dx.doi.org/10.1007/s00210-009-0476-y] [PMID: 20012267]
[5]
Rehni AK, Singh TG, Jaggi AS, Singh N. Pharmacological preconditioning of the brain: A possible interplay between opioid and calcitonin gene related peptide transduction systems. Pharmacol Rep 2008; 60(6): 904-13.
[PMID: 19211983]
[6]
Arora A, Behl T, Sehgal A, et al. Unravelling the involvement of gut microbiota in type 2 diabetes mellitus. Life Sci 2021; 273: 119311.
[http://dx.doi.org/10.1016/j.lfs.2021.119311] [PMID: 33662428]
[7]
Organization WH. Childhood malnutrition in Sri Lanka: A road map for the last mile-A review of literature, Analysis of correlates of undernutrition, A qualitative inquiry. 2020. Available from: https://www.who.int/publications/i/item/childhood-malnutrition-in-sri-lanka-a-road-map-for-the-last-mile
[8]
Lin J, Thompson TJ, Cheng YJ, et al. Projection of the future diabetes burden in the United States through 2060. Popul Health Metr 2018; 16(1): 9.
[http://dx.doi.org/10.1186/s12963-018-0166-4] [PMID: 29903012]
[9]
Standl E, Khunti K, Hansen TB, Schnell O. The global epidemics of diabetes in the 21st century: Current situation and perspectives. Eur J Prev Cardiol 2019; 26(2_suppl) (Suppl.): 7-14.
[http://dx.doi.org/10.1177/2047487319881021] [PMID: 31766915]
[10]
Papanicolas I, Woskie LR, Jha AK. Health care spending in the United States and other high-income countries. JAMA 2018; 319(10): 1024-39.
[http://dx.doi.org/10.1001/jama.2018.1150] [PMID: 29536101]
[11]
Venkat Narayan KM, Gregg EW, Fagot-Campagna A, Engelgau MM, Vinicor F. Diabetes — a common, growing, serious, costly, and potentially preventable public health problem. Diabetes Res Clin Pract 2000; 50 (Suppl. 2): S77-84.
[http://dx.doi.org/10.1016/S0168-8227(00)00183-2] [PMID: 11024588]
[12]
Ashrafzadeh S, Hamdy O. Patient-driven diabetes care of the future in the technology era. Cell Metab 2019; 29(3): 564-75.
[http://dx.doi.org/10.1016/j.cmet.2018.09.005] [PMID: 30269984]
[13]
Karter AJ, Ackerson LM, Darbinian JA, et al. Self-monitoring of blood glucose levels and glycemic control: the Northern California Kaiser Permanente Diabetes registry. Am J Med 2001; 111(1): 1-9.
[http://dx.doi.org/10.1016/S0002-9343(01)00742-2] [PMID: 11448654]
[14]
Frankum S, Ogden J. Estimation of blood glucose levels by people with diabetes: A cross-sectional study. Br J Gen Pract 2005; 55(521): 944-8.
[PMID: 16378564]
[15]
Association AD. Standards of medical care in diabetes—2019 abridged for primary care providers. Clin Diabetes 2019; 37(1): 11.
[16]
Gallichan M. Self monitoring of glucose by people with diabetes: Evidence based practice. BMJ 1997; 314(7085): 964-7.
[http://dx.doi.org/10.1136/bmj.314.7085.964] [PMID: 9099125]
[17]
Ong WM, Chua SS, Ng CJ. Barriers and facilitators to self-monitoring of blood glucose in people with type 2 diabetes using insulin: A qualitative study. Patient Prefer Adherence 2014; 8: 237-46.
[PMID: 24627628]
[18]
Song M, Lipman TH. Concept analysis: Self-monitoring in type 2 diabetes mellitus. Int J Nurs Stud 2008; 45(11): 1700-10.
[http://dx.doi.org/10.1016/j.ijnurstu.2008.04.005] [PMID: 18571173]
[19]
Coster S, Gulliford MC, Seed PT, Powrie JK, Swaminathan R. Self-monitoring in type 2 diabetes mellitus: A meta-analysis. Diabet Med 2000; 17(11): 755-61.
[http://dx.doi.org/10.1046/j.1464-5491.2000.00390.x] [PMID: 11131099]
[20]
Solomon DH, Rudin RS. Digital health technologies: Opportunities and challenges in rheumatology. Nat Rev Rheumatol 2020; 16(9): 525-35.
[http://dx.doi.org/10.1038/s41584-020-0461-x] [PMID: 32709998]
[21]
Vervoort D, Tam DY, Wijeysundera HC. Health technology assessment for cardiovascular digital health technologies and artificial intelligence: Why is it different? Can J Cardiol 2022; 38(2): 259-66.
[http://dx.doi.org/10.1016/j.cjca.2021.08.015] [PMID: 34461229]
[22]
Unsworth H, Wolfram V, Dillon B, et al. Building an evidence standards framework for artificial intelligence-enabled digital health technologies. Lancet Digit Health 2022; 4(4): e216-7.
[http://dx.doi.org/10.1016/S2589-7500(22)00030-9] [PMID: 35337640]
[23]
Aizaz M, Khan F, Ali B, et al. Significance of digital health technologies (DHTs) to manage communicable and non-communicable diseases in Low and Middle-Income Countries (LMICs). Health Technol (Berl) 2023; 13(6): 883-92.
[http://dx.doi.org/10.1007/s12553-023-00792-w]
[24]
Petersen A. Digital health and technological promise: A sociological inquiry 2018.
[http://dx.doi.org/10.4324/9781315200880]
[25]
Pyper E, McKeown S, Hartmann-Boyce J, Powell J. Digital health technology for real-world clinical outcome measurement using patient-generated data: Systematic scoping review. J Med Internet Res 2023; 25: e46992.
[http://dx.doi.org/10.2196/46992] [PMID: 37819698]
[26]
Manyazewal T, Woldeamanuel Y, Blumberg HM, Fekadu A, Marconi VC. The potential use of digital health technologies in the African context: A systematic review of evidence from Ethiopia. NPJ Digit Med 2021; 4(1): 125.
[http://dx.doi.org/10.1038/s41746-021-00487-4] [PMID: 34404895]
[27]
Kasoju N. Digital health: Trends, opportunities and challenges in medical devices, pharma and bio-technology. CSI Transactions on ICT 2023; pp. 1-20.
[28]
Verma M. Artificial intelligence and its scope in different areas with special reference to the field of education. Online Submission 2018; 3(1): 5-10.
[29]
Kotsiopoulos T, Sarigiannidis P, Ioannidis D, Tzovaras D. Machine learning and deep learning in smart manufacturing: The smart grid paradigm. Comput Sci Rev 2021; 40: 100341.
[http://dx.doi.org/10.1016/j.cosrev.2020.100341]
[30]
Casal-Guisande M, Comesaña-Campos A, Dutra I, Cerqueiro-Pequeño J, Bouza-Rodríguez JB. Design and development of an intelligent clinical decision support system applied to the evaluation of breast cancer risk. J Pers Med 2022; 12(2): 169.
[http://dx.doi.org/10.3390/jpm12020169] [PMID: 35207657]
[31]
Wagholikar KB, Sundararajan V, Deshpande AW. Modeling paradigms for medical diagnostic decision support: A survey and future directions. J Med Syst 2012; 36(5): 3029-49.
[http://dx.doi.org/10.1007/s10916-011-9780-4] [PMID: 21964969]
[32]
Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I, Chouvarda I. Machine learning and data mining methods in diabetes research. Comput Struct Biotechnol J 2017; 15: 104-16.
[http://dx.doi.org/10.1016/j.csbj.2016.12.005] [PMID: 28138367]
[33]
Tsiknakis N, Theodoropoulos D, Manikis G, et al. Deep learning for diabetic retinopathy detection and classification based on fundus images: A review. Comput Biol Med 2021; 135: 104599.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104599] [PMID: 34247130]
[34]
van Engelen JE, Hoos HH. A survey on semi-supervised learning. Mach Learn 2020; 109(2): 373-440.
[http://dx.doi.org/10.1007/s10994-019-05855-6]
[35]
Mahadevan S. Average reward reinforcement learning: Foundations, algorithms, and empirical results. Mach Learn 1996; 22(1-3): 159-95.
[http://dx.doi.org/10.1007/BF00114727]
[36]
Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov 2019; 18(6): 463-77.
[http://dx.doi.org/10.1038/s41573-019-0024-5] [PMID: 30976107]
[37]
Beyala L. Digital Therapy: The New Age of Healthcare. John Wiley & Sons 2022.
[38]
Lawry T. Hacking Healthcare: How AI and the Intelligence Revolution Will Reboot an Ailing System. CRC Press 2022.
[http://dx.doi.org/10.4324/9781003286103]
[39]
Ogbera OA, Osa E, Edo A, Chukwum E. Common clinical features of diabetic foot ulcers: Perspectives from a developing nation. Int J Low Extrem Wounds 2008; 7(2): 93-8.
[http://dx.doi.org/10.1177/1534734608318236] [PMID: 18492676]
[40]
Tiwari S, Pratyush DD, Dwivedi A, Gupta SK, Rai M, Singh SK. Microbiological and clinical characteristics of diabetic foot infections in northern India. J Infect Dev Ctries 2012; 6(4): 329-32.
[http://dx.doi.org/10.3855/jidc.1827] [PMID: 22505442]
[41]
Contreras I, Vehi J. Artificial intelligence for diabetes management and decision support: Literature review. J Med Internet Res 2018; 20(5): e10775.
[http://dx.doi.org/10.2196/10775] [PMID: 29848472]
[42]
Dankwa-Mullan I, Rivo M, Sepulveda M, Park Y, Snowdon J, Rhee K. Transforming diabetes care through artificial intelligence: the future is here. Popul Health Manag 2019; 22(3): 229-42.
[http://dx.doi.org/10.1089/pop.2018.0129] [PMID: 30256722]
[43]
Abbas HT, Alic L, Erraguntla M, et al. Predicting long-term type 2 diabetes with support vector machine using oral glucose tolerance test. PLoS One 2019; 14(12): e0219636.
[http://dx.doi.org/10.1371/journal.pone.0219636] [PMID: 31826018]
[44]
Choi BG, Rha SW, Kim SW, Kang JH, Park JY, Noh YK. Machine learning for the prediction of new-onset diabetes mellitus during 5-year follow-up in non-diabetic patients with cardiovascular risks. Yonsei Med J 2019; 60(2): 191-9.
[http://dx.doi.org/10.3349/ymj.2019.60.2.191] [PMID: 30666841]
[45]
Nicolucci A, Romeo L, Bernardini M, et al. Prediction of complications of type 2 Diabetes: A Machine learning approach. Diabetes Res Clin Pract 2022; 190: 110013.
[http://dx.doi.org/10.1016/j.diabres.2022.110013] [PMID: 35870573]
[46]
Zhang L, Wang Y, Niu M, Wang C, Wang Z. Machine learning for characterizing risk of type 2 diabetes mellitus in a rural Chinese population: The Henan Rural Cohort Study. Sci Rep 2020; 10(1): 4406.
[http://dx.doi.org/10.1038/s41598-020-61123-x] [PMID: 32157171]
[47]
Chan JCN, Malik V, Jia W, et al. Diabetes in Asia. JAMA 2009; 301(20): 2129-40.
[http://dx.doi.org/10.1001/jama.2009.726] [PMID: 19470990]
[48]
Sarwar A, Sharma V. Comparative analysis of machine learning techniques in prognosis of type II diabetes. AI Soc 2014; 29(1): 123-9.
[http://dx.doi.org/10.1007/s00146-013-0456-0]
[49]
Rigla M, García-Sáez G, Pons B, Hernando ME. Artificial intelligence methodologies and their application to diabetes. J Diabetes Sci Technol 2018; 12(2): 303-10.
[http://dx.doi.org/10.1177/1932296817710475] [PMID: 28539087]
[50]
Gautier T, Ziegler LB, Gerber MS, Campos-Náñez E, Patek SD. Artificial intelligence and diabetes technology: A review. Metabolism 2021; 124: 154872.
[http://dx.doi.org/10.1016/j.metabol.2021.154872] [PMID: 34480920]
[51]
Maniruzzaman M, Kumar N, Menhazul Abedin M, et al. Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm. Comput Methods Programs Biomed 2017; 152: 23-34.
[http://dx.doi.org/10.1016/j.cmpb.2017.09.004] [PMID: 29054258]
[52]
Kumar A, Behl T, Chadha S. Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects. Int J Biol Macromol 2020; 149: 1262-74.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.048] [PMID: 32044364]
[53]
He B, Shu K-i, Zhang H. Machine learning and data mining in diabetes diagnosis and treatment.IOP conference series: Materials science and engineering. IOP Publishing 2019.
[http://dx.doi.org/10.1088/1757-899X/490/4/042049]
[54]
Li J, Chen Q, Hu X, et al. Establishment of noninvasive diabetes risk prediction model based on tongue features and machine learning techniques. Int J Med Inform 2021; 149: 104429.
[http://dx.doi.org/10.1016/j.ijmedinf.2021.104429] [PMID: 33647600]
[55]
Zheng T, Xie W, Xu L, et al. A machine learning-based framework to identify type 2 diabetes through electronic health records. Int J Med Inform 2017; 97: 120-7.
[http://dx.doi.org/10.1016/j.ijmedinf.2016.09.014] [PMID: 27919371]
[56]
Ahlqvist E, Prasad RB, Groop L. 100 years of insulin: Towards improved precision and a new classification of diabetes mellitus. J Endocrinol 2022; 252(3): R59-70.
[http://dx.doi.org/10.1530/JOE-20-0596] [PMID: 34783681]
[57]
Baskozos G, Themistocleous AC, Hebert HL, et al. Classification of painful or painless diabetic peripheral neuropathy and identification of the most powerful predictors using machine learning models in large cross-sectional cohorts. BMC Med Inform Decis Mak 2022; 22(1): 144.
[http://dx.doi.org/10.1186/s12911-022-01890-x] [PMID: 35644620]
[58]
Ahlqvist E, Prasad RB, Groop L. Subtypes of type 2 diabetes determined from clinical parameters. Diabetes 2020; 69(10): 2086-93.
[http://dx.doi.org/10.2337/dbi20-0001] [PMID: 32843567]
[59]
Alotaibi MM. An intelligent mobile diabetes management and educational system for Saudi Arabia: System architecture. IEEE EMBS International Conference on Biomedical and Health Informatics (BHI). , Valencia, Spain, 01-04 June 2014, pp. 29-32.
[http://dx.doi.org/10.1109/BHI.2014.6864296]
[60]
Ghosh S, Haldar S, Gupta S, et al. Single unit functionally graded bioresorbable electrospun scaffold for scar-free full-thickness skin wound healing. Biomater Adv 2022; 139: 212980.
[http://dx.doi.org/10.1016/j.bioadv.2022.212980] [PMID: 35882136]
[61]
Mittal P, Dhankhar S, Chauhan S, et al. A review on natural antioxidants for their role in the treatment of parkinson’s disease. Pharmaceuticals 2023; 16(7): 908.
[http://dx.doi.org/10.3390/ph16070908] [PMID: 37513820]
[62]
Narwal S, Dhanda T, Sharma P, et al. Current therapeutic strategies for chagas disease. Antiinfect Agents 2023; 21: 1-11.
[http://dx.doi.org/10.2174/2211352521666230823122601]
[63]
Panchal M, Rana P, Garg N, Dhankhar S, Sharma H, Chauhan S. A comprehensive review of alternative therapeutic approaches for nausea and vomiting relief in pregnancy. Emir Med J 2024; 5: e02506882282929.
[http://dx.doi.org/10.2174/0102506882282929231212074538]
[64]
Rohilla M, Rishabh , Bansal S, et al. Discussing pathologic mechanisms of Diabetic retinopathy & therapeutic potentials of curcumin and β-glucogallin in the management of Diabetic retinopathy. Biomed Pharmacother 2023; 169: 115881.
[http://dx.doi.org/10.1016/j.biopha.2023.115881] [PMID: 37989030]
[65]
Saharan R, Kaur J, Dhankhar S, et al. Hydrogel-based drug delivery system in diabetes management. Pharm Nanotechnol 2023; 12: 1-11.
[http://dx.doi.org/10.2174/0122117385266276230928064235] [PMID: 37818559]
[66]
Petrovski G, Gjergji D, Grbic A, Vukovic B, Krajnc M, Grulovic N. Switching from pre-mixed insulin to regimens with insulin glargine in type 2 diabetes: A prospective, observational study of data from Adriatic countries. Diabetes Ther 2018; 9(4): 1657-68.
[http://dx.doi.org/10.1007/s13300-018-0467-4] [PMID: 29971748]
[67]
Kempf K, Kruse J, Martin S. ROSSO-in-praxi: A self-monitoring of blood glucose-structured 12-week lifestyle intervention significantly improves glucometabolic control of patients with type 2 diabetes mellitus. Diabetes Technol Ther 2010; 12(7): 547-53.
[http://dx.doi.org/10.1089/dia.2010.0008] [PMID: 20597830]
[68]
Konstantakopoulos FS, Georga EI, Fotiadis DI. A review of image-based food recognition and volume estimation artificial intelligence systems. IEEE Rev Biomed Eng 2023; 17: 136-52.
[PMID: 37276096]
[69]
Vasiloglou MF, Marcano I, Lizama S, Papathanail I, Spanakis EK, Mougiakakou S. Multimedia data-based mobile applications for dietary assessment. J Diabetes Sci Technol 2023; 17(4): 1056-65.
[http://dx.doi.org/10.1177/19322968221085026] [PMID: 35348398]
[70]
Aghili NS, Rasekh M, Karami H, Edriss O, Wilson AD, Ramos J. Aromatic fingerprints: VOC analysis with E-nose and GC-MS for rapid detection of adulteration in sesame oil. Sensors 2023; 23(14): 6294.
[http://dx.doi.org/10.3390/s23146294] [PMID: 37514589]
[71]
Li F, Zheng H, Li X. A novel hybrid model for multi-step ahead photovoltaic power prediction based on conditional time series generative adversarial networks. Renew Energy 2022; 199: 560-86.
[http://dx.doi.org/10.1016/j.renene.2022.08.134]
[72]
Joachim S, Forkan ARM, Jayaraman PP, Morshed A, Wickramasinghe N. A nudge-inspired AI-driven health platform for self-management of diabetes. Sensors 2022; 22(12): 4620.
[http://dx.doi.org/10.3390/s22124620] [PMID: 35746402]
[73]
Bul K, Holliday N, Bhuiyan MRA, Clark CCT, Allen J, Wark PA. Usability and preliminary efficacy of an artificial intelligence–driven platform supporting dietary management in diabetes: Mixed methods study. JMIR Human Factors 2023; 10: e43959.
[http://dx.doi.org/10.2196/43959] [PMID: 37556198]
[74]
Chen RC, Huang CY, Ting YH. A chronic disease diet recommendation system based on domain ontology and decision tree. Journal of Advanced Computational Intelligence and Intelligent Informatics 2017; 21(3): 474-82.
[http://dx.doi.org/10.20965/jaciii.2017.p0474]
[75]
Zeevi D, Korem T, Zmora N, et al. Personalized nutrition by prediction of glycemic responses. Cell 2015; 163(5): 1079-94.
[http://dx.doi.org/10.1016/j.cell.2015.11.001] [PMID: 26590418]
[76]
Sood R. Enhanced solubility and increased bioavailability with engineered nanocrystals. Curr Drug Ther 2024; 19: 1-10.
[77]
Paulweber B. A European evidence-based guideline for the prevention of type 2 diabetes. Horm Metab Res 2010; 44(S 01): S3-S36.
[http://dx.doi.org/10.1055/s-0029-1240928]
[78]
Gao C, Sun X, Lu L, Liu F, Yuan J. Prevalence of gestational diabetes mellitus in mainland China: A systematic review and meta-analysis. J Diabetes Investig 2019; 10(1): 154-62.
[http://dx.doi.org/10.1111/jdi.12854] [PMID: 29683557]
[79]
Lin A, Zhang G, Liu Z, Gu J, Chen W, Luo F. Community-based lifestyle intervention for reducing blood pressure and glucose among middle-aged and older adults in China: A pilot study. Int J Environ Res Public Health 2014; 11(11): 11645-63.
[http://dx.doi.org/10.3390/ijerph111111645] [PMID: 25402562]
[80]
Islam M, Ali MS, Shoumy NJ, Khatun S, Karim MSA, Bari BS. Non-invasive blood glucose concentration level estimation accuracy using ultra-wide band and artificial intelligence. SN Appl Sci 2020; 2(2): 278.
[http://dx.doi.org/10.1007/s42452-019-1884-3]
[81]
Ahmed MS, Khan IJ, Aman S, et al. Phytochemical investigations, in-vitro antioxidant, antimicrobial potential, and in-silico computational docking analysis of Euphorbia milii Des Moul. J Exp Biol Agric Sci 2023; 11(2): 380-93.
[http://dx.doi.org/10.18006/2023.11(2).380.393]
[82]
Chauhan S. Current Approaches in Healing of Wounds in Diabetes and Diabetic Foot Ulcers. Curr Bioact Compd 2023; 19(3): 104-21.
[83]
Chauhan S. Antihyperglycemic and antioxidant potential of plant extract of litchi chinensis and glycine max. Int J Nutr Pharmacol Neurol Dis 2021; 11(3): 225-33.
[84]
Dhankar S, Mujwar S, Garg N, et al. Artificial intelligence in the management of neurodegenerative disorders. CNS Neurol Disord Drug Targets 2023; 23: 1-10.
[PMID: 37861051]
[85]
Dhankhar S, Chauhan S, Mehta DK, et al. Novel targets for potential therapeutic use in Diabetes mellitus. Diabetol Metab Syndr 2023; 15(1): 17.
[http://dx.doi.org/10.1186/s13098-023-00983-5] [PMID: 36782201]
[86]
Ben Ali J, Hamdi T, Fnaiech N, Di Costanzo V, Fnaiech F, Ginoux J-M. Continuous blood glucose level prediction of type 1 diabetes based on artificial neural network. Biocybern Biomed Eng 2018; 38(4): 828-40.
[http://dx.doi.org/10.1016/j.bbe.2018.06.005]
[87]
Ahmed R, Sreeram V, Mishra Y, Arif MD. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renew Sustain Energy Rev 2020; 124: 109792.
[http://dx.doi.org/10.1016/j.rser.2020.109792]
[88]
Kodama S, Fujihara K, Shiozaki H, et al. Ability of current machine learning algorithms to predict and detect hypoglycemia in patients with diabetes mellitus: meta-analysis. JMIR Diabetes 2021; 6(1): e22458.
[http://dx.doi.org/10.2196/22458] [PMID: 33512324]
[89]
Elhadd T, Mall R, Bashir M, et al. Artificial intelligence (AI) based machine learning models predict glucose variability and hypoglycaemia risk in patients with type 2 diabetes on a multiple drug regimen who fast during ramadan (The PROFAST – IT Ramadan study). Diabetes Res Clin Pract 2020; 169: 108388.
[http://dx.doi.org/10.1016/j.diabres.2020.108388] [PMID: 32858096]
[90]
Tyler NS, Jacobs PG. Artificial intelligence in decision support systems for type 1 diabetes. Sensors 2020; 20(11): 3214.
[http://dx.doi.org/10.3390/s20113214] [PMID: 32517068]
[91]
Reddy M, Pesl P, Xenou M, et al. Clinical safety and feasibility of the advanced bolus calculator for type 1 diabetes based on case based reasoning: A 6-week nonrandomized single-arm pilot study. Diabetes Technol Ther 2016; 18(8): 487-93.
[http://dx.doi.org/10.1089/dia.2015.0413] [PMID: 27196358]
[92]
Reddy M. Clinical safety and feasibility of the advanced bolus calculator for type 1 diabetes (ABC4D) based on case-based reasoning: A 6-week non-randomised single-arm pilot study. Diabetes Technol Ther 2016; 18(8): 487-93.
[93]
Herrero P, Bondia J, Adewuyi O, et al. Enhancing automatic closed-loop glucose control in type 1 diabetes with an adaptive meal bolus calculator – in silico evaluation under intra-day variability. Comput Methods Programs Biomed 2017; 146: 125-31.
[http://dx.doi.org/10.1016/j.cmpb.2017.05.010] [PMID: 28688482]
[94]
Bergenstal RM, Johnson M, Passi R, et al. Automated insulin dosing guidance to optimise insulin management in patients with type 2 diabetes: A multicentre, randomised controlled trial. Lancet 2019; 393(10176): 1138-48.
[http://dx.doi.org/10.1016/S0140-6736(19)30368-X] [PMID: 30808512]
[95]
Guan Z, Li H, Liu R, et al. Artificial intelligence in diabetes management: Advancements, opportunities, and challenges. Cell Rep Med 2023; 4(10): 101213.
[http://dx.doi.org/10.1016/j.xcrm.2023.101213] [PMID: 37788667]
[96]
Owens DR. Clinical evidence for the earlier initiation of insulin therapy in type 2 diabetes. Diabetes Technol Ther 2013; 15(9): 776-85.
[http://dx.doi.org/10.1089/dia.2013.0081] [PMID: 23786228]
[97]
Park PS. AI deception: A survey of examples, risks, and potential solutions. arXiv preprint :230814752 2023.
[98]
Battelino T, Omladič JŠ, Phillip M. Closed loop insulin delivery in diabetes. Best Pract Res Clin Endocrinol Metab 2015; 29(3): 315-25.
[http://dx.doi.org/10.1016/j.beem.2015.03.001] [PMID: 26051293]
[99]
Atlas E, Nimri R, Miller S, Grunberg EA, Phillip M. MD-logic artificial pancreas system: A pilot study in adults with type 1 diabetes. Diabetes Care 2010; 33(5): 1072-6.
[http://dx.doi.org/10.2337/dc09-1830] [PMID: 20150292]
[100]
Nimri R, Bratina N, Kordonouri O, et al. MD-Logic overnight type 1 diabetes control in home settings: A multicentre, multinational, single blind randomized trial. Diabetes Obes Metab 2017; 19(4): 553-61.
[http://dx.doi.org/10.1111/dom.12852] [PMID: 27981804]
[101]
Toussi M, Lamy JB, Le Toumelin P, Venot A. Using data mining techniques to explore physicians’ therapeutic decisions when clinical guidelines do not provide recommendations: methods and example for type 2 diabetes. BMC Med Inform Decis Mak 2009; 9(1): 28.
[http://dx.doi.org/10.1186/1472-6947-9-28] [PMID: 19515252]
[102]
Tarumi S, Takeuchi W, Chalkidis G, et al. Leveraging artificial intelligence to improve chronic disease care: methods and application to pharmacotherapy decision support for type-2 diabetes mellitus. Methods Inf Med 2021; 60(S 01): e32-43.
[http://dx.doi.org/10.1055/s-0041-1728757] [PMID: 33975376]
[103]
Kumar A, Padhy SK, Takkar B, Chawla R. Artificial intelligence in diabetic retinopathy: A natural step to the future. Indian J Ophthalmol 2019; 67(7): 1004-9.
[http://dx.doi.org/10.4103/ijo.IJO_1989_18] [PMID: 31238395]
[104]
Oikonomou EK, Khera R. Machine learning in precision diabetes care and cardiovascular risk prediction. Cardiovasc Diabetol 2023; 22(1): 259.
[http://dx.doi.org/10.1186/s12933-023-01985-3] [PMID: 37749579]
[105]
Khandakar A, Chowdhury MEH, Reaz MBI, et al. A novel machine learning approach for severity classification of diabetic foot complications using thermogram images. Sensors 2022; 22(11): 4249.
[http://dx.doi.org/10.3390/s22114249] [PMID: 35684870]
[106]
Ferreira ACBH, Ferreira DD, Oliveira HC, Resende IC, Anjos A, Lopes MHBM. Competitive neural layer-based method to identify people with high risk for diabetic foot. Comput Biol Med 2020; 120: 103744.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103744] [PMID: 32421649]
[107]
Nanda R, Nath A, Patel S, Mohapatra E. Machine learning algorithm to evaluate risk factors of diabetic foot ulcers and its severity. Med Biol Eng Comput 2022; 60(8): 2349-57.
[http://dx.doi.org/10.1007/s11517-022-02617-w] [PMID: 35751828]
[108]
Ohura N. Convolutional neural networks for wound detection: The role of artificial intelligence in wound care. J Wound Care 2019; 28(Sup10): S13-24.
[http://dx.doi.org/10.12968/jowc.2019.28.Sup10.S13]
[109]
Reddy SS, Mahesh G, Preethi NM. Exploiting machine learning algorithms to diagnose foot ulcers in diabetic patients. EAI Endorsed Trans Pervasive Health Technol 2021; 7(29): e2-2.
[110]
Schäfer Z, Mathisen A, Svendsen K, Engberg S, Rolighed Thomsen T, Kirketerp-Møller K. Toward machine-learning-based decision support in diabetes care: A risk stratification study on diabetic foot ulcer and amputation. Front Med 2021; 7: 601602.
[http://dx.doi.org/10.3389/fmed.2020.601602] [PMID: 33681236]
[111]
Kairys A, Pauliukiene R, Raudonis V, Ceponis J. Towards home-based diabetic foot ulcer monitoring: A systematic review. Sensors 2023; 23(7): 3618.
[http://dx.doi.org/10.3390/s23073618] [PMID: 37050678]
[112]
Zhang D, Dong W, Guan H, et al. CT-Angiography-based outcome prediction on diabetic foot ulcer patients: A statistical learning approach. Diagnostics 2022; 12(5): 1076.
[http://dx.doi.org/10.3390/diagnostics12051076] [PMID: 35626234]
[113]
Cassidy B, Hoon Yap M, Pappachan JM, et al. Artificial intelligence for automated detection of diabetic foot ulcers: A real-world proof-of-concept clinical evaluation. Diabetes Res Clin Pract 2023; 205: 110951.
[http://dx.doi.org/10.1016/j.diabres.2023.110951] [PMID: 37848163]
[114]
Ploderer B, Brown R, Seng LSD, Lazzarini PA, van Netten JJ. Promoting self-care of diabetic foot ulcers through a mobile phone app: User-centered design and evaluation. JMIR Diabetes 2018; 3(4): e10105.
[http://dx.doi.org/10.2196/10105] [PMID: 30305266]
[115]
Brown R. MyFootCare: A mobile self-tracking tool to promote self-care amongst people with diabetic foot ulcers. Proceedings of the 29th Australian Conference on Computer-Human Interaction, . New York, NY, USA, November 2017, pp. 462–466.
[http://dx.doi.org/10.1145/3152771.3156158]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy