Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Mini-Review Article

Ramifications of m6A Modification on ncRNAs in Cancer

Author(s): Rashid Mehmood*

Volume 25, Issue 3, 2024

Published on: 09 April, 2024

Page: [158 - 170] Pages: 13

DOI: 10.2174/0113892029296712240405053201

open access plus

conference banner
Abstract

N6-methyladenosine (m6A) is an RNA modification wherein the N6-position of adenosine is methylated. It is one of the most prevalent internal modifications of RNA and regulates various aspects of RNA metabolism. M6A is deposited by m6A methyltransferases, removed by m6A demethylases, and recognized by reader proteins, which modulate splicing, export, translation, and stability of the modified mRNA. Recent evidence suggests that various classes of noncoding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long con-coding RNAs (lncRNAs), are also targeted by this modification. Depending on the ncRNA species, m6A may affect the processing, stability, or localization of these molecules. The m6Amodified ncRNAs are implicated in a number of diseases, including cancer. In this review, the author summarizes the role of m6A modification in the regulation and functions of ncRNAs in tumor development. Moreover, the potential applications in cancer prognosis and therapeutics are discussed.

Keywords: ncRNAs, m6A modification, cancer, RNA metabolism, long con-coding RNAs, microRNAs.

Graphical Abstract
[1]
Desrosiers, R.; Friderici, K.; Rottman, F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl. Acad. Sci., 1974, 71(10), 3971-3975.
[http://dx.doi.org/10.1073/pnas.71.10.3971] [PMID: 4372599]
[2]
Fu, Y.; Jia, G.; Pang, X.; Wang, R.N.; Wang, X.; Li, C.J.; Smemo, S.; Dai, Q.; Bailey, K.A.; Nobrega, M.A.; Han, K.L.; Cui, Q.; He, C. FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat. Commun., 2013, 4(1), 1798.
[http://dx.doi.org/10.1038/ncomms2822] [PMID: 23653210]
[3]
Liu, N.; Dai, Q.; Zheng, G.; He, C.; Parisien, M.; Pan, T. N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. Nature, 2015, 518(7540), 560-564.
[http://dx.doi.org/10.1038/nature14234] [PMID: 25719671]
[4]
Zhou, K.I.; Parisien, M.; Dai, Q.; Liu, N.; Diatchenko, L.; Sachleben, J.R.; Pan, T. N6-methyladenosine modification in a long noncoding rna hairpin predisposes its conformation to protein binding. J. Mol. Biol., 2016, 428(5)(5 Pt A), 822-833.
[http://dx.doi.org/10.1016/j.jmb.2015.08.021] [PMID: 26343757]
[5]
Alarcón, C.R.; Lee, H.; Goodarzi, H.; Halberg, N.; Tavazoie, S.F. N6-methyladenosine marks primary microRNAs for processing. Nature, 2015, 519(7544), 482-485.
[http://dx.doi.org/10.1038/nature14281] [PMID: 25799998]
[6]
Wang, X.; Lu, Z.; Gomez, A.; Hon, G.C.; Yue, Y.; Han, D.; Fu, Y.; Parisien, M.; Dai, Q.; Jia, G.; Ren, B.; Pan, T.; He, C. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature, 2014, 505(7481), 117-120.
[http://dx.doi.org/10.1038/nature12730] [PMID: 24284625]
[7]
Wang, X.; Zhao, B.S.; Roundtree, I.A.; Lu, Z.; Han, D.; Ma, H.; Weng, X.; Chen, K.; Shi, H.; He, C. N6-methyladenosine modulates messenger RNA translation efficiency. Cell, 2015, 161(6), 1388-1399.
[http://dx.doi.org/10.1016/j.cell.2015.05.014] [PMID: 26046440]
[8]
Leismann, J.; Spagnuolo, M.; Pradhan, M.; Wacheul, L.; Vu, M.A.; Musheev, M.; Mier, P.; Andrade-Navarro, M.A.; Graille, M.; Niehrs, C.; Lafontaine, D.L.J.; Roignant, J.Y. The 18S ribosomal RNA m 6 A methyltransferase Mettl5 is required for normal walking behavior in Drosophila. EMBO Rep., 2020, 21(7), e49443.
[http://dx.doi.org/10.15252/embr.201949443] [PMID: 32350990]
[9]
Tang, J.; Chen, S.; Jia, G. Detection, regulation, and functions of RNA N6-methyladenosine modification in plants. Plant Commun., 2023, 4(3), 100546.
[http://dx.doi.org/10.1016/j.xplc.2023.100546] [PMID: 36627844]
[10]
Sendinc, E.; Valle-Garcia, D.; Jiao, A.; Shi, Y. Analysis of m6A RNA methylation in Caenorhabditis elegans. Cell Discov., 2020, 6(1), 47.
[http://dx.doi.org/10.1038/s41421-020-00186-6] [PMID: 32695436]
[11]
Baquero-Perez, B.; Geers, D.; Díez, J. From A to m6A: The Emerging Viral Epitranscriptome. Viruses, 2021, 13(6), 1049.
[http://dx.doi.org/10.3390/v13061049] [PMID: 34205979]
[12]
Xiao, S.; Cao, S.; Huang, Q.; Xia, L.; Deng, M.; Yang, M.; Jia, G.; Liu, X.; Shi, J.; Wang, W.; Li, Y.; Liu, S.; Zhu, H.; Tan, K.; Luo, Q.; Zhong, M.; He, C.; Xia, L. The RNA N6-methyladenosine modification landscape of human fetal tissues. Nat. Cell Biol., 2019, 21(5), 651-661.
[http://dx.doi.org/10.1038/s41556-019-0315-4] [PMID: 31036937]
[13]
Liu, J.; Li, K.; Cai, J.; Zhang, M.; Zhang, X.; Xiong, X.; Meng, H.; Xu, X.; Huang, Z.; Peng, J.; Fan, J.; Yi, C. Landscape and Regulation of m6A and m6Am Methylome across Human and Mouse Tissues. Mol. Cell, 2020, 77(2), 426-440.e6.
[http://dx.doi.org/10.1016/j.molcel.2019.09.032] [PMID: 31676230]
[14]
Qureshi, S.A.; Mumtaz, A.; Shahid, S.U.; Shabana, N.A. rs3751812, a common variant in fat mass and obesity-associated ( FTO ) gene, is associated with serum high and low-density lipoprotein cholesterol in Pakistani individuals. Nutrition, 2017, 39-40, 92-95.
[http://dx.doi.org/10.1016/j.nut.2016.04.008] [PMID: 27324062]
[15]
Ben-Haim, M.S.; Moshitch-Moshkovitz, S.; Rechavi, G. FTO: linking m6A demethylation to adipogenesis. Cell Res., 2015, 25(1), 3-4.
[http://dx.doi.org/10.1038/cr.2014.162] [PMID: 25475057]
[16]
Lin, Z.; Hsu, P.J.; Xing, X.; Fang, J.; Lu, Z.; Zou, Q.; Zhang, K.J.; Zhang, X.; Zhou, Y.; Zhang, T.; Zhang, Y.; Song, W.; Jia, G.; Yang, X.; He, C.; Tong, M.H. Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis. Cell Res., 2017, 27(10), 1216-1230.
[http://dx.doi.org/10.1038/cr.2017.117] [PMID: 28914256]
[17]
Richard, E.M.; Polla, D.L.; Assir, M.Z.; Contreras, M.; Shahzad, M.; Khan, A.A.; Razzaq, A.; Akram, J.; Tarar, M.N.; Blanpied, T.A.; Ahmed, Z.M.; Abou Jamra, R.; Wieczorek, D.; van Bokhoven, H.; Riazuddin, S.; Riazuddin, S. Bi-allelic Variants in METTL5 Cause Autosomal-Recessive Intellectual Disability and Microcephaly. Am. J. Hum. Genet., 2019, 105(4), 869-878.
[http://dx.doi.org/10.1016/j.ajhg.2019.09.007] [PMID: 31564433]
[18]
Yang, Y.; Han, W.; Zhang, A.; Zhao, M.; Cong, W.; Jia, Y.; Wang, D.; Zhao, R. Chronic corticosterone disrupts the circadian rhythm of CRH expression and m6A RNA methylation in the chicken hypothalamus. J. Anim. Sci. Biotechnol., 2022, 13(1), 29.
[http://dx.doi.org/10.1186/s40104-022-00677-4] [PMID: 35255992]
[19]
Cai, X.; Wang, X.; Cao, C.; Gao, Y.; Zhang, S.; Yang, Z.; Liu, Y.; Zhang, X.; Zhang, W.; Ye, L. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett., 2018, 415, 11-19.
[http://dx.doi.org/10.1016/j.canlet.2017.11.018] [PMID: 29174803]
[20]
Liu, J.; Eckert, M.A.; Harada, B.T.; Liu, S.M.; Lu, Z.; Yu, K.; Tienda, S.M.; Chryplewicz, A.; Zhu, A.C.; Yang, Y.; Huang, J.T.; Chen, S.M.; Xu, Z.G.; Leng, X.H.; Yu, X.C.; Cao, J.; Zhang, Z.; Liu, J.; Lengyel, E.; He, C. m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat. Cell Biol., 2018, 20(9), 1074-1083.
[http://dx.doi.org/10.1038/s41556-018-0174-4] [PMID: 30154548]
[21]
Meyer, K.D.; Saletore, Y.; Zumbo, P.; Elemento, O.; Mason, C.E.; Jaffrey, S.R. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell, 2012, 149(7), 1635-1646.
[http://dx.doi.org/10.1016/j.cell.2012.05.003] [PMID: 22608085]
[22]
Dominissini, D.; Moshitch-Moshkovitz, S.; Schwartz, S.; Salmon-Divon, M.; Ungar, L.; Osenberg, S.; Cesarkas, K.; Jacob-Hirsch, J.; Amariglio, N.; Kupiec, M.; Sorek, R.; Rechavi, G. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 2012, 485(7397), 201-206.
[http://dx.doi.org/10.1038/nature11112] [PMID: 22575960]
[23]
Ke, S.; Alemu, E.A.; Mertens, C.; Gantman, E.C.; Fak, J.J.; Mele, A.; Haripal, B.; Zucker-Scharff, I.; Moore, M.J.; Park, C.Y.; Vågbø, C.B.; Kusśnierczyk, A.; Klungland, A.; Darnell, J.E., Jr; Darnell, R.B. A majority of m 6 A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev., 2015, 29(19), 2037-2053.
[http://dx.doi.org/10.1101/gad.269415.115] [PMID: 26404942]
[24]
Chen, K.; Lu, Z.; Wang, X.; Fu, Y.; Luo, G.Z.; Liu, N.; Han, D.; Dominissini, D.; Dai, Q.; Pan, T.; He, C. High-resolution N(6) -methyladenosine (m(6) A) map using photo-crosslinking-assisted m(6) A sequencing. Angew. Chem. Int. Ed., 2015, 54(5), 1587-1590.
[http://dx.doi.org/10.1002/anie.201410647] [PMID: 25491922]
[25]
Molinie, B.; Wang, J.; Lim, K.S.; Hillebrand, R.; Lu, Z.; Van Wittenberghe, N.; Howard, B.D.; Daneshvar, K.; Mullen, A.C.; Dedon, P.; Xing, Y.; Giallourakis, C.C. m6A-LAIC-seq reveals the census and complexity of the m6A epitranscriptome. Nat. Methods, 2016, 13(8), 692-698.
[http://dx.doi.org/10.1038/nmeth.3898] [PMID: 27376769]
[26]
Linder, B.; Grozhik, A.V.; Olarerin-George, A.O.; Meydan, C.; Mason, C.E.; Jaffrey, S.R. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods, 2015, 12(8), 767-772.
[http://dx.doi.org/10.1038/nmeth.3453] [PMID: 26121403]
[27]
Dierks, D.; Garcia-Campos, M.A.; Uzonyi, A.; Safra, M.; Edelheit, S.; Rossi, A.; Sideri, T.; Varier, R.A.; Brandis, A.; Stelzer, Y.; van Werven, F.; Scherz-Shouval, R.; Schwartz, S. Multiplexed profiling facilitates robust m6A quantification at site, gene and sample resolution. Nat. Methods, 2021, 18(9), 1060-1067.
[http://dx.doi.org/10.1038/s41592-021-01242-z] [PMID: 34480159]
[28]
Carlile, T.M.; Rojas-Duran, M.F.; Zinshteyn, B.; Shin, H.; Bartoli, K.M.; Gilbert, W.V. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature, 2014, 515(7525), 143-146.
[http://dx.doi.org/10.1038/nature13802] [PMID: 25192136]
[29]
Garcia-Campos, M.A.; Edelheit, S.; Toth, U.; Safra, M.; Shachar, R.; Viukov, S.; Winkler, R.; Nir, R.; Lasman, L.; Brandis, A.; Hanna, J.H.; Rossmanith, W.; Schwartz, S. Deciphering the “m6A Code” via Antibody-Independent Quantitative Profiling. Cell, 2019, 178(3), 731-747.e16.
[http://dx.doi.org/10.1016/j.cell.2019.06.013] [PMID: 31257032]
[30]
Zhang, Z.; Chen, L.Q.; Zhao, Y.L.; Yang, C.G.; Roundtree, I.A.; Zhang, Z.; Ren, J.; Xie, W.; He, C.; Luo, G.Z. Single-base mapping of m 6 A by an antibody-independent method. Sci. Adv., 2019, 5(7), eaax0250.
[http://dx.doi.org/10.1126/sciadv.aax0250] [PMID: 31281898]
[31]
Hendra, C.; Pratanwanich, P.N.; Wan, Y.K.; Goh, W.S.S.; Thiery, A.; Göke, J. Detection of m6A from direct RNA sequencing using a multiple instance learning framework. Nat. Methods, 2022, 19(12), 1590-1598.
[http://dx.doi.org/10.1038/s41592-022-01666-1] [PMID: 36357692]
[32]
Zaccara, S.; Ries, R.J.; Jaffrey, S.R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol., 2019, 20(10), 608-624.
[http://dx.doi.org/10.1038/s41580-019-0168-5] [PMID: 31520073]
[33]
Hu, Y.; Wang, S.; Liu, J.; Huang, Y.; Gong, C.; Liu, J.; Xiao, Y.; Yang, S. New sights in cancer: Component and function of N6-methyladenosine modification. Biomed. Pharmacother., 2020, 122, 109694.
[http://dx.doi.org/10.1016/j.biopha.2019.109694] [PMID: 31918269]
[34]
Bokar, J.A.; Shambaugh, M.E.; Polayes, D.; Matera, A.G.; Rottman, F.M. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA, 1997, 3(11), 1233-1247.
[PMID: 9409616]
[35]
Liu, J.; Yue, Y.; Han, D.; Wang, X.; Fu, Y.; Zhang, L.; Jia, G.; Yu, M.; Lu, Z.; Deng, X.; Dai, Q.; Chen, W.; He, C. A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol., 2014, 10(2), 93-95.
[http://dx.doi.org/10.1038/nchembio.1432] [PMID: 24316715]
[36]
Wang, Y.; Li, Y.; Toth, J.I.; Petroski, M.D.; Zhang, Z.; Zhao, J.C. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat. Cell Biol., 2014, 16(2), 191-198.
[http://dx.doi.org/10.1038/ncb2902] [PMID: 24394384]
[37]
Ping, X.L.; Sun, B.F.; Wang, L.; Xiao, W.; Yang, X.; Wang, W.J.; Adhikari, S.; Shi, Y.; Lv, Y.; Chen, Y.S.; Zhao, X.; Li, A.; Yang, Y.; Dahal, U.; Lou, X.M.; Liu, X.; Huang, J.; Yuan, W.P.; Zhu, X.F.; Cheng, T.; Zhao, Y.L.; Wang, X.; Danielsen, J.M.R.; Liu, F.; Yang, Y.G. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res., 2014, 24(2), 177-189.
[http://dx.doi.org/10.1038/cr.2014.3] [PMID: 24407421]
[38]
Agarwala, S.D.; Blitzblau, H.G.; Hochwagen, A.; Fink, G.R. RNA methylation by the MIS complex regulates a cell fate decision in yeast. PLoS Genet., 2012, 8(6), e1002732.
[http://dx.doi.org/10.1371/journal.pgen.1002732] [PMID: 22685417]
[39]
Schwartz, S.; Mumbach, M.R.; Jovanovic, M.; Wang, T.; Maciag, K.; Bushkin, G.G.; Mertins, P.; Ter-Ovanesyan, D.; Habib, N.; Cacchiarelli, D.; Sanjana, N.E.; Freinkman, E.; Pacold, M.E.; Satija, R.; Mikkelsen, T.S.; Hacohen, N.; Zhang, F.; Carr, S.A.; Lander, E.S.; Regev, A. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep., 2014, 8(1), 284-296.
[http://dx.doi.org/10.1016/j.celrep.2014.05.048] [PMID: 24981863]
[40]
Patil, D.P.; Chen, C.K.; Pickering, B.F.; Chow, A.; Jackson, C.; Guttman, M.; Jaffrey, S.R. m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature, 2016, 537(7620), 369-373.
[http://dx.doi.org/10.1038/nature19342] [PMID: 27602518]
[41]
Wen, J.; Lv, R.; Ma, H.; Shen, H.; He, C.; Wang, J.; Jiao, F.; Liu, H.; Yang, P.; Tan, L.; Lan, F.; Shi, Y.G.; He, C.; Shi, Y.; Diao, J. Zc3h13 Regulates Nuclear RNA m6A Methylation and Mouse Embryonic Stem Cell Self-Renewal. Mol. Cell, 2018, 69(6), 1028-1038.e6.
[http://dx.doi.org/10.1016/j.molcel.2018.02.015] [PMID: 29547716]
[42]
Knuckles, P.; Lence, T.; Haussmann, I.U.; Jacob, D.; Kreim, N.; Carl, S.H.; Masiello, I.; Hares, T.; Villaseñor, R.; Hess, D.; Andrade-Navarro, M.A.; Biggiogera, M.; Helm, M.; Soller, M.; Bühler, M.; Roignant, J.Y. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m 6 A machinery component Wtap/Fl(2)d. Genes Dev., 2018, 32(5-6), 415-429.
[http://dx.doi.org/10.1101/gad.309146.117] [PMID: 29535189]
[43]
Wang, P.; Doxtader, K.A.; Nam, Y. Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases. Mol. Cell, 2016, 63(2), 306-317.
[http://dx.doi.org/10.1016/j.molcel.2016.05.041] [PMID: 27373337]
[44]
Wang, X.; Feng, J.; Xue, Y.; Guan, Z.; Zhang, D.; Liu, Z.; Gong, Z.; Wang, Q.; Huang, J.; Tang, C.; Zou, T.; Yin, P. Structural basis of N6-adenosine methylation by the METTL3–METTL14 complex. Nature, 2016, 534(7608), 575-578.
[http://dx.doi.org/10.1038/nature18298] [PMID: 27281194]
[45]
Śledź, P.; Jinek, M. Structural insights into the molecular mechanism of the m6A writer complex. eLife, 2016, 5, e18434.
[http://dx.doi.org/10.7554/eLife.18434] [PMID: 27627798]
[46]
Jia, G.; Fu, Y.; Zhao, X.; Dai, Q.; Zheng, G.; Yang, Y.; Yi, C.; Lindahl, T.; Pan, T.; Yang, Y.G.; He, C. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol., 2011, 7(12), 885-887.
[http://dx.doi.org/10.1038/nchembio.687] [PMID: 22002720]
[47]
Zheng, G.; Dahl, J.A.; Niu, Y.; Fedorcsak, P.; Huang, C.M.; Li, C.J.; Vågbø, C.B.; Shi, Y.; Wang, W.L.; Song, S.H.; Lu, Z.; Bosmans, R.P.G.; Dai, Q.; Hao, Y.J.; Yang, X.; Zhao, W.M.; Tong, W.M.; Wang, X.J.; Bogdan, F.; Furu, K.; Fu, Y.; Jia, G.; Zhao, X.; Liu, J.; Krokan, H.E.; Klungland, A.; Yang, Y.G.; He, C. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell, 2013, 49(1), 18-29.
[http://dx.doi.org/10.1016/j.molcel.2012.10.015] [PMID: 23177736]
[48]
Zhao, X.; Yang, Y.; Sun, B.F.; Shi, Y.; Yang, X.; Xiao, W.; Hao, Y.J.; Ping, X.L.; Chen, Y.S.; Wang, W.J.; Jin, K.X.; Wang, X.; Huang, C.M.; Fu, Y.; Ge, X.M.; Song, S.H.; Jeong, H.S.; Yanagisawa, H.; Niu, Y.; Jia, G.F.; Wu, W.; Tong, W.M.; Okamoto, A.; He, C.; Danielsen, J.M.R.; Wang, X.J.; Yang, Y.G. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res., 2014, 24(12), 1403-1419.
[http://dx.doi.org/10.1038/cr.2014.151] [PMID: 25412662]
[49]
Bartosovic, M.; Molares, H.C.; Gregorova, P.; Hrossova, D.; Kudla, G.; Vanacova, S. N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. Nucleic Acids Res., 2017, 45(19), 11356-11370.
[http://dx.doi.org/10.1093/nar/gkx778] [PMID: 28977517]
[50]
Yang, Y.; Hsu, P.J.; Chen, Y.S.; Yang, Y.G. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res., 2018, 28(6), 616-624.
[http://dx.doi.org/10.1038/s41422-018-0040-8] [PMID: 29789545]
[51]
Zhang, Z.; Theler, D.; Kaminska, K.H.; Hiller, M.; de la Grange, P.; Pudimat, R.; Rafalska, I.; Heinrich, B.; Bujnicki, J.M.; Allain, F.H.T.; Stamm, S. The YTH domain is a novel RNA binding domain. J. Biol. Chem., 2010, 285(19), 14701-14710.
[http://dx.doi.org/10.1074/jbc.M110.104711] [PMID: 20167602]
[52]
Xiao, W.; Adhikari, S.; Dahal, U.; Chen, Y.S.; Hao, Y.J.; Sun, B.F.; Sun, H.Y.; Li, A.; Ping, X.L.; Lai, W.Y.; Wang, X.; Ma, H.L.; Huang, C.M.; Yang, Y.; Huang, N.; Jiang, G.B.; Wang, H.L.; Zhou, Q.; Wang, X.J.; Zhao, Y.L.; Yang, Y.G. Nuclear m 6 A Reader YTHDC1 Regulates mRNA Splicing. Mol. Cell, 2016, 61(4), 507-519.
[http://dx.doi.org/10.1016/j.molcel.2016.01.012] [PMID: 26876937]
[53]
Roundtree, I.A.; Luo, G.Z.; Zhang, Z.; Wang, X.; Zhou, T.; Cui, Y.; Sha, J.; Huang, X.; Guerrero, L.; Xie, P.; He, E.; Shen, B.; He, C. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. eLife, 2017, 6, e31311.
[http://dx.doi.org/10.7554/eLife.31311] [PMID: 28984244]
[54]
Wei, K.; Gao, Y.; Wang, B.; Qu, Y.X. Methylation recognition protein YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) regulates the proliferation, migration and invasion of osteosarcoma by regulating m6A level of CCR4-NOT transcription complex subunit 7 (CNOT7). Bioengineered, 2022, 13(3), 5236-5250.
[http://dx.doi.org/10.1080/21655979.2022.2037381] [PMID: 35156522]
[55]
Du, H.; Zhao, Y.; He, J.; Zhang, Y.; Xi, H.; Liu, M.; Ma, J.; Wu, L. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. Nat. Commun., 2016, 7(1), 12626.
[http://dx.doi.org/10.1038/ncomms12626] [PMID: 27558897]
[56]
Shi, H.; Wang, X.; Lu, Z.; Zhao, B.S.; Ma, H.; Hsu, P.J.; Liu, C.; He, C. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res., 2017, 27(3), 315-328.
[http://dx.doi.org/10.1038/cr.2017.15] [PMID: 28106072]
[57]
Li, A.; Chen, Y.S.; Ping, X.L.; Yang, X.; Xiao, W.; Yang, Y.; Sun, H.Y.; Zhu, Q.; Baidya, P.; Wang, X.; Bhattarai, D.P.; Zhao, Y.L.; Sun, B.F.; Yang, Y.G. Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Res., 2017, 27(3), 444-447.
[http://dx.doi.org/10.1038/cr.2017.10] [PMID: 28106076]
[58]
Bailey, A.S.; Batista, P.J.; Gold, R.S.; Chen, Y.G.; de Rooij, D.G.; Chang, H.Y.; Fuller, M.T. The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline. eLife, 2017, 6, e26116.
[http://dx.doi.org/10.7554/eLife.26116] [PMID: 29087293]
[59]
Hsu, P.J.; Zhu, Y.; Ma, H.; Guo, Y.; Shi, X.; Liu, Y.; Qi, M.; Lu, Z.; Shi, H.; Wang, J.; Cheng, Y.; Luo, G.; Dai, Q.; Liu, M.; Guo, X.; Sha, J.; Shen, B.; He, C. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res., 2017, 27(9), 1115-1127.
[http://dx.doi.org/10.1038/cr.2017.99] [PMID: 28809393]
[60]
Wojtas, M.N.; Pandey, R.R.; Mendel, M.; Homolka, D.; Sachidanandam, R.; Pillai, R.S. Regulation of m6A Transcripts by the 3′→5′ RNA Helicase YTHDC2 Is Essential for a Successful Meiotic Program in the Mammalian Germline. Mol. Cell, 2017, 68(2), 374-387.e12.
[http://dx.doi.org/10.1016/j.molcel.2017.09.021] [PMID: 29033321]
[61]
Tanabe, A.; Tanikawa, K.; Tsunetomi, M.; Takai, K.; Ikeda, H.; Konno, J.; Torigoe, T.; Maeda, H.; Kutomi, G.; Okita, K.; Mori, M.; Sahara, H. RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1α mRNA is translated. Cancer Lett., 2016, 376(1), 34-42.
[http://dx.doi.org/10.1016/j.canlet.2016.02.022] [PMID: 26996300]
[62]
Zhou, C.; Molinie, B.; Daneshvar, K.; Pondick, J.V.; Wang, J.; Van Wittenberghe, N.; Xing, Y.; Giallourakis, C.C.; Mullen, A.C. Genome-Wide Maps of m6A circRNAs Identify Widespread and Cell-Type-Specific Methylation Patterns that Are Distinct from mRNAs. Cell Rep., 2017, 20(9), 2262-2276.
[http://dx.doi.org/10.1016/j.celrep.2017.08.027] [PMID: 28854373]
[63]
Yang, D.; Qiao, J.; Wang, G.; Lan, Y.; Li, G.; Guo, X.; Xi, J.; Ye, D.; Zhu, S.; Chen, W.; Jia, W.; Leng, Y.; Wan, X.; Kang, J. N 6-Methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential. Nucleic Acids Res., 2018, 46(8), 3906-3920.
[http://dx.doi.org/10.1093/nar/gky130] [PMID: 29529255]
[64]
Yang, Z.; Li, J.; Feng, G.; Gao, S.; Wang, Y.; Zhang, S.; Liu, Y.; Ye, L.; Li, Y.; Zhang, X. MicroRNA-145 Modulates N6-Methyladenosine Levels by Targeting the 3′-Untranslated mRNA Region of the N6-Methyladenosine Binding YTH Domain Family 2 Protein. J. Biol. Chem., 2017, 292(9), 3614-3623.
[http://dx.doi.org/10.1074/jbc.M116.749689] [PMID: 28104805]
[65]
Li, L.; Sun, Y.; Davis, A.E.; Shah, S.H.; Hamed, L.K.; Wu, M.R.; Lin, C.H.; Ding, J.B.; Wang, S. Mettl14-mediated m6A modification ensures the cell-cycle progression of late-born retinal progenitor cells. Cell Rep., 2023, 42(6), 112596.
[http://dx.doi.org/10.1016/j.celrep.2023.112596] [PMID: 37269288]
[66]
Luo, H.; Liu, W.; Zhang, Y.; Yang, Y.; Jiang, X.; Wu, S.; Shao, L. METTL3-mediated m6A modification regulates cell cycle progression of dental pulp stem cells. Stem Cell Res. Ther., 2021, 12(1), 159.
[http://dx.doi.org/10.1186/s13287-021-02223-x] [PMID: 33648590]
[67]
Li, H.; Zhong, Y.; Cao, G.; Shi, H.; Liu, Y.; Li, L.; Yin, P.; Chen, J.; Xiao, Z.; Du, B. METTL3 promotes cell cycle progression via m 6 A/YTHDF1-dependent regulation of CDC25B translation. Int. J. Biol. Sci., 2022, 18(8), 3223-3236.
[http://dx.doi.org/10.7150/ijbs.70335] [PMID: 35637959]
[68]
Jia, R.; Chai, P.; Wang, S.; Sun, B.; Xu, Y.; Yang, Y.; Ge, S.; Jia, R.; Yang, Y.G.; Fan, X. m6A modification suppresses ocular melanoma through modulating HINT2 mRNA translation. Mol. Cancer, 2019, 18(1), 161.
[http://dx.doi.org/10.1186/s12943-019-1088-x] [PMID: 31722709]
[69]
Wang, H.; Xu, B.; Shi, J. N6-methyladenosine METTL3 promotes the breast cancer progression via targeting Bcl-2. Gene, 2020, 722, 144076.
[http://dx.doi.org/10.1016/j.gene.2019.144076] [PMID: 31454538]
[70]
Visvanathan, A.; Patil, V.; Arora, A.; Hegde, A.S.; Arivazhagan, A.; Santosh, V.; Somasundaram, K. Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance. Oncogene, 2018, 37(4), 522-533.
[http://dx.doi.org/10.1038/onc.2017.351] [PMID: 28991227]
[71]
Li, T.; Hu, P.S.; Zuo, Z.; Lin, J.F.; Li, X.; Wu, Q.N.; Chen, Z.H.; Zeng, Z.L.; Wang, F.; Zheng, J.; Chen, D.; Li, B.; Kang, T.B.; Xie, D.; Lin, D.; Ju, H.Q.; Xu, R.H. METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol. Cancer, 2019, 18(1), 112.
[http://dx.doi.org/10.1186/s12943-019-1038-7] [PMID: 31230592]
[72]
Lin, S.; Choe, J.; Du, P.; Triboulet, R.; Gregory, R.I. The m 6 A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Mol. Cell, 2016, 62(3), 335-345.
[http://dx.doi.org/10.1016/j.molcel.2016.03.021] [PMID: 27117702]
[73]
Choe, J.; Lin, S.; Zhang, W.; Liu, Q.; Wang, L.; Ramirez-Moya, J.; Du, P.; Kim, W.; Tang, S.; Sliz, P.; Santisteban, P.; George, R.E.; Richards, W.G.; Wong, K.K.; Locker, N.; Slack, F.J.; Gregory, R.I. mRNA circularization by METTL3–eIF3h enhances translation and promotes oncogenesis. Nature, 2018, 561(7724), 556-560.
[http://dx.doi.org/10.1038/s41586-018-0538-8] [PMID: 30232453]
[74]
Zhang, Y.; Kang, M.; Zhang, B.; Meng, F.; Song, J.; Kaneko, H.; Shimamoto, F.; Tang, B. RETRACTED ARTICLE: m6A modification-mediated CBX8 induction regulates stemness and chemosensitivity of colon cancer via upregulation of LGR5. Mol. Cancer, 2019, 18(1), 185.
[http://dx.doi.org/10.1186/s12943-019-1116-x] [PMID: 31849331]
[75]
Vu, L.P.; Pickering, B.F.; Cheng, Y.; Zaccara, S.; Nguyen, D.; Minuesa, G.; Chou, T.; Chow, A.; Saletore, Y.; MacKay, M.; Schulman, J.; Famulare, C.; Patel, M.; Klimek, V.M.; Garrett-Bakelman, F.E.; Melnick, A.; Carroll, M.; Mason, C.E.; Jaffrey, S.R.; Kharas, M.G. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat. Med., 2017, 23(11), 1369-1376.
[http://dx.doi.org/10.1038/nm.4416] [PMID: 28920958]
[76]
Weng, H.; Huang, H.; Wu, H.; Qin, X.; Zhao, B.S.; Dong, L.; Shi, H.; Skibbe, J.; Shen, C.; Hu, C.; Sheng, Y.; Wang, Y.; Wunderlich, M.; Zhang, B.; Dore, L.C.; Su, R.; Deng, X.; Ferchen, K.; Li, C.; Sun, M.; Lu, Z.; Jiang, X.; Marcucci, G.; Mulloy, J.C.; Yang, J.; Qian, Z.; Wei, M.; He, C.; Chen, J. METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes Leukemogenesis via mRNA m6A Modification. Cell Stem Cell, 2018, 22(2), 191-205.e9.
[http://dx.doi.org/10.1016/j.stem.2017.11.016] [PMID: 29290617]
[77]
Wang, S.; Chai, P.; Jia, R.; Jia, R. Novel insights on m6A RNA methylation in tumorigenesis: A double-edged sword. Mol. Cancer, 2018, 17(1), 101.
[http://dx.doi.org/10.1186/s12943-018-0847-4] [PMID: 30031372]
[78]
Gao, R.; Ye, M.; Liu, B.; Wei, M.; Ma, D.; Dong, K. m6A Modification: A Double-Edged Sword in Tumor Development. Front. Oncol., 2021, 11, 679367.
[http://dx.doi.org/10.3389/fonc.2021.679367] [PMID: 34381710]
[79]
Zou, C.; He, Q.; Feng, Y.; Chen, M.; Zhang, D. A m6Avalue predictive of prostate cancer stemness, tumor immune landscape and immunotherapy response. NAR Cancer, 2022, 4(1), zcac010.
[http://dx.doi.org/10.1093/narcan/zcac010] [PMID: 35350771]
[80]
Xie, J.; Ba, J.; Zhang, M.; Wan, Y.; Jin, Z.; Yao, Y. The m6A methyltransferase METTL3 promotes the stemness and malignant progression of breast cancer by mediating m6A modification on SOX2. J. BUON, 2021, 26(2), 444-449.
[PMID: 34076991]
[81]
Fang, Z.; Mei, W.; Qu, C.; Lu, J.; Shang, L.; Cao, F.; Li, F. Role of m6A writers, erasers and readers in cancer. Exp. Hematol. Oncol., 2022, 11(1), 45.
[http://dx.doi.org/10.1186/s40164-022-00298-7] [PMID: 35945641]
[82]
Cai, J.; Yang, F.; Zhan, H.; Situ, J.; Li, W.; Mao, Y.; Luo, Y. RNA m6A Methyltransferase METTL3 Promotes The Growth Of Prostate Cancer By Regulating Hedgehog Pathway. OncoTargets Ther., 2019, 12, 9143-9152.
[http://dx.doi.org/10.2147/OTT.S226796] [PMID: 31806999]
[83]
Yuan, Y.; Du, Y.; Wang, L.; Liu, X. The M6A methyltransferase METTL3 promotes the development and progression of prostate carcinoma via mediating MYC methylation. J. Cancer, 2020, 11(12), 3588-3595.
[http://dx.doi.org/10.7150/jca.42338] [PMID: 32284755]
[84]
Chen, Y.; Pan, C.; Wang, X.; Xu, D.; Ma, Y.; Hu, J.; Chen, P.; Xiang, Z.; Rao, Q.; Han, X. Silencing of METTL3 effectively hinders invasion and metastasis of prostate cancer cells. Theranostics, 2021, 11(16), 7640-7657.
[http://dx.doi.org/10.7150/thno.61178] [PMID: 34335955]
[85]
Chen, S.L.; Liu, L.L.; Wang, C.H.; Lu, S.X.; Yang, X.; He, Y.F.; Zhang, C.Z.; Yun, J.P. Loss of RDM1 enhances hepatocellular carcinoma progression via p53 and Ras/Raf/ERK pathways. Mol. Oncol., 2020, 14(2), 373-386.
[http://dx.doi.org/10.1002/1878-0261.12593] [PMID: 31670863]
[86]
Chen, M.; Wei, L.; Law, C.T.; Tsang, F.H.C.; Shen, J.; Cheng, C.L.H.; Tsang, L.H.; Ho, D.W.H.; Chiu, D.K.C.; Lee, J.M.F.; Wong, C.C.L.; Ng, I.O.L.; Wong, C.M. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology, 2018, 67(6), 2254-2270.
[http://dx.doi.org/10.1002/hep.29683] [PMID: 29171881]
[87]
Gao, Q.; Zheng, J.; Ni, Z.; Sun, P.; Yang, C.; Cheng, M.; Wu, M.; Zhang, X.; Yuan, L.; Zhang, Y.; Li, Y. The m 6 A Methylation-Regulated AFF4 Promotes Self-Renewal of Bladder Cancer Stem Cells. Stem Cells Int., 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/8849218] [PMID: 32676121]
[88]
Fan, Y.; Li, X.; Sun, H.; Gao, Z.; Zhu, Z.; Yuan, K. Role of WTAP in Cancer: From Mechanisms to the Therapeutic Potential. Biomolecules, 2022, 12(9), 1224.
[http://dx.doi.org/10.3390/biom12091224] [PMID: 36139062]
[89]
Kuai, Y.; Gong, X.; Ding, L.; Li, F.; Lei, L.; Gong, Y.; Liu, Q.; Tan, H.; Zhang, X.; Liu, D.; Ren, G.; Pan, H.; Shi, Y.; Berberich-Siebelt, F.; Mao, Z.; Zhou, R. Wilms’ tumor 1-associating protein plays an aggressive role in diffuse large B-cell lymphoma and forms a complex with BCL6 via Hsp90. Cell Commun. Signal., 2018, 16(1), 50.
[http://dx.doi.org/10.1186/s12964-018-0258-6] [PMID: 30143009]
[90]
Yu, H.; Zhao, K.; Zeng, H.; Li, Z.; Chen, K.; Zhang, Z.; Li, E.; Wu, Z. N6-methyladenosine (m6A) methyltransferase WTAP accelerates the Warburg effect of gastric cancer through regulating HK2 stability. Biomed. Pharmacother., 2021, 133, 111075.
[http://dx.doi.org/10.1016/j.biopha.2020.111075] [PMID: 33378974]
[91]
Qian, J.Y.; Gao, J.; Sun, X.; Cao, M.D.; Shi, L.; Xia, T.S.; Zhou, W.B.; Wang, S.; Ding, Q.; Wei, J.F. KIAA1429 acts as an oncogenic factor in breast cancer by regulating CDK1 in an N6-methyladenosine-independent manner. Oncogene, 2019, 38(33), 6123-6141.
[http://dx.doi.org/10.1038/s41388-019-0861-z] [PMID: 31285549]
[92]
Lan, T.; Li, H.; Zhang, D.; Xu, L.; Liu, H.; Hao, X.; Yan, X.; Liao, H.; Chen, X.; Xie, K.; Li, J.; Liao, M.; Huang, J.; Yuan, K.; Zeng, Y.; Wu, H. KIAA1429 contributes to liver cancer progression through N6-methyladenosine-dependent post-transcriptional modification of GATA3. Mol. Cancer, 2019, 18(1), 186.
[http://dx.doi.org/10.1186/s12943-019-1106-z] [PMID: 31856849]
[93]
Gong, P.J.; Shao, Y.C.; Yang, Y.; Song, W.J.; He, X.; Zeng, Y.F.; Huang, S.R.; Wei, L.; Zhang, J.W. Analysis of N6-Methyladenosine Methyltransferase Reveals METTL14 and ZC3H13 as Tumor Suppressor Genes in Breast Cancer. Front. Oncol., 2020, 10, 578963.
[http://dx.doi.org/10.3389/fonc.2020.578963] [PMID: 33363011]
[94]
Yang, X.; Zhang, S.; He, C.; Xue, P.; Zhang, L.; He, Z.; Zang, L.; Feng, B.; Sun, J.; Zheng, M. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST. Mol. Cancer, 2020, 19(1), 46.
[http://dx.doi.org/10.1186/s12943-020-1146-4] [PMID: 32111213]
[95]
Yao, Q.; He, L.; Gao, X.; Tang, N.; Lin, L.; Yu, X.; Wang, D. The m6A Methyltransferase METTL14-Mediated N6-Methyladenosine Modification of PTEN mRNA Inhibits Tumor Growth and Metastasis in Stomach Adenocarcinoma. Front. Oncol., 2021, 11, 699749.
[http://dx.doi.org/10.3389/fonc.2021.699749] [PMID: 34476213]
[96]
Shi, Y.; Zhuang, Y.; Zhang, J.; Chen, M.; Wu, S. METTL14 Inhibits Hepatocellular Carcinoma Metastasis Through Regulating EGFR/PI3K/AKT Signaling Pathway in an m6A-Dependent Manner. Cancer Manag. Res., 2020, 12, 13173-13184.
[http://dx.doi.org/10.2147/CMAR.S286275] [PMID: 33380825]
[97]
Li, Z.; Weng, H.; Su, R.; Weng, X.; Zuo, Z.; Li, C.; Huang, H.; Nachtergaele, S.; Dong, L.; Hu, C.; Qin, X.; Tang, L.; Wang, Y.; Hong, G.M.; Huang, H.; Wang, X.; Chen, P.; Gurbuxani, S.; Arnovitz, S.; Li, Y.; Li, S.; Strong, J.; Neilly, M.B.; Larson, R.A.; Jiang, X.; Zhang, P.; Jin, J.; He, C.; Chen, J. FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N 6 -Methyladenosine RNA Demethylase. Cancer Cell, 2017, 31(1), 127-141.
[http://dx.doi.org/10.1016/j.ccell.2016.11.017] [PMID: 28017614]
[98]
Bian, X.; Shi, D.; Xing, K.; Zhou, H.; Lu, L.; Yu, D.; Wu, W. AMD1 upregulates hepatocellular carcinoma cells stemness by FTO mediated mRNA demethylation. Clin. Transl. Med., 2021, 11(3), e352.
[http://dx.doi.org/10.1002/ctm2.352] [PMID: 33783988]
[99]
Niu, Y.; Lin, Z.; Wan, A.; Chen, H.; Liang, H.; Sun, L.; Wang, Y.; Li, X.; Xiong, X.; Wei, B.; Wu, X.; Wan, G. RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Mol. Cancer, 2019, 18(1), 46.
[http://dx.doi.org/10.1186/s12943-019-1004-4] [PMID: 30922314]
[100]
Liu, J.; Ren, D.; Du, Z.; Wang, H.; Zhang, H.; Jin, Y. m 6 A demethylase FTO facilitates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression. Biochem. Biophys. Res. Commun., 2018, 502(4), 456-464.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.175] [PMID: 29842885]
[101]
Zhang, Z.; Gao, Q.; Wang, S. Kinase GSK3β functions as a suppressor in colorectal carcinoma through the FTO-mediated MZF1/c-Myc axis. J. Cell. Mol. Med., 2021, 25(5), 2655-2665.
[http://dx.doi.org/10.1111/jcmm.16291] [PMID: 33533172]
[102]
Zou, D.; Dong, L.; Li, C.; Yin, Z.; Rao, S.; Zhou, Q. The m6A eraser FTO facilitates proliferation and migration of human cervical cancer cells. Cancer Cell Int., 2019, 19(1), 321.
[http://dx.doi.org/10.1186/s12935-019-1045-1] [PMID: 31827395]
[103]
Zhang, C.; Chen, L.; Lou, W.; Su, J.; Huang, J.; Liu, A.; Xu, Y.; He, H.; Gao, Y.; Xu, D.; Li, Q. Aberrant activation of m6A demethylase FTO renders HIF2α low/− clear cell renal cell carcinoma sensitive to BRD9 inhibitors. Sci. Transl. Med., 2021, 13(613), eabf6045.
[http://dx.doi.org/10.1126/scitranslmed.abf6045] [PMID: 34586831]
[104]
Jiao, M.; Tian, R.; Liu, G.; Liu, X.; Wei, Q.; Yan, J.; Wang, K.; Yang, P. Circular RNA and Messenger RNA Expression Profile and Competing Endogenous RNA Network in Subchondral Bone in Osteonecrosis of the Femoral Head. DNA Cell Biol., 2021, 40(1), 61-69.
[http://dx.doi.org/10.1089/dna.2020.5894] [PMID: 33185492]
[105]
Rong, Z.X.; Li, Z.; He, J.J.; Liu, L.Y.; Ren, X.X.; Gao, J.; Mu, Y.; Guan, Y.D.; Duan, Y.M.; Zhang, X.P.; Zhang, D.X.; Li, N.; Deng, Y.Z.; Sun, L.Q. Downregulation of Fat Mass and Obesity Associated (FTO) Promotes the Progression of Intrahepatic Cholangiocarcinoma. Front. Oncol., 2019, 9, 369.
[http://dx.doi.org/10.3389/fonc.2019.00369] [PMID: 31143705]
[106]
Nagaki, Y.; Motoyama, S.; Yamaguchi, T.; Hoshizaki, M.; Sato, Y.; Sato, T.; Koizumi, Y.; Wakita, A.; Kawakita, Y.; Imai, K.; Nanjo, H.; Watanabe, H.; Imai, Y.; Minamiya, Y.; Kuba, K. m 6 A demethylase ALKBH5 promotes proliferation of esophageal squamous cell carcinoma associated with poor prognosis. Genes Cells, 2020, 25(8), 547-561.
[http://dx.doi.org/10.1111/gtc.12792] [PMID: 32449584]
[107]
Nie, S.; Zhang, L.; Liu, J.; Wan, Y.; Jiang, Y.; Yang, J.; Sun, R.; Ma, X.; Sun, G.; Meng, H.; Xu, M.; Cheng, W. ALKBH5-HOXA10 loop-mediated JAK2 m6A demethylation and cisplatin resistance in epithelial ovarian cancer. J. Exp. Clin. Cancer Res., 2021, 40(1), 284.
[http://dx.doi.org/10.1186/s13046-021-02088-1] [PMID: 34496932]
[108]
Zhang, X.; Wang, F.; Wang, Z.; Yang, X.; Yu, H.; Si, S.; Lu, J.; Zhou, Z.; Lu, Q.; Wang, Z.; Yang, H. ALKBH5 promotes the proliferation of renal cell carcinoma by regulating AURKB expression in an m6A-dependent manner. Ann. Transl. Med., 2020, 8(10), 646.
[http://dx.doi.org/10.21037/atm-20-3079] [PMID: 32566583]
[109]
Qiu, X.; Yang, S.; Wang, S.; Wu, J.; Zheng, B.; Wang, K.; Shen, S.; Jeong, S.; Li, Z.; Zhu, Y.; Wu, T.; Wu, X.; Wu, R.; Liu, W.; Wang, H.Y.; Chen, L. M6A Demethylase ALKBH5 Regulates PD-L1 Expression and Tumor Immunoenvironment in Intrahepatic Cholangiocarcinoma. Cancer Res., 2021, 81(18), 4778-4793.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-0468] [PMID: 34301762]
[110]
Chen, Y.; Zhao, Y.; Chen, J.; Peng, C.; Zhang, Y.; Tong, R.; Cheng, Q.; Yang, B.; Feng, X.; Lu, Y.; Xie, H.; Zhou, L.; Wu, J.; Zheng, S. ALKBH5 suppresses malignancy of hepatocellular carcinoma via m6A-guided epigenetic inhibition of LYPD1. Mol. Cancer, 2020, 19(1), 123.
[http://dx.doi.org/10.1186/s12943-020-01239-w] [PMID: 32772918]
[111]
Tang, B.; Yang, Y.; Kang, M.; Wang, Y.; Wang, Y.; Bi, Y.; He, S.; Shimamoto, F. m6A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling. Mol. Cancer, 2020, 19(1), 3.
[http://dx.doi.org/10.1186/s12943-019-1128-6] [PMID: 31906946]
[112]
Shi, Y.; Fan, S.; Wu, M.; Zuo, Z.; Li, X.; Jiang, L.; Shen, Q.; Xu, P.; Zeng, L.; Zhou, Y.; Huang, Y.; Yang, Z.; Zhou, J.; Gao, J.; Zhou, H.; Xu, S.; Ji, H.; Shi, P.; Wu, D.D.; Yang, C.; Chen, Y. YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nat. Commun., 2019, 10(1), 4892.
[http://dx.doi.org/10.1038/s41467-019-12801-6] [PMID: 31653849]
[113]
Chang, G.; Shi, L.; Ye, Y.; Shi, H.; Zeng, L.; Tiwary, S.; Huse, J.T.; Huo, L.; Ma, L.; Ma, Y.; Zhang, S.; Zhu, J.; Xie, V.; Li, P.; Han, L.; He, C.; Huang, S. YTHDF3 Induces the Translation of m6A-Enriched Gene Transcripts to Promote Breast Cancer Brain Metastasis. Cancer Cell, 2020, 38(6), 857-871.e7.
[http://dx.doi.org/10.1016/j.ccell.2020.10.004] [PMID: 33125861]
[114]
Einstein, J.M.; Perelis, M.; Chaim, I.A.; Meena, J.K.; Nussbacher, J.K.; Tankka, A.T.; Yee, B.A.; Li, H.; Madrigal, A.A.; Neill, N.J.; Shankar, A.; Tyagi, S.; Westbrook, T.F.; Yeo, G.W. Inhibition of YTHDF2 triggers proteotoxic cell death in MYC-driven breast cancer. Mol. Cell, 2021, 81(15), 3048-3064.e9.
[http://dx.doi.org/10.1016/j.molcel.2021.06.014] [PMID: 34216543]
[115]
Zhong, L.; Liao, D.; Zhang, M.; Zeng, C.; Li, X.; Zhang, R.; Ma, H.; Kang, T. YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma. Cancer Lett., 2019, 442, 252-261.
[http://dx.doi.org/10.1016/j.canlet.2018.11.006] [PMID: 30423408]
[116]
Waly, A.A.; El-Ekiaby, N.; Assal, R.A.; Abdelrahman, M.M.; Hosny, K.A.; El Tayebi, H.M.; Esmat, G.; Breuhahn, K.; Abdelaziz, A.I. Methylation in MIRLET7A3 Gene Induces the Expression of IGF-II and Its mRNA Binding Proteins IGF2BP-2 and 3 in Hepatocellular Carcinoma. Front. Physiol., 2019, 9, 1918.
[http://dx.doi.org/10.3389/fphys.2018.01918] [PMID: 30733684]
[117]
Zhang, L.; Wan, Y.; Zhang, Z.; Jiang, Y.; Gu, Z.; Ma, X.; Nie, S.; Yang, J.; Lang, J.; Cheng, W.; Zhu, L. IGF2BP1 overexpression stabilizes PEG10 mRNA in an m6A-dependent manner and promotes endometrial cancer progression. Theranostics, 2021, 11(3), 1100-1114.
[http://dx.doi.org/10.7150/thno.49345] [PMID: 33391523]
[118]
Xu, Y.; Guo, Z.; Peng, H.; Guo, L.; Wang, P. IGF2BP3 promotes cell metastasis and is associated with poor patient survival in nasopharyngeal carcinoma. J. Cell. Mol. Med., 2022, 26(2), 410-421.
[http://dx.doi.org/10.1111/jcmm.17093] [PMID: 34894048]
[119]
Tan, B.; Zhou, K.; Liu, W.; Prince, E.; Qing, Y.; Li, Y.; Han, L.; Qin, X.; Su, R.; Pokharel, S.P.; Yang, L.; Zhao, Z.; Shen, C.; Li, W.; Chen, Z.; Zhang, Z.; Deng, X.; Small, A.; Wang, K.; Leung, K.; Chen, C.W.; Shen, B.; Chen, J. RNA N 6 -methyladenosine reader YTHDC1 is essential for TGF-beta-mediated metastasis of triple negative breast cancer. Theranostics, 2022, 12(13), 5727-5743.
[http://dx.doi.org/10.7150/thno.71872] [PMID: 35966596]
[120]
Su, Y.; Wang, B.; Huang, J.; Huang, M.; Lin, T. YTHDC1 positively regulates PTEN expression and plays a critical role in cisplatin resistance of bladder cancer. Cell Prolif., 2023, 56(7), e13404.
[http://dx.doi.org/10.1111/cpr.13404] [PMID: 37070134]
[121]
Song, J.; You, G.; Yin, X.; Zhu, G.; Wang, W.; Yu, Y.; Zhu, J. Overexpression of YTHDC2 contributes to the progression of prostate cancer and predicts poor outcomes in patients with prostate cancer. J. Biochem. Mol. Toxicol., 2023, 37(4), e23308.
[http://dx.doi.org/10.1002/jbt.23308] [PMID: 36644951]
[122]
Cai, Z.; Xu, H.; Bai, G.; Hu, H.; Wang, D.; Li, H.; Wang, Z. ELAVL1 promotes prostate cancer progression by interacting with other m6A regulators. Front. Oncol., 2022, 12, 939784.
[http://dx.doi.org/10.3389/fonc.2022.939784] [PMID: 35978821]
[123]
Liu, H.; Li, D.; Sun, L.; Qin, H.; Fan, A.; Meng, L.; Graves-Deal, R.; Glass, S.E.; Franklin, J.L.; Liu, Q.; Wang, J.; Yeatman, T.J.; Guo, H.; Zong, H.; Jin, S.; Chen, Z.; Deng, T.; Fang, Y.; Li, C.; Karijolich, J.; Patton, J.G.; Wang, X.; Nie, Y.; Fan, D.; Coffey, R.J.; Zhao, X.; Lu, Y. Interaction of lncRNA MIR100HG with hnRNPA2B1 facilitates m6A-dependent stabilization of TCF7L2 mRNA and colorectal cancer progression. Mol. Cancer, 2022, 21(1), 74.
[http://dx.doi.org/10.1186/s12943-022-01555-3] [PMID: 35279145]
[124]
Fu, C.; Kou, R.; Meng, J.; Jiang, D.; Zhong, R.; Dong, M. m6A genotypes and prognostic signature for assessing the prognosis of patients with acute myeloid leukemia. BMC Med. Genomics, 2023, 16(1), 191.
[http://dx.doi.org/10.1186/s12920-023-01629-1] [PMID: 37596597]
[125]
Zhuang, H.; Yu, B.; Tao, D.; Xu, X.; Xu, Y.; Wang, J.; Jiao, Y.; Wang, L. The role of m6A methylation in therapy resistance in cancer. Mol. Cancer, 2023, 22(1), 91.
[http://dx.doi.org/10.1186/s12943-023-01782-2] [PMID: 37264402]
[126]
Smolarz, B.; Durczyński, A.; Romanowicz, H.; Szyłło, K.; Hogendorf, P. miRNAs in Cancer (Review of Literature). Int. J. Mol. Sci., 2022, 23(5), 2805.
[http://dx.doi.org/10.3390/ijms23052805] [PMID: 35269947]
[127]
Yoshida, T.; Asano, Y.; Ui-Tei, K. Modulation of MicroRNA Processing by Dicer via Its Associated dsRNA Binding Proteins. Noncoding RNA, 2021, 7(3), 57.
[http://dx.doi.org/10.3390/ncrna7030057] [PMID: 34564319]
[128]
Zhang, J.; Bai, R.; Li, M.; Ye, H.; Wu, C.; Wang, C.; Li, S.; Tan, L.; Mai, D.; Li, G.; Pan, L.; Zheng, Y.; Su, J.; Ye, Y.; Fu, Z.; Zheng, S.; Zuo, Z.; Liu, Z.; Zhao, Q.; Che, X.; Xie, D.; Jia, W.; Zeng, M.S.; Tan, W.; Chen, R.; Xu, R.H.; Zheng, J.; Lin, D. Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat. Commun., 2019, 10(1), 1858.
[http://dx.doi.org/10.1038/s41467-019-09712-x] [PMID: 31015415]
[129]
Park, Y.M.; Hwang, S.J.; Masuda, K.; Choi, K.M.; Jeong, M.R.; Nam, D.H.; Gorospe, M.; Kim, H.H. Heterogeneous nuclear ribonucleoprotein C1/C2 controls the metastatic potential of glioblastoma by regulating PDCD4. Mol. Cell. Biol., 2012, 32(20), 4237-4244.
[http://dx.doi.org/10.1128/MCB.00443-12] [PMID: 22907752]
[130]
Klinge, C.M.; Piell, K.M.; Tooley, C.S.; Rouchka, E.C. HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells. Sci. Rep., 2019, 9(1), 9430.
[http://dx.doi.org/10.1038/s41598-019-45636-8] [PMID: 31263129]
[131]
Hou, Y.; Zhang, Q.; Pang, W.; Hou, L.; Liang, Y.; Han, X.; Luo, X.; Wang, P.; Zhang, X.; Li, L.; Meng, X. YTHDC1-mediated augmentation of miR-30d in repressing pancreatic tumorigenesis via attenuation of RUNX1-induced transcriptional activation of Warburg effect. Cell Death Differ., 2021, 28(11), 3105-3124.
[http://dx.doi.org/10.1038/s41418-021-00804-0] [PMID: 34021267]
[132]
Rong, L.; Xu, Y.; Zhang, K.; Jin, L.; Liu, X. HNRNPA2B1 inhibited SFRP2 and activated Wnt-β/catenin via m6A-mediated miR-106b-5p processing to aggravate stemness in lung adenocarcinoma. Pathol. Res. Pract., 2022, 233, 153794.
[http://dx.doi.org/10.1016/j.prp.2022.153794] [PMID: 35364458]
[133]
Yi, D.; Wang, R.; Shi, X.; Xu, L.; Yilihamu, Y.; Sang, J. METTL14 promotes the migration and invasion of breast cancer cells by modulating N6-methyladenosine and hsa-miR-146a-5p expression. Oncol. Rep., 2020, 43(5), 1375-1386.
[http://dx.doi.org/10.3892/or.2020.7515] [PMID: 32323801]
[134]
Gao, C.; Wei, J.; Tang, T.; Huang, Z. Role of microRNA-33a in malignant cells (Review). Oncol. Lett., 2020, 20(3), 2537-2556.
[http://dx.doi.org/10.3892/ol.2020.11835] [PMID: 32782572]
[135]
Shan, Y.; Liu, Y.; Zhao, L.; Liu, B.; Li, Y.; Jia, L. MicroRNA-33a and let-7e inhibit human colorectal cancer progression by targeting ST8SIA1. Int. J. Biochem. Cell Biol., 2017, 90, 48-58.
[http://dx.doi.org/10.1016/j.biocel.2017.07.016] [PMID: 28751193]
[136]
Zhang, C.; Zhang, Y.; Ding, W.; Lin, Y.; Huang, Z.; Luo, Q. MiR-33a suppresses breast cancer cell proliferation and metastasis by targeting ADAM9 and ROS1. Protein Cell, 2015, 6(12), 881-889.
[http://dx.doi.org/10.1007/s13238-015-0223-8] [PMID: 26507842]
[137]
Su, X.; Lai, T.; Tao, Y.; Zhang, Y.; Zhao, C.; Zhou, J.; Chen, E.; Zhu, M.; Zhang, S.; Wang, B.; Mao, Y.; Hu, H. miR-33a-3p regulates METTL3-mediated AREG stability and alters EMT to inhibit pancreatic cancer invasion and metastasis. Sci. Rep., 2023, 13(1), 13587.
[http://dx.doi.org/10.1038/s41598-023-39506-7] [PMID: 37604948]
[138]
Du, M.; Zhang, Y.; Mao, Y.; Mou, J.; Zhao, J.; Xue, Q.; Wang, D.; Huang, J.; Gao, S.; Gao, Y. MiR-33a suppresses proliferation of NSCLC cells via targeting METTL3 mRNA. Biochem. Biophys. Res. Commun., 2017, 482(4), 582-589.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.077] [PMID: 27856248]
[139]
He, L.; Chen, S.; Ying, Y.; Xie, H.; Li, J.; Ma, X.; Wang, W.; Shen, H.; Wang, X.; Zheng, X.; Xie, L. MicroRNA-501-3p inhibits the proliferation of kidney cancer cells by targeting WTAP. Cancer Med., 2021, 10(20), 7222-7232.
[http://dx.doi.org/10.1002/cam4.4157] [PMID: 34595849]
[140]
Liu, W.; Gao, X.; Chen, X.; Zhao, N.; Sun, Y.; Zou, Y.; Guan, Y.; Yang, L.; Pei, X.; Wang, G.; Wang, B.; Li, M.; Song, W. miR-139-5p loss-mediated wtap activation contributes to hepatocellular carcinoma progression by promoting the epithelial to mesenchymal transition. Front. Oncol., 2021, 11, 611544.
[http://dx.doi.org/10.3389/fonc.2021.611544] [PMID: 33937023]
[141]
Xue, J.; Xiao, P.; Yu, X.; Zhang, X. A positive feedback loop between AlkB homolog 5 and miR-193a-3p promotes growth and metastasis in esophageal squamous cell carcinoma. Hum. Cell, 2021, 34(2), 502-514.
[http://dx.doi.org/10.1007/s13577-020-00458-z] [PMID: 33231844]
[142]
Feng, H.; Yuan, X.; Wu, S.; Yuan, Y.; Cui, L.; Lin, D.; Peng, X.; Liu, X.; Wang, F. Effects of writers, erasers and readers within miRNA-related m6A modification in cancers. Cell Prolif., 2023, 56(1), e13340.
[http://dx.doi.org/10.1111/cpr.13340] [PMID: 36162823]
[143]
Das Mandal, S.; Ray, P.S. Transcriptome-wide analysis reveals spatial correlation between N6-methyladenosine and binding sites of microRNAs and RNA-binding proteins. Genomics, 2021, 113(1), 205-216.
[http://dx.doi.org/10.1016/j.ygeno.2020.12.027] [PMID: 33340693]
[144]
Kanoria, S.; Rennie, W.A.; Carmack, C.S.; Lu, J.; Ding, Y. N 6-methyladenosine enhances post-transcriptional gene regulation by microRNAs. Bioinformatics Advances, 2022, 2(1), vbab046.
[http://dx.doi.org/10.1093/bioadv/vbab046] [PMID: 35098135]
[145]
He, X.; Shu, Y. RNA N6-methyladenosine modification participates in miR-660/E2F3 axis-mediated inhibition of cell proliferation in gastric cancer. Pathol. Res. Pract., 2019, 215(6), 152393.
[http://dx.doi.org/10.1016/j.prp.2019.03.021] [PMID: 30914234]
[146]
Zhang, M.; Xin, Y. Circular RNAs: A new frontier for cancer diagnosis and therapy. J. Hematol. Oncol., 2018, 11(1), 21.
[http://dx.doi.org/10.1186/s13045-018-0569-5] [PMID: 29433541]
[147]
Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet., 2019, 20(11), 675-691.
[http://dx.doi.org/10.1038/s41576-019-0158-7] [PMID: 31395983]
[148]
Sun, M.; Yang, Y. Biological functions and applications of circRNAs—next generation of RNA-based therapy. J. Mol. Cell Biol., 2023, 15(5), mjad031.
[http://dx.doi.org/10.1093/jmcb/mjad031] [PMID: 37147015]
[149]
Yang, Y.; Fan, X.; Mao, M.; Song, X.; Wu, P.; Zhang, Y.; Jin, Y.; Yang, Y.; Chen, L.L.; Wang, Y.; Wong, C.C.L.; Xiao, X.; Wang, Z. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res., 2017, 27(5), 626-641.
[http://dx.doi.org/10.1038/cr.2017.31] [PMID: 28281539]
[150]
Chen, R.X.; Chen, X.; Xia, L.P.; Zhang, J.X.; Pan, Z.Z.; Ma, X.D.; Han, K.; Chen, J.W.; Judde, J.G.; Deas, O.; Wang, F.; Ma, N.F.; Guan, X.; Yun, J.P.; Wang, F.W.; Xu, R.H.; Dan Xie N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat. Commun., 2019, 10(1), 4695.
[http://dx.doi.org/10.1038/s41467-019-12651-2] [PMID: 31619685]
[151]
Fan, H.N.; Chen, Z.Y.; Chen, X.Y.; Chen, M.; Yi, Y.C.; Zhu, J.S.; Zhang, J. METTL14-mediated m6A modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis. Mol. Cancer, 2022, 21(1), 51.
[http://dx.doi.org/10.1186/s12943-022-01521-z] [PMID: 35164771]
[152]
Liu, H.; Lan, T.; Li, H.; Xu, L.; Chen, X.; Liao, H.; Chen, X.; Du, J.; Cai, Y.; Wang, J.; Li, X.; Huang, J.; Yuan, K.; Zeng, Y. Circular RNA circDLC1 inhibits MMP1-mediated liver cancer progression via interaction with HuR. Theranostics, 2021, 11(3), 1396-1411.
[http://dx.doi.org/10.7150/thno.53227] [PMID: 33391541]
[153]
Li, Z.; Yang, H.Y.; Dai, X.Y.; Zhang, X.; Huang, Y.Z.; Shi, L.; Wei, J.F.; Ding, Q. CircMETTL3, upregulated in a m6A-dependent manner, promotes breast cancer progression. Int. J. Biol. Sci., 2021, 17(5), 1178-1190.
[http://dx.doi.org/10.7150/ijbs.57783] [PMID: 33867838]
[154]
Chen, C.; Yuan, W.; Zhou, Q.; Shao, B.; Guo, Y.; Wang, W.; Yang, S.; Guo, Y.; Zhao, L.; Dang, Q.; Yang, X.; Wang, G.; Kang, Q.; Ji, Z.; Liu, J.; Sun, Z. N6-methyladenosine-induced circ1662 promotes metastasis of colorectal cancer by accelerating YAP1 nuclear localization. Theranostics, 2021, 11(9), 4298-4315.
[http://dx.doi.org/10.7150/thno.51342] [PMID: 33754062]
[155]
Ji, F.; Lu, Y.; Chen, S.; Yu, Y.; Lin, X.; Zhu, Y.; Luo, X. IGF2BP2-modified circular RNA circARHGAP12 promotes cervical cancer progression by interacting m6A/FOXM1 manner. Cell Death Discov., 2021, 7(1), 215.
[http://dx.doi.org/10.1038/s41420-021-00595-w] [PMID: 34392306]
[156]
Guan, H.; Tian, K.; Luo, W.; Li, M. m6A-modified circRNA MYO1C participates in the tumor immune surveillance of pancreatic ductal adenocarcinoma through m6A/PD-L1 manner. Cell Death Dis., 2023, 14(2), 120.
[http://dx.doi.org/10.1038/s41419-023-05570-0] [PMID: 36781839]
[157]
Duan, J.L.; Chen, W.; Xie, J.J.; Zhang, M.L.; Nie, R.C.; Liang, H.; Mei, J.; Han, K.; Xiang, Z.C.; Wang, F.W.; Teng, K.; Chen, R.X.; Deng, M.H.; Yin, Y.X.; Zhang, N.; Xie, D.; Cai, M.Y. A novel peptide encoded by N6-methyladenosine modified circMAP3K4 prevents apoptosis in hepatocellular carcinoma. Mol. Cancer, 2022, 21(1), 93.
[http://dx.doi.org/10.1186/s12943-022-01537-5] [PMID: 35366894]
[158]
Wu, Q.; Yin, X.; Zhao, W.; Xu, W.; Chen, L. Molecular mechanism of m6A methylation of circDLC1 mediated by RNA methyltransferase METTL3 in the malignant proliferation of glioma cells. Cell Death Discov., 2022, 8(1), 229.
[http://dx.doi.org/10.1038/s41420-022-00979-6] [PMID: 35474040]
[159]
Li, B.; Zhu, L.; Lu, C.; Wang, C.; Wang, H.; Jin, H.; Ma, X.; Cheng, Z.; Yu, C.; Wang, S.; Zuo, Q.; Zhou, Y.; Wang, J.; Yang, C.; Lv, Y.; Jiang, L.; Qin, W. circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity. Nat. Commun., 2021, 12(1), 295.
[http://dx.doi.org/10.1038/s41467-020-20527-z] [PMID: 33436560]
[160]
Pisignano, G.; Michael, D.C.; Visal, T.H.; Pirlog, R.; Ladomery, M.; Calin, G.A. Going circular: history, present, and future of circRNAs in cancer. Oncogene, 2023, 42(38), 2783-2800.
[http://dx.doi.org/10.1038/s41388-023-02780-w] [PMID: 37587333]
[161]
Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; Gingeras, T.R.; Guttman, M.; Hirose, T.; Huarte, M.; Johnson, R.; Kanduri, C.; Kapranov, P.; Lawrence, J.B.; Lee, J.T.; Mendell, J.T.; Mercer, T.R.; Moore, K.J.; Nakagawa, S.; Rinn, J.L.; Spector, D.L.; Ulitsky, I.; Wan, Y.; Wilusz, J.E.; Wu, M. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol., 2023, 24(6), 430-447.
[http://dx.doi.org/10.1038/s41580-022-00566-8] [PMID: 36596869]
[162]
Fatica, A.; Bozzoni, I. Long non-coding RNAs: new players in cell differentiation and development. Nat. Rev. Genet., 2014, 15(1), 7-21.
[http://dx.doi.org/10.1038/nrg3606] [PMID: 24296535]
[163]
Aprile, M.; Costa, V.; Cimmino, A.; Calin, G.A. Emerging role of oncogenic long noncoding RNA as cancer biomarkers. Int. J. Cancer, 2023, 152(5), 822-834.
[http://dx.doi.org/10.1002/ijc.34282] [PMID: 36082440]
[164]
Fonseca-Montaño, M.A.; Vázquez-Santillán, K.I.; Hidalgo-Miranda, A. The current advances of lncRNAs in breast cancer immunobiology research. Front. Immunol., 2023, 14, 1194300.
[http://dx.doi.org/10.3389/fimmu.2023.1194300] [PMID: 37342324]
[165]
Li, J.; Momen-Heravi, F.; Wu, X.; He, K. Mechanism of METTL14 and m6A modification of lncRNA MALAT1 in the proliferation of oral squamous cell carcinoma cells. Oral Dis., 2023, 29(5), 2012-2026.
[http://dx.doi.org/10.1111/odi.14220] [PMID: 35467063]
[166]
Li, S.; Jiang, F.; Chen, F.; Deng, Y.; Pan, X. Effect of m6A methyltransferase METTL3 -mediated MALAT1/E2F1/AGR2 axis on adriamycin resistance in breast cancer. J. Biochem. Mol. Toxicol., 2022, 36(1), e22922.
[http://dx.doi.org/10.1002/jbt.22922] [PMID: 34964205]
[167]
Lee, J.; Wu, Y.; Harada, B.T.; Li, Y.; Zhao, J.; He, C.; Ma, Y.; Wu, X. N 6 -methyladenosine modification of lncRNA Pvt1 governs epidermal stemness. EMBO J., 2021, 40(8), e106276.
[http://dx.doi.org/10.15252/embj.2020106276] [PMID: 33729590]
[168]
Chen, S.; Zhou, L.; Wang, Y. ALKBH5-mediated m6A demethylation of lncRNA PVT1 plays an oncogenic role in osteosarcoma. Cancer Cell Int., 2020, 20(1), 34.
[http://dx.doi.org/10.1186/s12935-020-1105-6] [PMID: 32021563]
[169]
Hu, Y.; Lv, F.; Li, N.; Yuan, X.; Zhang, L.; Zhao, S.; Jin, L.; Qiu, Y. Long noncoding RNAMEG3 inhibits oral squamous cell carcinoma progression viaGATA3. FEBS Open Bio, 2023, 13(1), 195-208.
[http://dx.doi.org/10.1002/2211-5463.13532] [PMID: 36468944]
[170]
Li, K.; Gong, Q.; Xiang, X.D.; Guo, G.; Liu, J.; Zhao, L.; Li, J.; Chen, N.; Li, H.; Zhang, L.J.; Zhou, C.Y.; Wang, Z.Y.; Zhuang, L. HNRNPA2B1-mediated m6A modification of lncRNA MEG3 facilitates tumorigenesis and metastasis of non-small cell lung cancer by regulating miR-21-5p/PTEN axis. J. Transl. Med., 2023, 21(1), 382.
[http://dx.doi.org/10.1186/s12967-023-04190-8] [PMID: 37308993]
[171]
Ni, W.; Yao, S.; Zhou, Y.; Liu, Y.; Huang, P.; Zhou, A.; Liu, J.; Che, L.; Li, J. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m6A reader YTHDF3. Mol. Cancer, 2019, 18(1), 143.
[http://dx.doi.org/10.1186/s12943-019-1079-y] [PMID: 31619268]
[172]
Zhu, P.; He, F.; Hou, Y.; Tu, G.; Li, Q.; Jin, T.; Zeng, H.; Qin, Y.; Wan, X.; Qiao, Y.; Qiu, Y.; Teng, Y.; Liu, M. A novel hypoxic long noncoding RNA KB-1980E6.3 maintains breast cancer stem cell stemness via interacting with IGF2BP1 to facilitate c-Myc mRNA stability. Oncogene, 2021, 40(9), 1609-1627.
[http://dx.doi.org/10.1038/s41388-020-01638-9] [PMID: 33469161]
[173]
Ma, F.; Liu, X.; Zhou, S.; Li, W.; Liu, C.; Chadwick, M.; Qian, C. Long non-coding RNA FGF13-AS1 inhibits glycolysis and stemness properties of breast cancer cells through FGF13-AS1/IGF2BPs/Myc feedback loop. Cancer Lett., 2019, 450, 63-75.
[http://dx.doi.org/10.1016/j.canlet.2019.02.008] [PMID: 30771425]
[174]
Zuo, L.; Su, H.; Zhang, Q.; Wu, W.; Zeng, Y.; Li, X.; Xiong, J.; Chen, L.; Zhou, Y. Comprehensive analysis of lncRNAs N6-methyladenosine modification in colorectal cancer. Aging (Albany NY), 2021, 13(3), 4182-4198.
[http://dx.doi.org/10.18632/aging.202383] [PMID: 33493136]
[175]
Zeng, H.; Xu, Y.; Xu, S.; Jin, L.; Shen, Y.; Rajan, K.C.; Bhandari, A.; Xia, E. Construction and Analysis of a Colorectal Cancer Prognostic Model Based on N6-Methyladenosine-Related lncRNAs. Front. Cell Dev. Biol., 2021, 9, 698388.
[http://dx.doi.org/10.3389/fcell.2021.698388] [PMID: 34490250]
[176]
Song, W.; Ren, J.; Yuan, W.; Xiang, R.; Ge, Y.; Fu, T. N6-Methyladenosine-Related lncRNA Signature Predicts the Overall Survival of Colorectal Cancer Patients. Genes (Basel), 2021, 12(9), 1375.
[http://dx.doi.org/10.3390/genes12091375] [PMID: 34573357]
[177]
Wang, H.; Meng, Q.; Ma, B. Characterization of the Prognostic m6A-Related lncRNA Signature in Gastric Cancer. Front. Oncol., 2021, 11, 630260.
[http://dx.doi.org/10.3389/fonc.2021.630260] [PMID: 33928026]
[178]
Tu, Z.; Wu, L.; Wang, P.; Hu, Q.; Tao, C.; Li, K.; Huang, K.; Zhu, X. N6-Methylandenosine-Related lncRNAs Are Potential Biomarkers for Predicting the Overall Survival of Lower-Grade Glioma Patients. Front. Cell Dev. Biol., 2020, 8, 642.
[http://dx.doi.org/10.3389/fcell.2020.00642] [PMID: 32793593]
[179]
Weng, L.; Qiu, K.; Gao, W.; Shi, C.; Shu, F. LncRNA PCGEM1 accelerates non-small cell lung cancer progression via sponging miR-433-3p to upregulate WTAP. BMC Pulm. Med., 2020, 20(1), 213.
[http://dx.doi.org/10.1186/s12890-020-01240-5] [PMID: 32787827]
[180]
Zhou, X.; Chang, Y.; Zhu, L.; Shen, C.; Qian, J.; Chang, R. LINC00839/miR-144-3p/WTAP (WT1 Associated protein) axis is involved in regulating hepatocellular carcinoma progression. Bioengineered, 2021, 12(2), 10849-10861.
[http://dx.doi.org/10.1080/21655979.2021.1990578] [PMID: 34634995]
[181]
Ge, J.; Liu, M.; Zhang, Y.; Xie, L.; Shi, Z.; Wang, G. SNHG10/miR-141-3p/WTAP axis promotes osteosarcoma proliferation and migration. J. Biochem. Mol. Toxicol., 2022, 36(6), e23031.
[http://dx.doi.org/10.1002/jbt.23031] [PMID: 35274397]
[182]
Huang, T.; Cao, L.; Feng, N.; Xu, B.; Dong, Y.; Wang, M. N 6 -methyladenosine (m 6 A)-mediated lncRNA DLGAP1-AS1enhances breast canceradriamycin resistance through miR-299-3p/WTAP feedback loop. Bioengineered, 2021, 12(2), 10935-10944.
[http://dx.doi.org/10.1080/21655979.2021.2000198] [PMID: 34866525]
[183]
Bedi, R.K.; Huang, D.; Li, Y.; Caflisch, A. Structure-Based Design of Inhibitors of the m 6 A-RNA Writer Enzyme METTL3. ACS Bio & Med Chem Au, 2023, 3(4), 359-370.
[http://dx.doi.org/10.1021/acsbiomedchemau.3c00023] [PMID: 37599794]
[184]
Moroz-Omori, E.V.; Huang, D.; Kumar Bedi, R.; Cheriyamkunnel, S.J.; Bochenkova, E.; Dolbois, A.; Rzeczkowski, M.D.; Li, Y.; Wiedmer, L.; Caflisch, A. METTL3 Inhibitors for Epitranscriptomic Modulation of Cellular Processes. ChemMedChem, 2021, 16(19), 3035-3043.
[http://dx.doi.org/10.1002/cmdc.202100291] [PMID: 34237194]
[185]
Zhang, L.; Ren, T.; Wang, Z.; Wang, R.; Chang, J. Comparative study of the binding of 3 flavonoids to the fat mass and obesity-associated protein by spectroscopy and molecular modeling. J. Mol. Recognit., 2017, 30(6), e2606.
[http://dx.doi.org/10.1002/jmr.2606] [PMID: 28058739]
[186]
Chen, B.; Ye, F.; Yu, L.; Jia, G.; Huang, X.; Zhang, X.; Peng, S.; Chen, K.; Wang, M.; Gong, S.; Zhang, R.; Yin, J.; Li, H.; Yang, Y.; Liu, H.; Zhang, J.; Zhang, H.; Zhang, A.; Jiang, H.; Luo, C.; Yang, C.G. Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J. Am. Chem. Soc., 2012, 134(43), 17963-17971.
[http://dx.doi.org/10.1021/ja3064149] [PMID: 23045983]
[187]
Yu, J.; Chen, M.; Huang, H.; Zhu, J.; Song, H.; Zhu, J.; Park, J.; Ji, S.J. Dynamic m6A modification regulates local translation of mRNA in axons. Nucleic Acids Res., 2018, 46(3), 1412-1423.
[http://dx.doi.org/10.1093/nar/gkx1182] [PMID: 29186567]
[188]
Huang, Y.; Yan, J.; Li, Q.; Li, J.; Gong, S.; Zhou, H.; Gan, J.; Jiang, H.; Jia, G.F.; Luo, C.; Yang, C.G. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res., 2015, 43(1), 373-384.
[http://dx.doi.org/10.1093/nar/gku1276] [PMID: 25452335]
[189]
Yankova, E.; Blackaby, W.; Albertella, M.; Rak, J.; De Braekeleer, E.; Tsagkogeorga, G.; Pilka, E.S.; Aspris, D.; Leggate, D.; Hendrick, A.G.; Webster, N.A.; Andrews, B.; Fosbeary, R.; Guest, P.; Irigoyen, N.; Eleftheriou, M.; Gozdecka, M.; Dias, J.M.L.; Bannister, A.J.; Vick, B.; Jeremias, I.; Vassiliou, G.S.; Rausch, O.; Tzelepis, K.; Kouzarides, T. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature, 2021, 593(7860), 597-601.
[http://dx.doi.org/10.1038/s41586-021-03536-w] [PMID: 33902106]
[190]
Zaccara, S.; Jaffrey, S.R. A Unified Model for the Function of YTHDF Proteins in Regulating m6A-Modified mRNA. Cell, 2020, 181(7), 1582-1595.e18.
[http://dx.doi.org/10.1016/j.cell.2020.05.012] [PMID: 32492408]
[191]
Deng, S.; Zhang, J.; Su, J.; Zuo, Z.; Zeng, L.; Liu, K.; Zheng, Y.; Huang, X.; Bai, R.; Zhuang, L.; Ye, Y.; Li, M.; Pan, L.; Deng, J.; Wu, G.; Li, R.; Zhang, S.; Wu, C.; Lin, D.; Chen, J.; Zheng, J. RNA m6A regulates transcription via DNA demethylation and chromatin accessibility. Nat. Genet., 2022, 54(9), 1427-1437.
[http://dx.doi.org/10.1038/s41588-022-01173-1] [PMID: 36071173]

© 2024 Bentham Science Publishers | Privacy Policy