Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Quinolone Derivatives as Anticancer Agents: Importance in Medicinal Chemistry

Author(s): Nursyuhada Azzman, Sirajudheen Anwar, Wan Ahmad Syazani Mohamed and Nafees Ahemad*

Volume 24, Issue 13, 2024

Published on: 08 April, 2024

Page: [1134 - 1157] Pages: 24

DOI: 10.2174/0115680266300736240403075307

Price: $65

Abstract

Quinolone is a heterocyclic compound containing carbonyl at the C-2 or C-4 positions with nitrogen at the C-1 position. The scaffold was first identified for its antibacterial properties, and the derivatives were known to possess many pharmacological activities, including anticancer. In this review, the quinolin-2(H)-one and quinolin-4(H)-one derivatives were identified to inhibit several various proteins and enzymes involved in cancer cell growth, such as topoisomerase, microtubules, protein kinases, phosphoinositide 3-kinases (PI3K) and histone deacetylase (HDAC). Hybrids of quinolone with curcumin or chalcone, 2-phenylpyrroloquinolin-4-one and 4-quinolone derivatives have demonstrated strong potency against cancer cell lines. Additionally, quinolones have been explored as inhibitors of protein kinases, including EGFR and VEGFR. Therefore, this review aims to consolidate the medicinal chemistry of quinolone derivatives in the pipeline and discuss their similarities in terms of their pharmacokinetic profiles and potential target sites to provide an understanding of the structural requirements of anticancer quinolones.

Keywords: Quinolone, Anticancer, Topoisomerase, Hybrid, Tyrosine kinase, Histone deacetylase, Small molecules.

Graphical Abstract
[1]
Liu, K.L.; Teng, F.; Xiong, L.; Li, X.; Gao, C.; Yu, L.T. Discovery of quinolone derivatives as antimycobacterial agents. RSC Advances, 2021, 11(39), 24095-24115.
[http://dx.doi.org/10.1039/D0RA09250A] [PMID: 35479020]
[2]
Zeleke, D.; Melaku, Y. A review on synthesis of quinoline analogs as antimalarial, antibacterial and anticancer agents. Ethiopian J. Sci. Sustain. Develop., 2020, 8(2), 2021.
[http://dx.doi.org/10.20372/ejssdastu:v8.i2.2021.368]
[3]
Senerovic, L.; Opsenica, D.; Moric, I.; Aleksic, I.; Spasić, M.; Vasiljevic, B. Quinolines and quinolones as antibacterial, antifungal, anti-virulence, antiviral and anti-parasitic agents.Advances in Experimental Medicine and Biology; Springer, 2020, 1282, pp. 37-69.
[http://dx.doi.org/10.1007/5584_2019_428]
[4]
Dine, I.; Mulugeta, E.; Melaku, Y.; Belete, M. Recent advances in the synthesis of pharmaceutically active 4-quinolone and its analogues: a review. RSC Advances, 2023, 13(13), 8657-8682.
[http://dx.doi.org/10.1039/D3RA00749A] [PMID: 36936849]
[5]
Upadhyay, K.D.; Dodia, N.M.; Khunt, R.C.; Chaniara, R.S.; Shah, A.K. Synthesis and Biological Screening of Pyrano[3,2- c]quinoline Analogues as Anti-inflammatory and Anticancer Agents. ACS Med. Chem. Lett., 2018, 9(3), 283-288.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00545] [PMID: 29541375]
[6]
Bisacchi, G.; Hale, M.A. “Double-Edged” Scaffold: Antitumor Power within the Antibacterial Quinolone. Curr. Med. Chem., 2016, 23(6), 520-577.
[http://dx.doi.org/10.2174/0929867323666151223095839] [PMID: 26695512]
[7]
Ilakiyalakshmi, M.; Arumugam Napoleon, A. Review on recent development of quinoline for anticancer activities. Arab. J. Chem., 2022, 15(11), 104168.
[http://dx.doi.org/10.1016/j.arabjc.2022.104168]
[8]
Sissi, C.; Palumbo, M. The quinolone family: from antibacterial to anticancer agents. Curr. Med. Chem. Anticancer Agents, 2003, 3(6), 439-450.
[http://dx.doi.org/10.2174/1568011033482279] [PMID: 14529452]
[9]
Samir, M.; Ramadan, M.; Abdelrahman, M.H.; Abdel-Aziz, M.; El-Din, G.; Abuo-Rahma, A. Recent Strategies in Design of Antitumor and Antibacterial Fluoroquinolones. J Adv Biomed & Pharm Sci., 2021, 4, 134-151. http://jabps.journals.ekb.eg
[http://dx.doi.org/10.21608/jabps.2021.68305.1124]
[10]
Azzman, N.; Shoaib Ali Gill, M.; Syed Hassan, S.; Ahemad, N. Exploring the potential of Designed Multiple Ligands (DML) strategy with quinolones as anticancer. Curr. Trends Biotechnol. Pharm., 2023, 17(4A), 8-14.
[http://dx.doi.org/10.5530/ctbp.2023.4s.84]
[11]
Yadav, V.; Talwar, P. Repositioning of fluoroquinolones from antibiotic to anti-cancer agents: An underestimated truth. Biomed. Pharmacother., 2019, 111, 934-946.
[http://dx.doi.org/10.1016/j.biopha.2018.12.119] [PMID: 30841473]
[12]
Singh, Y.; Bhatia, N.; Biharee, A.; Kulkarni, S.; Thareja, S.; Monga, V. Developing our knowledge of the quinolone scaffold and its value to anticancer drug design. Expert Opin. Drug Discov., 2023, 18(10), 1151-1167.
[http://dx.doi.org/10.1080/17460441.2023.2246366] [PMID: 37592843]
[13]
Santos-Junior. PF da S Synthesis of hybrids thiazole–quinoline, thiazole–indole and their analogs: in vitro anti-proliferative effects on cancer cell lines, DNA binding properties and molecular modeling. New J. Chem., 2021, 45(31), 13847-13859.
[http://dx.doi.org/10.1039/D1NJ02105B]
[14]
Ceylan, Ş.; Cebeci, Y.U.; Demirbaş, N.; Batur, Ö.Ö.; Özakpınar, Ö.B. Antimicrobial, Antioxidant and Antiproliferative Activities of Novel Quinolones. ChemistrySelect, 2020, 5(36), 11340-11346.
[http://dx.doi.org/10.1002/slct.202002779]
[15]
Lindamulage, I.K.; Vu, H.Y.; Karthikeyan, C.; Knockleby, J.; Lee, Y.F.; Trivedi, P.; Lee, H. Novel quinolone chalcones targeting colchicine-binding pocket kill multidrug-resistant cancer cells by inhibiting tubulin activity and MRP1 function. Sci. Rep., 2017, 7(1), 10298.
[http://dx.doi.org/10.1038/s41598-017-10972-0] [PMID: 28860494]
[16]
El-Fakharany, Z.S.; Nissan, Y.M.; Sedky, N.K.; Arafa, R.K.; Abou-Seri, S.M. New proapoptotic chemotherapeutic agents based on the quinolone-3-carboxamide scaffold acting by VEGFR-2 inhibition. Sci. Rep., 2023, 13(1), 11346.
[http://dx.doi.org/10.1038/s41598-023-38264-w] [PMID: 37443185]
[17]
Sweidan, K.; Elfadel, H.; Sabbah, D.A.; Bardaweel, S.K.; Hajjo, R.; Anjum, S.; Sinoj, J.; Nair, V.A.; Abu-Gharbieh, E.; El-Huneidi, W. Novel Derivatives of 4,6‐Dihydroxy‐2‐Quinolone‐3‐Carboxamides as Potential PI3Kα Inhibitors. ChemistrySelect, 2022, 7(32), e202202263.
[http://dx.doi.org/10.1002/slct.202202263]
[18]
Balasubramanian, G.; Kilambi, N.; Rathinasamy, S.; Rajendran, P.; Narayanan, S.; Rajagopal, S. Quinolone-based HDAC inhibitors. J. Enzyme Inhib. Med. Chem., 2014, 29(4), 555-562.
[http://dx.doi.org/10.3109/14756366.2013.827675] [PMID: 25019596]
[19]
Mirzaei, S.; Hadizadeh, F.; Eisvand, F.; Mosaffa, F.; Ghodsi, R. Synthesis, structure-activity relationship and molecular docking studies of novel quinoline-chalcone hybrids as potential anticancer agents and tubulin inhibitors. J. Mol. Struct., 2020, 1202, 127310.
[http://dx.doi.org/10.1016/j.molstruc.2019.127310]
[20]
Gao, F.; Zhang, X.; Wang, T.; Xiao, J. Quinolone hybrids and their anti-cancer activities: An overview. Eur. J. Med. Chem., 2019, 165, 59-79.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.017] [PMID: 30660827]
[21]
Pal, A.; Tapadar, P.; Pal, R. Exploring the Molecular Mechanism of Cinnamic Acid-Mediated Cytotoxicity in Triple Negative MDA-MB-231 Breast Cancer Cells. Anticancer. Agents Med. Chem., 2021, 21(9), 1141-1150.
[http://dx.doi.org/10.2174/1871520620666200807222248] [PMID: 32767960]
[22]
Zhu, B.; Shang, B.; Li, Y.; Zhen, Y. Inhibition of histone deacetylases by trans-cinnamic acid and its antitumor effect against colon cancer xenografts in athymic mice. Mol. Med. Rep., 2016, 13(5), 4159-4166.
[http://dx.doi.org/10.3892/mmr.2016.5041] [PMID: 27035417]
[23]
Qi, G.; Chen, J.; Shi, C.; Wang, Y.; Mi, S.; Shao, W.; Yu, X.; Ma, Y.; Ling, J.; Huang, J. Cinnamic Acid (CINN) Induces Apoptosis and Proliferation in Human Nasopharyngeal Carcinoma Cells. Cell. Physiol. Biochem., 2016, 40(3-4), 589-596.
[http://dx.doi.org/10.1159/000452572] [PMID: 27889776]
[24]
B. Bakare S. Synthesis and biological evaluation of some hybrid 2-quinolinone derivatives containing cinnamic acid as anti-breast cancer drugs. Bull. Chem. Soc. Ethiop., 2022, 35(3), 551-564.
[http://dx.doi.org/10.4314/bcse.v35i3.7]
[25]
Abu Almaaty, A.H.; Elgrahy, N.A.; Fayad, E.; Abu Ali, O.A.; Mahdy, A.R.E.; Barakat, L.A.A.; El Behery, M. Design, Synthesis and Anticancer Evaluation of Substituted Cinnamic Acid Bearing 2-Quinolone Hybrid Derivatives. Molecules, 2021, 26(16), 4724.
[http://dx.doi.org/10.3390/molecules26164724] [PMID: 34443308]
[26]
Raghavan, S.; Manogaran, P.; Gadepalli Narasimha, K.K.; Kalpattu Kuppusami, B.; Mariyappan, P.; Gopalakrishnan, A.; Venkatraman, G. Synthesis and anticancer activity of novel curcumin–quinolone hybrids. Bioorg. Med. Chem. Lett., 2015, 25(17), 3601-3605.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.068] [PMID: 26174555]
[27]
Abonia, R.; Insuasty, D.; Castillo, J.; Insuasty, B.; Quiroga, J.; Nogueras, M.; Cobo, J. Synthesis of novel quinoline-2-one based chalcones of potential anti-tumor activity. Eur. J. Med. Chem., 2012, 57, 29-40.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.039] [PMID: 23043766]
[28]
Delgado, J.L.; Hsieh, C.M.; Chan, N.L.; Hiasa, H. Topoisomerases as anticancer targets. Biochem. J., 2018, 475(2), 373-398.
[http://dx.doi.org/10.1042/BCJ20160583] [PMID: 29363591]
[29]
Yakkala, P.A.; Penumallu, N.R.; Shafi, S.; Kamal, A. Prospects of Topoisomerase Inhibitors as Promising Anti-Cancer Agents. Pharmaceuticals, 2023, 16(10), 1456.
[http://dx.doi.org/10.3390/ph16101456] [PMID: 37895927]
[30]
Xu, H.; Hurley, L.H. A first-in-class clinical G-quadruplex-targeting drug. The bench-to-bedside translation of the fluoroquinolone QQ58 to CX-5461 (Pidnarulex). Bioorg. Med. Chem. Lett., 2022, 77, 129016.
[http://dx.doi.org/10.1016/j.bmcl.2022.129016] [PMID: 36195286]
[31]
Ravandi, F.; Ritchie, E.K.; Sayar, H.; Lancet, J.E.; Craig, M.D.; Vey, N.; Strickland, S.A.; Schiller, G.J.; Jabbour, E.; Pigneux, A.; Horst, H.A.; Récher, C.; Klimek, V.M.; Cortes, J.E.; Carella, A.M.; Egyed, M.; Krug, U.; Fox, J.A.; Craig, A.R.; Ward, R.; Smith, J.A.; Acton, G.; Kantarjian, H.M.; Stuart, R.K. Phase 3 results for vosaroxin/cytarabine in the subset of patients ≥60 years old with refractory/early relapsed acute myeloid leukemia. Haematologica, 2018, 103(11), e514-e518.
[http://dx.doi.org/10.3324/haematol.2018.191361] [PMID: 29794146]
[32]
Morgan, R.K.; Brooks, T.A. Targeting Promoter G-Quadruplexes for Transcriptional Control. 2018.
[http://dx.doi.org/10.1039/9781782624011-00169]
[33]
Kloskowski, T.; Frąckowiak, S.; Adamowicz, J.; Szeliski, K.; Rasmus, M.; Drewa, T.; Pokrywczyńska, M. Quinolones as a Potential Drug in Genitourinary Cancer Treatment—A Literature Review. Front. Oncol., 2022, 12, 890337.
[http://dx.doi.org/10.3389/fonc.2022.890337] [PMID: 35756639]
[34]
Abdel-Aal, M.A.A.; Abdel-Aziz, S.A.; Shaykoon, M.S.A.; Abuo-Rahma, G.E.D.A. Towards anticancer fluoroquinolones: A review article. Arch. Pharm. (Weinheim), 2019, 352(7), 1800376.
[http://dx.doi.org/10.1002/ardp.201800376] [PMID: 31215674]
[35]
Shou, K.; Li, J.; Jin, Y.; Lv, Y. Design, synthesis, biological evaluation, and molecular docking studies of quinolone derivatives as potential antitumor topoisomerase I inhibitors. Chem. Pharm. Bull. (Tokyo), 2013, 61(6), 631-636.
[http://dx.doi.org/10.1248/cpb.c13-00040] [PMID: 23558565]
[36]
Kassab, A.E.; Gedawy, E.M. Novel ciprofloxacin hybrids using biology oriented drug synthesis (BIODS) approach: Anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis, topoisomerase II inhibition, and antibacterial activity. Eur. J. Med. Chem., 2018, 150, 403-418.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.026] [PMID: 29547830]
[37]
Swedan, H.K.; Kassab, A.E.; Gedawy, E.M.; Elmeligie, S.E. Design, synthesis, and biological evaluation of novel ciprofloxacin derivatives as potential anticancer agents targeting topoisomerase II enzyme. J. Enzyme Inhib. Med. Chem., 2023, 38(1), 118-137.
[http://dx.doi.org/10.1080/14756366.2022.2136172] [PMID: 36305290]
[38]
Abdel-Aziz, A.A.M.; El-Azab, A.S.; Alanazi, A.M.; Asiri, Y.A.; Al-Suwaidan, I.A.; Maarouf, A.R.; Ayyad, R.R.; Shawer, T.Z. Synthesis and potential antitumor activity of 7-(4-substituted piperazin-1-yl)-4-oxoquinolines based on ciprofloxacin and norfloxacin scaffolds: in silico studies. J. Enzyme Inhib. Med. Chem., 2016, 31(5), 796-809.
[http://dx.doi.org/10.3109/14756366.2015.1069288] [PMID: 26226179]
[39]
Ge, R.; Zhao, Q.; Xie, Z.; Lu, L.; Guo, Q.; Li, Z.; Zhao, L. Synthesis and biological evaluation of 6-fluoro-3-phenyl-7-piperazinyl quinolone derivatives as potential topoisomerase I inhibitors. Eur. J. Med. Chem., 2016, 122, 465-474.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.054] [PMID: 27416553]
[40]
Barile, E.; De, S.K.; Feng, Y.; Chen, V.; Yang, L.; Ronai, Z.; Pellecchia, M. Synthesis and SAR studies of dual AKT/NF-κB inhibitors against melanoma. Chem. Biol. Drug Des., 2013, 82(5), 520-533.
[http://dx.doi.org/10.1111/cbdd.12177] [PMID: 23790042]
[41]
Traxler, P.; Green, J.; Mett, H.; Séquin, U.; Furet, P. Use of a pharmacophore model for the design of EGFR tyrosine kinase inhibitors: isoflavones and 3-phenyl-4(1H)-quinolones. J. Med. Chem., 1999, 42(6), 1018-1026.
[http://dx.doi.org/10.1021/jm980551o] [PMID: 10090785]
[42]
Blaukat, A. Tyrosine Kinases. In: Encyclopedia of Molecular Pharmacology; Offermanns, S.; Rosenthal, W., Eds.;
[http://dx.doi.org/10.1007/978-3-540-38918-7_165]
[43]
dos Santos Nascimento, I.J.; de Moura, R.O. C-KIT Receptor Inhibition as a Promising Approach to Design Anticancer Drugs. Curr. Med. Chem., 2023, 30(24), 2702-2704.
[http://dx.doi.org/10.2174/0929867330666230111110537] [PMID: 36631920]
[44]
K Bhanumathy, K.; Balagopal, A.; Vizeacoumar, F.S.; Vizeacoumar, F.J.; Freywald, A.; Giambra, V. Protein Tyrosine Kinases: Their Roles and Their Targeting in Leukemia. Cancers, 2021, 13(2), 184.
[http://dx.doi.org/10.3390/cancers13020184] [PMID: 33430292]
[45]
Drogosz-Stachowicz, J.; Długosz-Pokorska, A.; Gach-Janczak, K.; Jaskulska, A.; Janecki, T.; Janecka, A. Molecular mechanisms of apoptosis induced by a novel synthetic quinolinone derivative in HL-60 human leukemia cells. Chem. Biol. Interact., 2020, 320, 109005.
[http://dx.doi.org/10.1016/j.cbi.2020.109005] [PMID: 32109484]
[46]
Yadav, V.; Reang, J.; Sharma, V.; Majeed, J.; Sharma, P.C.; Sharma, K.; Giri, N.; Kumar, A.; Tonk, R.K. Quinoline‐derivatives as privileged scaffolds for medicinal and pharmaceutical chemists: A comprehensive review. Chem. Biol. Drug Des., 2022, 100(3), 389-418.
[http://dx.doi.org/10.1111/cbdd.14099] [PMID: 35712793]
[47]
Larghi, E.L.; Bruneau, A.; Sauvage, F.; Alami, M.; Vergnaud-Gauduchon, J.; Messaoudi, S. Synthesis and Biological Activity of 3-(Heteroaryl)quinolin-2(1H)-ones Bis-Heterocycles as Potential Inhibitors of the Protein Folding Machinery Hsp90. Molecules, 2022, 27(2), 412.
[http://dx.doi.org/10.3390/molecules27020412] [PMID: 35056725]
[48]
Tan, L.; Zhang, Z.; Gao, D.; Chan, S.; Luo, J.; Tu, Z.C.; Zhang, Z.M.; Ding, K.; Ren, X.; Lu, X. Quinolone antibiotic derivatives as new selective Axl kinase inhibitors. Eur. J. Med. Chem., 2019, 166, 318-327.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.065] [PMID: 30731400]
[49]
Liu, Y.H.; Wei, X.L.; Hu, G.Q.; Wang, T.X. Quinolone-indolone conjugate induces apoptosis by inhibiting the EGFR-STAT3-HK2 pathway in human cancer cells. Mol. Med. Rep., 2015, 12(2), 2749-2756.
[http://dx.doi.org/10.3892/mmr.2015.3716] [PMID: 25937091]
[50]
Filler, R.; Saha, R. Fluorine in medicinal chemistry: a century of progress and a 60-year retrospective of selected highlights. Future Med. Chem., 2009, 1(5), 777-791.
[http://dx.doi.org/10.4155/fmc.09.65] [PMID: 21426080]
[51]
Mohamed, M.F.A.; Abuo-Rahma, G.E.D.A. Molecular targets and anticancer activity of quinoline–chalcone hybrids: literature review. RSC Advances, 2020, 10(52), 31139-31155.
[http://dx.doi.org/10.1039/D0RA05594H] [PMID: 35520674]
[52]
Golub, A.G.; Yakovenko, O.Y.; Bdzhola, V.G.; Sapelkin, V.M.; Zien, P.; Yarmoluk, S.M. Evaluation of 3-carboxy-4(1H)-quinolones as inhibitors of human protein kinase CK2. J. Med. Chem., 2006, 49(22), 6443-6450.
[http://dx.doi.org/10.1021/jm050048t] [PMID: 17064064]
[53]
Ostrem, J.M.; Peters, U.; Sos, M.L.; Wells, J.A.; Shokat, K.M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature, 2013, 503(7477), 548-551.
[http://dx.doi.org/10.1038/nature12796] [PMID: 24256730]
[54]
Cheng, R.; Lv, X.; Bu, H.; Xu, Q.; Wu, J.; Xie, K.; Tang, J.; Wang, L.; Zhuang, J.; Zhang, Y.; Zhang, Y.; Yan, C.; Lai, Y. Design, synthesis, and evaluation of 4(1H)-quinolinone and urea derivatives as KRASG12C inhibitors with potent antitumor activity against KRAS-mutant non-small cell lung cancer. Eur. J. Med. Chem., 2022, 244, 114808.
[http://dx.doi.org/10.1016/j.ejmech.2022.114808] [PMID: 36228411]
[55]
Kettle, J.G.; Bagal, S.K.; Bickerton, S.; Bodnarchuk, M.S.; Breed, J.; Carbajo, R.J.; Cassar, D.J.; Chakraborty, A.; Cosulich, S.; Cumming, I.; Davies, M.; Eatherton, A.; Evans, L.; Feron, L.; Fillery, S.; Gleave, E.S.; Goldberg, F.W.; Harlfinger, S.; Hanson, L.; Howard, M.; Howells, R.; Jackson, A.; Kemmitt, P.; Kingston, J.K.; Lamont, S.; Lewis, H.J.; Li, S.; Liu, L.; Ogg, D.; Phillips, C.; Polanski, R.; Robb, G.; Robinson, D.; Ross, S.; Smith, J.M.; Tonge, M.; Whiteley, R.; Yang, J.; Zhang, L.; Zhao, X. Structure-Based Design and Pharmacokinetic Optimization of Covalent Allosteric Inhibitors of the Mutant GTPase KRAS G12C. J. Med. Chem., 2020, 63(9), 4468-4483.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01720] [PMID: 32023060]
[56]
Ouyang, Y.; Li, J.; Chen, X.; Fu, X.; Sun, S.; Wu, Q. Chalcone Derivatives: Role in Anticancer Therapy. Biomolecules, 2021, 11(6), 894.
[http://dx.doi.org/10.3390/biom11060894] [PMID: 34208562]
[57]
Anthwal, A.; Rajesh, U.C.; Rawat, M.S.M.; Kushwaha, B.; Maikhuri, J.P.; Sharma, V.L.; Gupta, G.; Rawat, D.S. Novel metronidazole–chalcone conjugates with potential to counter drug resistance in Trichomonas vaginalis. Eur. J. Med. Chem., 2014, 79, 89-94.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.076] [PMID: 24727243]
[58]
López-Lázaro, M. Anticancer and carcinogenic properties of curcumin: Considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol. Nutr. Food Res., 2008, 52(Suppl. 1), S103-S127.
[http://dx.doi.org/10.1002/mnfr.200700238] [PMID: 18496811]
[59]
Knockleby, J.; Djigo, A.D.; Lindamulage, I.K.; Karthikeyan, C.; Trivedi, P.; Lee, H. Lead optimization of novel quinolone chalcone compounds by a structure–activity relationship (SAR) study to increase efficacy and metabolic stability. Sci. Rep., 2021, 11(1), 21576.
[http://dx.doi.org/10.1038/s41598-021-01058-z] [PMID: 34732782]
[60]
Liu, C.W.; Lin, Y.C.; Hung, C.M.; Liu, B.L.; Kuo, S.C.; Ho, C.T.; Way, T.D.; Hung, C.H. CHM-1, a novel microtubule-destabilizing agent exhibits antitumor activity via inducing the expression of SIRT2 in human breast cancer cells. Chem. Biol. Interact., 2018, 289, 98-108.
[http://dx.doi.org/10.1016/j.cbi.2018.04.007] [PMID: 29679549]
[61]
Kuo, S.C.; Lee, H.Z.; Juang, J.P.; Lin, Y.T.; Wu, T.S.; Chang, J.J.; Lednicer, D.; Paull, K.D.; Lin, C.M.; Hamel, E. Synthesis and cytotoxicity of 1,6,7,8-substituted 2-(4′-substituted phenyl)-4-quinolones and related compounds: identification as antimitotic agents interacting with tubulin. J. Med. Chem., 1993, 36(9), 1146-1156.
[http://dx.doi.org/10.1021/jm00061a005] [PMID: 8387598]
[62]
Li, L.; Wang, H.K.; Kuo, S.C.; Wu, T.S.; Mauger, A.; Lin, C.M.; Hamel, E.; Lee, K.H. Antitumor agents. 155. Synthesis and biological evaluation of 3′,6,7-substituted 2-phenyl-4-quinolones as antimicrotubule agents. J. Med. Chem., 1994, 37(20), 3400-3407.
[http://dx.doi.org/10.1021/jm00046a025] [PMID: 7932568]
[63]
Chen, Y.F.; Lin, Y.C.; Morris-Natschke, S.L.; Wei, C.F.; Shen, T.C.; Lin, H.Y.; Hsu, M.H.; Chou, L.C.; Zhao, Y.; Kuo, S.C.; Lee, K.H.; Huang, L.J. Synthesis and SAR studies of novel 6,7,8‐substituted 4‐substituted benzyloxyquinolin‐2(1H)‐one derivatives for anticancer activity. Br. J. Pharmacol., 2015, 172(5), 1195-1221.
[http://dx.doi.org/10.1111/bph.12992] [PMID: 25363404]
[64]
Chen, Y.F.; Lawal, B.; Huang, L.J.; Kuo, S.C.; Sumitra, M.R.; Mokgautsi, N.; Lin, H.Y.; Huang, H.S. In Vitro and In Silico Biological Studies of 4-Phenyl-2-quinolone (4-PQ) Derivatives as Anticancer Agents. Molecules, 2023, 28(2), 555.
[http://dx.doi.org/10.3390/molecules28020555] [PMID: 36677621]
[65]
Kumar, N.P.; Thatikonda, S.; Tokala, R.; Kumari, S.S.; Lakshmi, U.J.; Godugu, C.; Shankaraiah, N.; Kamal, A. Sulfamic acid promoted one-pot synthesis of phenanthrene fused-dihydrodibenzo-quinolinones: Anticancer activity, tubulin polymerization inhibition and apoptosis inducing studies. Bioorg. Med. Chem., 2018, 26(8), 1996-2008.
[http://dx.doi.org/10.1016/j.bmc.2018.02.050] [PMID: 29525336]
[66]
Sanderson, J.T.; Hordijk, J.; Denison, M.S.; Springsteel, M.F.; Nantz, M.H.; van den Berg, M. Induction and inhibition of aromatase (CYP19) activity by natural and synthetic flavonoid compounds in H295R human adrenocortical carcinoma cells. Toxicol. Sci., 2004, 82(1), 70-79.
[http://dx.doi.org/10.1093/toxsci/kfh257] [PMID: 15319488]
[67]
Ferlin, M.G.; Chiarelotto, G.; Gasparotto, V.; Dalla Via, L.; Pezzi, V.; Barzon, L.; Palù, G.; Castagliuolo, I. Synthesis and in vitro and in vivo antitumor activity of 2-phenylpyrroloquinolin-4-ones. J. Med. Chem., 2005, 48(9), 3417-3427.
[http://dx.doi.org/10.1021/jm049387x] [PMID: 15857148]
[68]
Lai, Y.Y.; Huang, L.J.; Lee, K.H.; Xiao, Z.; Bastow, K.F.; Yamori, T.; Kuo, S.C. Synthesis and biological relationships of 3′,6-substituted 2-phenyl-4-quinolone-3-carboxylic acid derivatives as antimitotic agents. Bioorg. Med. Chem., 2005, 13(1), 265-275.
[http://dx.doi.org/10.1016/j.bmc.2004.09.041] [PMID: 15582470]
[69]
Hsu, M.H.; Chen, C.J.; Kuo, S.C.; Chung, J.G.; Lai, Y.Y.; Teng, C.M.; Pan, S.L.; Huang, L.J. 2-(3-Fluorophenyl)-6-methoxyl-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (YJC-1) induces mitotic phase arrest in A549 cells. Eur. J. Pharmacol., 2007, 559(1), 14-20.
[http://dx.doi.org/10.1016/j.ejphar.2006.12.001] [PMID: 17223102]
[70]
Lin, M.S.; Hong, T.M.; Chou, T.H.; Yang, S.C.; Chung, W.C.; Weng, C.W.; Tsai, M.L.; Cheng, T.J.R.; Chen, J.J.W.; Lee, T.C.; Wong, C.H.; Chein, R.J.; Yang, P.C. 4(1H)-quinolone derivatives overcome acquired resistance to anti-microtubule agents by targeting the colchicine site of β-tubulin. Eur. J. Med. Chem., 2019, 181, 111584.
[http://dx.doi.org/10.1016/j.ejmech.2019.111584] [PMID: 31419740]
[71]
Hsu, S.C.; Yang, J.S.; Kuo, C.L.; Lo, C.; Lin, J.P.; Hsia, T.C.; Lin, J.J.; Lai, K.C.; Kuo, H.M.; Huang, L.J.; Kuo, S.C.; Wood, W.G.; Chung, J.G. Novel quinolone CHM‐1 induces apoptosis and inhibits metastasis in a human osterogenic sarcoma cell line. J. Orthop. Res., 2009, 27(12), 1637-1644.
[http://dx.doi.org/10.1002/jor.20937] [PMID: 19557855]
[72]
Chen, G.; Huang, P.; Hu, C. The role of SIRT2 in cancer: A novel therapeutic target. Int. J. Cancer, 2020, 147(12), 3297-3304.
[http://dx.doi.org/10.1002/ijc.33118] [PMID: 32449165]
[73]
Azzman, N. Crohn’s Disease: Potential Drugs for Modulation of Autophagy. Medicina (Kaunas), 2019, 55(6), 224.
[http://dx.doi.org/10.3390/medicina55060224] [PMID: 31146413]
[74]
Lin, M.W.; Yang, J.S.; Lu, C.C.; Lin, C.; Kuo, S.C.; Tsai, F.J.; Lee, M.R. 2-Phenyl-4-quinolone (YT-1) induces G2/M phase arrest and an intrinsic apoptotic mechanism in human leukemia cells. Oncol. Rep., 2017, 39(3), 1331-1337.
[http://dx.doi.org/10.3892/or.2017.6170] [PMID: 29286142]
[75]
Xu, Z.; Zhao, S.J.; Lv, Z.S.; Gao, F.; Wang, Y.; Zhang, F.; Bai, L.; Deng, J.L. Fluoroquinolone-isatin hybrids and their biological activities. Eur. J. Med. Chem., 2019, 162, 396-406.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.032] [PMID: 30453247]
[76]
Yogeeswari, P.; Sriram, D.; Kavya, R.; Tiwari, S. Synthesis and in-vitro cytotoxicity evaluation of Gatifloxacin Mannich bases. Biomed. Pharmacother., 2005, 59(9), 501-510.
[http://dx.doi.org/10.1016/j.biopha.2005.06.006] [PMID: 16263236]
[77]
Yang, M.; Liu, H.; Zhang, Y.; Wang, X.; Xu, Z. Moxifloxacin-isatin Hybrids Tethered by 1,2,3-triazole and their Anticancer Activities. Curr. Top. Med. Chem., 2020, 20(16), 1461-1467.
[http://dx.doi.org/10.2174/1568026620666200128144825] [PMID: 31994464]
[78]
Sabbah, D.A.; Vennerstrom, J.L.; Zhong, H. Docking studies on isoform-specific inhibition of phosphoinositide-3-kinases. J. Chem. Inf. Model., 2010, 50(10), 1887-1898.
[http://dx.doi.org/10.1021/ci1002679] [PMID: 20866085]
[79]
Sabbah, D.A.; Simms, N.A.; Wang, W.; Dong, Y.; Ezell, E.L.; Brattain, M.G.; Vennerstrom, J.L.; Zhong, H.A. N-Phenyl-4-hydroxy-2-quinolone-3-carboxamides as selective inhibitors of mutant H1047R phosphoinositide-3-kinase (PI3Kα). Bioorg. Med. Chem., 2012, 20(24), 7175-7183.
[http://dx.doi.org/10.1016/j.bmc.2012.09.059] [PMID: 23121722]
[80]
Sabbah, D.A.; Hishmah, B.; Sweidan, K.; Bardaweel, S.; AlDamen, M.; Zhong, H.A.; Abu Khalaf, R.; Hasan Ibrahim, A.; Al-Qirim, T.; Abu Sheikha, G.; Mubarak, M.S. Structure-Based Design: Synthesis, X-ray Crystallography, and Biological Evaluation of N-Substituted-4-Hydroxy-2-Quinolone-3-Carboxamides as Potential Cytotoxic Agents. Anticancer. Agents Med. Chem., 2018, 18(2), 263-276.
[http://dx.doi.org/10.2174/1871520617666170911171152] [PMID: 28901259]
[81]
Sabbah, D.A.; Hasan, S.E.; Abu Khalaf, R.; Bardaweel, S.K.; Hajjo, R.; Alqaisi, K.M.; Sweidan, K.A.; Al-Zuheiri, A.M. Molecular Modeling, Synthesis and Biological Evaluation of N-Phenyl-4-Hydroxy-6-Methyl-2-Quinolone-3-CarboxAmides as Anticancer Agents. Molecules, 2020, 25(22), 5348.
[http://dx.doi.org/10.3390/molecules25225348] [PMID: 33207767]
[82]
Sabbah, D.A.; Samarat, H.H.; Al-Shalabi, E.; Bardaweel, S.K.; Hajjo, R.; Sweidan, K.; Khalaf, R.A.; Al-Zuheiri, A.M.; Abushaikha, G. Design, Synthesis, and Biological Examination of N‐ Phenyl‐6‐fluoro‐4‐hydroxy‐2‐quinolone‐3‐carboxamides as Anticancer Agents. ChemistrySelect, 2022, 7(19), e202200662.
[http://dx.doi.org/10.1002/slct.202200662]
[83]
Sabbah, D.A.; Haroon, R.A.; Bardaweel, S.K.; Hajjo, R.; Sweidan, K. N-phenyl-6-chloro-4-hydroxy-2-quinolone-3-carboxamides: Molecular Docking, Synthesis, and Biological Investigation as Anticancer Agents. Molecules, 2020, 26(1), 73.
[http://dx.doi.org/10.3390/molecules26010073] [PMID: 33375766]
[84]
Palvai, S.; Kuman, M.M.; Sengupta, P.; Basu, S. Hyaluronic Acid Layered Chimeric Nanoparticles: Targeting MAPK-PI3K Signaling Hub in Colon Cancer Cells. ACS Omega, 2017, 2(11), 7868-7880.
[http://dx.doi.org/10.1021/acsomega.7b01315] [PMID: 30023564]
[85]
Adefolaju, G.; Theron, K.; Hosie, M. BAX/BCL-2 mRNA and protein expression in human breast MCF-7 cells exposed to drug vehicles-methanol and dimethyl sulfoxide (DMSO) for 24 hrs. Niger. Med. J., 2015, 56(3), 169-174.
[http://dx.doi.org/10.4103/0300-1652.160349] [PMID: 26229223]
[86]
Shen, L.; Chen, Y.L.; Huang, C.C.; Shyu, Y.C.; Seftor, R.E.B.; Seftor, E.A.; Hendrix, M.J.C.; Chien, D.S.; Chu, Y.W. CVM-1118 (foslinanib), a 2-phenyl-4-quinolone derivative, promotes apoptosis and inhibits vasculogenic mimicry via targeting TRAP1. Pathol. Oncol. Res., 2023, 29, 1611038.
[http://dx.doi.org/10.3389/pore.2023.1611038] [PMID: 37351538]
[87]
Hendrix, M.J.C.; Seftor, E.A.; Seftor, R.E.B.; Chao, J.T.; Chien, D.S.; Chu, Y.W. Tumor cell vascular mimicry: Novel targeting opportunity in melanoma. Pharmacol. Ther., 2016, 159, 83-92.
[http://dx.doi.org/10.1016/j.pharmthera.2016.01.006] [PMID: 26808163]
[88]
Karche, N.P.; Bhonde, M.; Sinha, N.; Jana, G.; Kukreja, G.; Kurhade, S.P.; Jagdale, A.R.; Tilekar, A.R.; Hajare, A.K.; Jadhav, G.R.; Gupta, N.R.; Limaye, R.; Khedkar, N.; Thube, B.R.; Shaikh, J.S.; Rao Irlapati, N.; Phukan, S.; Gole, G.; Bommakanti, A.; Khanwalkar, H.; Pawar, Y.; Kale, R.; Kumar, R.; Gupta, R.; Praveen Kumar, V.R.; Wahid, S.; Francis, A.; Bhat, T.; Kamble, N.; Patil, V.; Nigade, P.B.; Modi, D.; Pawar, S.; Naidu, S.; Volam, H.; Pagdala, V.; Mallurwar, S.; Goyal, H.; Bora, P.; Ahirrao, P.; Singh, M.; Kamalakannan, P.; Naik, K.R.; Kumar, P.; Powar, R.G.; Shankar, R.B.; Bernstein, P.R.; Gundu, J.; Nemmani, K.; Narasimham, L.; George, K.S.; Sharma, S.; Bakhle, D.; Kamboj, R.K.; Palle, V.P. Discovery of isoquinolinone and naphthyridinone-based inhibitors of poly(ADP-ribose) polymerase-1 (PARP1) as anticancer agents: Structure activity relationship and preclinical characterization. Bioorg. Med. Chem., 2020, 28(24), 115819.
[http://dx.doi.org/10.1016/j.bmc.2020.115819] [PMID: 33120078]
[89]
Makrecka-Kuka, M.; Vasiljeva, J.; Dimitrijevs, P.; Arsenyan, P. Olaparib Conjugates with Selenopheno[3,2-c]quinolinone Inhibit PARP1 and Reverse ABCB1-Related Multidrug Resistance. Pharmaceutics, 2022, 14(12), 2571.
[http://dx.doi.org/10.3390/pharmaceutics14122571] [PMID: 36559065]
[90]
Arsenyan, P.; Vasiljeva, J.; Domracheva, I.; Kanepe-Lapsa, I.; Gulbe, A. Selenopheno[2,3- f]coumarins: novel scaffolds with antimetastatic activity against melanoma and breast cancer. New J. Chem., 2019, 43(30), 11851-11864.
[http://dx.doi.org/10.1039/C9NJ01682A]
[91]
Arsenyan, P.; Vasiljeva, J.; Shestakova, I.; Domracheva, I.; Belyakov, S. The Synthesis and Cytotoxic Properties of Selenopheno[3,2-c]- and Selenopheno-[2,3-c]quinolones*. Chem. Heterocycl. Compd., 2014, 49(11), 1674-1680.
[http://dx.doi.org/10.1007/s10593-014-1419-1]
[92]
Li, Q.; Woods, K.W.; Wang, W.; Lin, N.H.; Claiborne, A.; Gu, W.; Cohen, J.; Stoll, V.S.; Hutchins, C.; Frost, D.; Rosenberg, S.H.; Sham, H.L. Design, synthesis, and activity of achiral analogs of 2-quinolones and indoles as non-thiol farnesyltransferase inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(8), 2033-2039.
[http://dx.doi.org/10.1016/j.bmcl.2005.02.062] [PMID: 15808463]
[93]
Kumar, N.; Raj, V.P.; Jayshree, B.S.; Kar, S.S.; Anandam, A.; Thomas, S.; Jain, P.; Rai, A.; Rao, C.M. Elucidation of structure-activity relationship of 2-quinolone derivatives and exploration of their antitumor potential through Bax-induced apoptotic pathway. Chem. Biol. Drug Des., 2012, 80(2), 291-299.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01402.x] [PMID: 22553933]
[94]
Jayashree, B.S.; Thomas, S.; Nayak, Y. Design and synthesis of 2-quinolones as antioxidants and antimicrobials: a rational approach. Med. Chem. Res., 2010, 19(2), 193-209.
[http://dx.doi.org/10.1007/s00044-009-9184-x]
[95]
Kumar, N.; Dhamija, I.; Vasanth Raj, P.; Jayashree, B.S.; Parihar, V.; Manjula, S.N.; Thomas, S.; Gopalan Kutty, N.; Mallikarjuna Rao, C. Preliminary investigation of cytotoxic potential of 2-quinolone derivatives using in vitro and in vivo (solid tumor and liquid tumor) models of cancer. Arab. J. Chem., 2014, 7(4), 409-417.
[http://dx.doi.org/10.1016/j.arabjc.2012.12.029]
[96]
Relitti, N.; Saraswati, A.P.; Chemi, G.; Brindisi, M.; Brogi, S.; Herp, D.; Schmidtkunz, K.; Saccoccia, F.; Ruberti, G.; Ulivieri, C.; Vanni, F.; Sarno, F.; Altucci, L.; Lamponi, S.; Jung, M.; Gemma, S.; Butini, S.; Campiani, G. Novel quinolone-based potent and selective HDAC6 inhibitors: Synthesis, molecular modeling studies and biological investigation. Eur. J. Med. Chem., 2021, 212, 112998.
[http://dx.doi.org/10.1016/j.ejmech.2020.112998] [PMID: 33199154]
[97]
Wang, X.; Jiang, X.; Sun, S.; Liu, Y. Synthesis and biological evaluation of novel quinolone derivatives dual targeting histone deacetylase and tubulin polymerization as antiproliferative agents. RSC Advances, 2018, 8(30), 16494-16502.
[http://dx.doi.org/10.1039/C8RA02578A] [PMID: 35540517]
[98]
Ma, Y.C.; Wang, Z.X.; Jin, S.J.; Zhang, Y.X.; Hu, G.Q.; Cui, D.T.; Wang, J.S.; Wang, M.; Wang, F.Q.; Zhao, Z.J. Dual inhibition of topoisomerase ii and tyrosine kinases by the novel bis-fluoroquinolone chalcone-like derivative HMNE3 in Human Pancreatic Cancer Cells. PLoS One, 2016, 11(10), e0162821.
[http://dx.doi.org/10.1371/journal.pone.0162821] [PMID: 27760157]
[99]
Jałbrzykowska, K.; Chrzanowska, A.; Roszkowski, P.; Struga, M. The New Face of a Well-Known Antibiotic: A Review of the Anticancer Activity of Enoxacin and Its Derivatives. Cancers, 2022, 14(13), 3056.
[http://dx.doi.org/10.3390/cancers14133056] [PMID: 35804828]
[100]
Iqbal, J.; Ejaz, S.A.; Khan, I.; Ausekle, E.; Miliutina, M.; Langer, P. Exploration of quinolone and quinoline derivatives as potential anticancer agents. Daru, 2019, 27(2), 613-626.
[http://dx.doi.org/10.1007/s40199-019-00290-3] [PMID: 31410781]
[101]
Ferreira, V.; Nicoletti, C.; Ferreira, P.; Futuro, D.; da Silva, F. Strategies for Increasing the Solubility and Bioavailability of Anticancer Compounds: β-Lapachone and Other Naphthoquinones. Curr. Pharm. Des., 2016, 22(39), 5899-5914.
[http://dx.doi.org/10.2174/1381612822666160611012532] [PMID: 27291398]
[102]
Gill, M.S.A.; Azzman, N.; Hassan, S.S.; Shah, S.A.A.; Ahemad, N. A green and efficient synthetic methodology towards the synthesis of 1-allyl-6-chloro-4-oxo-1,4-dihydroquinoline-3-carboxa-] mide derivatives. BMC Chem., 2022, 16(1), 111.
[http://dx.doi.org/10.1186/s13065-022-00902-1] [PMID: 36482476]
[103]
Clement, J.J.; Burres, N.; Jarvis, K.; Chu, D.T.; Swiniarski, J.; Alder, J. Biological characterization of a novel antitumor quinolone. Cancer Res., 1995, 55(4), 830-835.
[PMID: 7850797]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy