Mini-Review Article

窖蛋白-1在视网膜新生血管中的作用及机制研究进展

卷 25, 期 7, 2024

发表于: 05 April, 2024

页: [465 - 472] 页: 8

弟呕挨: 10.2174/0113894501310201240403065930

价格: $65

Open Access Journals Promotions 2
摘要

视网膜新生血管疾病的致盲率相对较高。视网膜新生血管异常是其主要标志,可损害眼睛的结构和功能,导致视力受损。窖蛋白-1是一种在多种视网膜细胞中表达的膜蛋白,参与视网膜新生血管的形成。本文就窖蛋白-1在视网膜新生血管中的具体功能进行综述。我们认为窖蛋白-1的作用机制可能与调控相关信号通路有关,并展望了调节窖蛋白-1在视网膜新生血管性疾病中的应用前景。

关键词: 新生血管,质膜微囊,视网膜,视网膜新生血管疾病,质膜,小血管蛋白。

图形摘要
[1]
Smith TL, Oubaha M, Cagnone G, et al. eNOS controls angiogenic sprouting and retinal neovascularization through the regulation of endothelial cell polarity. Cell Mol Life Sci 2022; 79(1): 37-40.
[http://dx.doi.org/10.1007/s00018-021-04042-y] [PMID: 34971428]
[2]
Saravanan S, Vimalraj S, Pavani K, Nikarika R, Sumantran VN. Intussusceptive angiogenesis as a key therapeutic target for cancer therapy. Life Sci 2020; 252: 117670.
[http://dx.doi.org/10.1016/j.lfs.2020.117670] [PMID: 32298741]
[3]
Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell 2011; 146(6): 873-87.
[http://dx.doi.org/10.1016/j.cell.2011.08.039] [PMID: 21925313]
[4]
Lee H, Carnino JM, Jin Y. Caveolin-1 regulates extracellular vesicle-miRNA packaging. Aging 2019; 11(20): 8733-5.
[http://dx.doi.org/10.18632/aging.102370] [PMID: 31652419]
[5]
Quest AF, Lobos-González L, Nuñez S, et al. The caveolin-1 connection to cell death and survival. Curr Mol Med 2013; 13(2): 266-81.
[http://dx.doi.org/10.2174/156652413804810745] [PMID: 23228128]
[6]
Gurley JM, Elliott MH. The role of caveolin-1 in retinal inflammation. Adv Exp Med Biol 2019; 1185(5): 169-73.
[http://dx.doi.org/10.1007/978-3-030-27378-1_28] [PMID: 31884607]
[7]
Tang Y, Fang W, Xiao Z, et al. Nicotinamide ameliorates energy deficiency and improves retinal function in Cav-1 -/- mice. J Neurochem 2021; 157(3): 550-60.
[http://dx.doi.org/10.1111/jnc.15266] [PMID: 33305362]
[8]
Li X, McClellan ME, Tanito M, et al. Loss of caveolin-1 impairs retinal function due to disturbance of subretinal microenvironment. J Biol Chem 2012; 287(20): 16424-34.
[http://dx.doi.org/10.1074/jbc.M112.353763] [PMID: 22451674]
[9]
Gu X, Reagan AM, McClellan ME, Elliott MH. Caveolins and caveolae in ocular physiology and pathophysiology. Prog Retin Eye Res 2017; 56: 84-106.
[http://dx.doi.org/10.1016/j.preteyeres.2016.09.005] [PMID: 27664379]
[10]
Williams TM, Lisanti MP. The Caveolin genes: From cell biology to medicine. Ann Med 2004; 36(8): 584-95.
[http://dx.doi.org/10.1080/07853890410018899] [PMID: 15768830]
[11]
Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol 2007; 8(3): 185-94.
[http://dx.doi.org/10.1038/nrm2122] [PMID: 17318224]
[12]
Luchetti F, Crinelli R, Nasoni MG, et al. LDL receptors, caveolae and cholesterol in endothelial dysfunction: OxLDLs accomplices or victims? Br J Pharmacol 2021; 178(16): 3104-14.
[http://dx.doi.org/10.1111/bph.15272] [PMID: 32986849]
[13]
Mathew R. Critical role of caveolin-1 Loss/dysfunction in pulmonary hypertension. Med Sci 2021; 9(4): 58-60.
[http://dx.doi.org/10.3390/medsci9040058] [PMID: 34698188]
[14]
Salanueva IJ, Cerezo A, Guadamillas MC, Del Pozo MA. Integrin regulation of caveolin function. J Cell Mol Med 2007; 11(5): 969-80.
[http://dx.doi.org/10.1111/j.1582-4934.2007.00109.x] [PMID: 17979878]
[15]
Wicher SA, Prakash YS, Pabelick CM. Caveolae, caveolin-1 and lung diseases of aging. Expert Rev Respir Med 2019; 13(3): 291-300.
[http://dx.doi.org/10.1080/17476348.2019.1575733] [PMID: 30686114]
[16]
Park H, Shin JA, Lim J, et al. Increased caveolin-2 expression in brain endothelial cells promotes age-related neuroinflammation. Mol Cells 2022; 45(12): 950-62.
[http://dx.doi.org/10.14348/molcells.2022.0045] [PMID: 36572563]
[17]
Pradhan BS, Prószyński TJ. A role for caveolin-3 in the pathogenesis of muscular dystrophies. Int J Mol Sci 2020; 21(22): 8736.
[http://dx.doi.org/10.3390/ijms21228736] [PMID: 33228026]
[18]
Parton RG, Hanzal-Bayer M, Hancock JF. Biogenesis of caveolae: A structural model for caveolin-induced domain formation. J Cell Sci 2006; 119(5): 787-96.
[http://dx.doi.org/10.1242/jcs.02853] [PMID: 16495479]
[19]
Rangel L, Bernabé-Rubio M, Fernández-Barrera J, et al. Caveolin-1α regulates primary cilium length by controlling RhoA GTPase activity. Sci Rep 2019; 9(1): 1116.
[http://dx.doi.org/10.1038/s41598-018-38020-5] [PMID: 30718762]
[20]
Perrot N, Dessaux D, Rignani A, et al. Caveolin-1β promotes the production of active human microsomal glutathione S-transferase in induced intracellular vesicles in Spodoptera frugiperda insect cells. Biochim Biophys Acta Biomembr 2022; 1864(8): 183922.
[http://dx.doi.org/10.1016/j.bbamem.2022.183922] [PMID: 35367202]
[21]
Kim H, Lee T, Lee J, et al. Immunohistochemical study of caveolin-1 and -2 in the rat retina. J Vet Sci 2006; 7(2): 101-4.
[http://dx.doi.org/10.4142/jvs.2006.7.2.101] [PMID: 16645331]
[22]
Gu X, Reagan A, Yen A, Bhatti F, Cohen AW, Elliott MH. Spatial and temporal localization of caveolin-1 protein in the developing retina. Adv Exp Med Biol 2014; 801(5): 15-21.
[http://dx.doi.org/10.1007/978-1-4614-3209-8_3] [PMID: 24664676]
[23]
Cao M, Zhang L, Wang JH, et al. Identifying circRNA-associated-ceRNA networks in retinal neovascularization in mice. Int J Med Sci 2019; 16(10): 1356-65.
[http://dx.doi.org/10.7150/ijms.35149] [PMID: 31692917]
[24]
Lin MI, Yu J, Murata T, Sessa WC. Caveolin-1-deficient mice have increased tumor microvascular permeability, angiogenesis, and growth. Cancer Res 2007; 67(6): 2849-56.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4082] [PMID: 17363608]
[25]
Selvam S, Kumar T, Fruttiger M. Retinal vasculature development in health and disease. Prog Retin Eye Res 2018; 63: 1-19.
[http://dx.doi.org/10.1016/j.preteyeres.2017.11.001] [PMID: 29129724]
[26]
YANG B Y. Fundamental and Clinical Research on Retinal Neovascular Diseases and Ocular Surface Immune-related Disorders. GUANGDONG:Sun Yat-sen University 2021.
[27]
Puddu A, Sanguineti R, Maggi D. Caveolin-1 down-regulation reduces VEGF-A secretion induced by IGF-1 in ARPE-19 cells. Life 2021; 12(1): 44.
[http://dx.doi.org/10.3390/life12010044] [PMID: 35054437]
[28]
Chow BW, Gu C. Gradual suppression of transcytosis governs functional blood-retinal barrier formation. Neuron 2017; 93(6): 1325-1333.e3.
[http://dx.doi.org/10.1016/j.neuron.2017.02.043] [PMID: 28334606]
[29]
Grossi M, Rippe C, Sathanoori R, et al. Vascular smooth muscle cell proliferation depends on caveolin-1-regulated polyamine uptake. Biosci Rep 2014; 34(6): e00153.
[http://dx.doi.org/10.1042/BSR20140140] [PMID: 25301005]
[30]
Grande-García A, Echarri A, de Rooij J, et al. Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J Cell Biol 2007; 177(4): 683-94.
[http://dx.doi.org/10.1083/jcb.200701006] [PMID: 17517963]
[31]
Grande-García A, del Pozo MA. Caveolin-1 in cell polarization and directional migration. Eur J Cell Biol 2008; 87(8-9): 641-7.
[http://dx.doi.org/10.1016/j.ejcb.2008.02.001] [PMID: 18375013]
[32]
Zhang ZB, Shi Z, Yang LF, Gao HB. Caveolin-1 knockdown decreases SMMC7721 human hepatocellular carcinoma cell invasiveness by inhibiting vascular endothelial growth factor-induced angiogenesis. Can J Gastroenterol Hepatol 2020; 2020(5): 1-11.
[http://dx.doi.org/10.1155/2020/8880888] [PMID: 32676485]
[33]
Zhao J, Yu Z, Zhang Y, et al. Caveolin-1 promoted collateral vessel formation in patients with moyamoya disease. Front Neurol 2022; 13(13): 796339.
[http://dx.doi.org/10.3389/fneur.2022.796339] [PMID: 35557625]
[34]
Tian XF, Xia XB, Xu HZ, Xiong SQ, Jiang J. Caveolin-1 expression regulates blood–retinal barrier permeability and retinal neovascularization in oxygen-induced retinopathy. Clin Exp Ophthalmol 2012; 40(1): e58-66.
[http://dx.doi.org/10.1111/j.1442-9071.2011.02656.x] [PMID: 21794046]
[35]
Loo JH, Lee YS, Woon CY, et al. Loss of caveolin-1 impairs light flicker-induced neurovascular coupling at the optic nerve head. Front Neurosci 2021; 15(15): 764898.
[http://dx.doi.org/10.3389/fnins.2021.764898] [PMID: 34819834]
[36]
Ito A, Shiroto T, Godo S, et al. Important roles of endothelial caveolin-1 in endothelium-dependent hyperpolarization and ischemic angiogenesis in mice. Am J Physiol Heart Circ Physiol 2019; 316(4): H900-10.
[http://dx.doi.org/10.1152/ajpheart.00589.2018] [PMID: 30707613]
[37]
Gurley JM, Gmyrek GB, McClellan ME, et al. Neuroretinal-derived caveolin-1 promotes endotoxin-induced inflammation in the murine retina. Invest Ophthalmol Vis Sci 2020; 61(12): 19-22.
[http://dx.doi.org/10.1167/iovs.61.12.19] [PMID: 33079993]
[38]
Abbasi M, Gupta VK, Chitranshi N, et al. Caveolin-1 ablation imparts partial protection against inner retinal injury in experimental glaucoma and reduces apoptotic activation. Mol Neurobiol 2020; 57(9): 3759-84.
[http://dx.doi.org/10.1007/s12035-020-01948-9] [PMID: 32578008]
[39]
Li W, Wang Q, Qi X, et al. Viral interleukin-6 encoded by an oncogenic virus promotes angiogenesis and cellular transformation by enhancing STAT3-mediated epigenetic silencing of caveolin 1. Oncogene 2020; 39(23): 4603-18.
[http://dx.doi.org/10.1038/s41388-020-1317-1] [PMID: 32393833]
[40]
Gu X, Fliesler SJ, Zhao YY, Stallcup WB, Cohen AW, Elliott MH. Loss of caveolin-1 causes blood-retinal barrier breakdown, venous enlargement, and mural cell alteration. Am J Pathol 2014; 184(2): 541-55.
[http://dx.doi.org/10.1016/j.ajpath.2013.10.022] [PMID: 24326256]
[41]
Jiang Y, Lin X, Tang Z, et al. Critical role of caveolin-1 in ocular neovascularization and multitargeted antiangiogenic effects of cavtratin via JNK. Proc Natl Acad Sci USA 2017; 114(40): 10737-42.
[http://dx.doi.org/10.1073/pnas.1706394114] [PMID: 28923916]
[42]
Shimizu H, Yamada K, Suzumura A, et al. Caveolin-1 promotes cellular senescence in exchange for blocking subretinal fibrosis in age-related macular degeneration. Invest Ophthalmol Vis Sci 2020; 61(11): 21-3.
[http://dx.doi.org/10.1167/iovs.61.11.21] [PMID: 32926104]
[43]
Liu J, Wang XB, Park DS, Lisanti MP. Caveolin-1 expression enhances endothelial capillary tubule formation. J Biol Chem 2002; 277(12): 10661-8.
[http://dx.doi.org/10.1074/jbc.M110354200] [PMID: 11748236]
[44]
Terao R, Kaneko H. Lipid signaling in ocular neovascularization. Int J Mol Sci 2020; 21(13): 4758-60.
[http://dx.doi.org/10.3390/ijms21134758] [PMID: 32635437]
[45]
Lisanti MP, Scherer PE, Tang Z, Sargiacomo M. Caveolae, caveolin and caveolin-rich membrane domains: A signalling hypothesis. Trends Cell Biol 1994; 4(7): 231-5.
[http://dx.doi.org/10.1016/0962-8924(94)90114-7] [PMID: 14731661]
[46]
Cohen AW, Hnasko R, Schubert W, Lisanti MP. Role of caveolae and caveolins in health and disease. Physiol Rev 2004; 84(4): 1341-79.
[http://dx.doi.org/10.1152/physrev.00046.2003] [PMID: 15383654]
[47]
Kwak JH, Park WK, Kim RY, Kim M, Park YG, Park YH. Unaffected fellow eye neovascularization in patients with type 3 neovascularization: Incidence and risk factors. PLoS One 2021; 16(7): e0254186.
[http://dx.doi.org/10.1371/journal.pone.0254186] [PMID: 34280215]
[48]
Tahir SA, Yang G, Goltsov AA, et al. Tumor cell-secreted caveolin-1 has proangiogenic activities in prostate cancer. Cancer Res 2008; 68(3): 731-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2668] [PMID: 18245473]
[49]
Saito H, Godo S, Sato S, et al. Important role of endothelial caveolin-1 in the protective role of endothelium-dependent hyperpolarization against nitric oxide-mediated nitrative stress in microcirculation in mice. J Cardiovasc Pharmacol 2018; 71(2): 113-26.
[http://dx.doi.org/10.1097/FJC.0000000000000552] [PMID: 29419573]
[50]
Feng Y, Venema VJ, Venema RC, Tsai N, Caldwell RB. VEGF induces nuclear translocation of Flk-1/KDR, endothelial nitric oxide synthase, and caveolin-1 in vascular endothelial cells. Biochem Biophys Res Commun 1999; 256(1): 192-7.
[http://dx.doi.org/10.1006/bbrc.1998.9790] [PMID: 10066445]
[51]
Courtaut F, Scagliarini A, Aires V, et al. VEGF-R2/Caveolin-1 pathway of undifferentiated ARPE-19 retina cells: A potential target as Anti-VEGF-A therapy in wet AMD by resvega, an Omega-3/Polyphenol combination. Int J Mol Sci 2021; 22(12): 6590.
[http://dx.doi.org/10.3390/ijms22126590] [PMID: 34205419]
[52]
Tahir SA, Park S, Thompson TC. Caveolin-1 regulates VEGF-stimulated angiogenic activities in prostate cancer and endothelial cells. Cancer Biol Ther 2009; 8(23): 2284-94.
[http://dx.doi.org/10.4161/cbt.8.23.10138] [PMID: 19923922]
[53]
Pathak A, Pal AK, Roy S, Nandave M, Jain K. Role of angiogenesis and its biomarkers in development of targeted tumor therapies. Stem Cells Int 2024; 2024: 1-23.
[http://dx.doi.org/10.1155/2024/9077926] [PMID: 38213742]
[54]
Anakha J, Dobariya P, Sharma SS, Pande AH. Recombinant human endostatin as a potential anti-angiogenic agent: Therapeutic perspective and current status. Med Oncol 2023; 41(1): 24.
[http://dx.doi.org/10.1007/s12032-023-02245-w] [PMID: 38123873]
[55]
Yamagishi S, Nakamura K, Matsui T, et al. Pigment epithelium-derived factor inhibits advanced glycation end product-induced retinal vascular hyperpermeability by blocking reactive oxygen species-mediated vascular endothelial growth factor expression. J Biol Chem 2006; 281(29): 20213-20.
[http://dx.doi.org/10.1074/jbc.M602110200] [PMID: 16707486]
[56]
Matsui T, Higashimoto Y, Taira J, Yamagishi S. Pigment epithelium-derived factor (PEDF) binds to caveolin-1 and inhibits the pro-inflammatory effects of caveolin-1 in endothelial cells. Biochem Biophys Res Commun 2013; 441(2): 405-10.
[http://dx.doi.org/10.1016/j.bbrc.2013.10.074] [PMID: 24161393]
[57]
Wickström SA, Alitalo K, Keski-Oja J. Endostatin associates with integrin alpha5beta1 and caveolin-1, and activates Src via a tyrosyl phosphatase-dependent pathway in human endothelial cells. Cancer Res 2002; 62(19): 5580-9.
[PMID: 12359771]
[58]
Bocci G, Fioravanti A, Orlandi P, et al. Metronomic ceramide analogs inhibit angiogenesis in pancreatic cancer through up-regulation of caveolin-1 and thrombospondin-1 and down-regulation of cyclin D1. Neoplasia 2012; 14(9): 833-45.
[http://dx.doi.org/10.1593/neo.12772] [PMID: 23019415]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy