Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Antimicrobial Potential of Polyphenols: An Update on Alternative for Combating Antimicrobial Resistance

Author(s): Alok Sharma*, Anurag, Jasleen Kaur, Anuradha Kesharwani and Vipan Kumar Parihar

Volume 20, Issue 6, 2024

Published on: 05 April, 2024

Page: [576 - 596] Pages: 21

DOI: 10.2174/0115734064277579240328142639

Price: $65

Abstract

The last decade has encountered an increasing demand for plant-based natural antibiotics. This demand has led to more research-based investigations for natural sources of antimicrobial agents and published reports demonstrating that plant extracts are widely applied in modern medicine, reporting potential activity that may be due to polyphenol compounds. Interestingly, the effects of polyphenols on the sensitivity of bacteria to antibiotics have not been well-studied. Hence, the current review encompasses the prospective application of plant-based phenolic extracts from plants of Indian origin. The emergence of resistance to antimicrobial agents has increased the inefficacy of many antimicrobial drugs. Several strategies have been developed in recent times to overcome this issue. A combination of antimicrobial agents is employed for the failing antibiotics, which restores the desirable effect but may have toxicity-related issues. Phytochemicals such as some polyphenols have demonstrated their potent activity as antimicrobial agents of natural origin to work against resistance issues. These agents alone or in combination with certain antibiotics have been shown to enhance the antimicrobial activity against a spectrum of microbes. However, the information regarding the mechanisms and structure-activity relationships remains elusive. The present review also focuses on the possible mechanisms of natural compounds based on their structure- activity relationships for incorporating polyphenolic compounds in the drug-development processes. Besides this work, polyphenols could reduce drug dosage and may diminish the unhidden or hidden side effects of antibiotics. Pre-clinical findings have provided strong evidence that polyphenolic compounds, individually and in combination with already approved antibiotics, work well against the development of resistance. However, more studies must focus on in vivo results, and clinical research needs to specify the importance of polyphenol-based antibacterials in clinical trials.

Keywords: Medicinal plants, bioactive, polyphenols, antibacterial, bacterial resistance, structure-activity relationship.

Graphical Abstract
[1]
Cock, I.E.; Cheesman, M.J.; Ilanko, A.; Blonk, B. Developing new antimicrobial therapies: Are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacogn. Rev., 2017, 11(22), 57-72.
[http://dx.doi.org/10.4103/phrev.phrev_21_17] [PMID: 28989242]
[2]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[3]
Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. J. Funct. Foods, 2015, 18, 820-897.
[http://dx.doi.org/10.1016/j.jff.2015.06.018]
[4]
Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines, 2018, 5(3), 93.
[http://dx.doi.org/10.3390/medicines5030093] [PMID: 30149600]
[5]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[6]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[7]
Xie, Y.; Chen, J.; Xiao, A.; Liu, L. Antibacterial activity of polyphenols: Structure-activity relationship and influence of hyperglycemic condition. Molecules, 2017, 22(11), 1913.
[http://dx.doi.org/10.3390/molecules22111913] [PMID: 29113147]
[8]
Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol., 2012, 23(2), 174-181.
[http://dx.doi.org/10.1016/j.copbio.2011.08.007] [PMID: 21925860]
[9]
Prabakaran, M.; Kim, S.H.; Sasireka, A.; Chandrasekaran, M.; Chung, I.M. Polyphenol composition and antimicrobial activity of various solvent extracts from different plant parts of Moringa oleifera. Food Biosci., 2018, 26, 23-29.
[http://dx.doi.org/10.1016/j.fbio.2018.09.003]
[10]
Konaté, K.; Hilou, A.; Mavoungou, J.; Lepengué, A.; Souza, A.; Barro, N.; Datté, J.Y.; M’Batchi, B.; Nacoulma, O. Antimicrobial activity of polyphenol-rich fractions from Sida alba L. (Malvaceae) against co-trimoxazol-resistant bacteria strains. Ann. Clin. Microbiol. Antimicrob., 2012, 11(1), 5.
[http://dx.doi.org/10.1186/1476-0711-11-5] [PMID: 22364123]
[11]
Rempe, C.S.; Burris, K.P.; Lenaghan, S.C.; Stewart, C.N., Jr. The potential of systems biology to discover antibacterial mechanisms of plant phenolics. Front. Microbiol., 2017, 8, 422.
[http://dx.doi.org/10.3389/fmicb.2017.00422] [PMID: 28360902]
[12]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Scient. Wor. J., 2013.
[http://dx.doi.org/10.1155/2013/162750]
[13]
Zieniuk, B.; Białecka-Florjańczyk, E.; Wierzchowska, K.; Fabiszewska, A. Recent advances in the enzymatic synthesis of lipophilic antioxidant and antimicrobial compounds. World J. Microbiol. Biotechnol., 2022, 38(1), 11.
[http://dx.doi.org/10.1007/s11274-021-03200-5] [PMID: 34873650]
[14]
Miller, M.A.; Zachary, J.F. Mechanisms and morphology of cellular injury, adaptation, and death. Pathologic basis of veterinary disease, 2017, 2-43.e19.
[http://dx.doi.org/10.1016/B978-0-323-35775-3.00001-1]
[15]
Upadhyay, H.C.; Singh, M.; Prakash, O.; Khan, F.; Srivastava, S.K.; Bawankule, D.U. QSAR, ADME and docking guided semi-synthesis and in vitro evaluation of 4-hydroxy-α-tetralone analogs for anti-inflammatory activity. SN Appl. Sci., 2020, 2(12), 2069.
[http://dx.doi.org/10.1007/s42452-020-03798-5]
[16]
Khameneh, B.; Iranshahy, M.; Soheili, V.; Bazzaz, B.S. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Control, 2019, 8(1), 118.
[http://dx.doi.org/10.1186/s13756-019-0559-6] [PMID: 31346459]
[17]
Quirke, J.C.K.; Rajasekaran, P.; Sarpe, V.A.; Sonousi, A.; Osinnii, I.; Gysin, M.; Haldimann, K.; Fang, Q.J.; Shcherbakov, D.; Hobbie, S.N.; Sha, S.H.; Schacht, J.; Vasella, A.; Böttger, E.C.; Crich, D. Apralogs: Apramycin 5-O-glycosides and ethers with improved antibacterial activity and ribosomal selectivity and reduced susceptibility to the aminoacyltransferase (3)-IV resistance determinant. J. Am. Chem. Soc., 2020, 142(1), 530-544.
[http://dx.doi.org/10.1021/jacs.9b11601] [PMID: 31790244]
[18]
Oates, J.A.; Wood, A.J.J.; Donowitz, G.R.; Mandell, G.L. Beta-Lactam Antibiotics. N. Engl. J. Med., 1988, 318(7), 419-426.
[http://dx.doi.org/10.1056/NEJM198802183180706] [PMID: 3277053]
[19]
Smith, J.T.; Hamilton-Miller, J.M.T.; Knox, R. Bacterial resistance to penicillins and cephalosporins. J. Pharm. Pharmacol., 2011, 21(6), 337-358.
[http://dx.doi.org/10.1111/j.2042-7158.1969.tb08267.x] [PMID: 4389168]
[20]
Lowy, F.D. Antimicrobial resistance: The example of Staphylococcus aureus. J. Clin. Invest., 2003, 111(9), 1265-1273.
[http://dx.doi.org/10.1172/JCI18535] [PMID: 12727914]
[21]
Deshpande, A.D.; Baheti, K.G.; Chatterjee, N.R. Degradation of β-lactam antibiotics. Curr. Sci., 2004, 25, 1684-1695.
[22]
Bertani, B.; Ruiz, N. Function and biogenesis of lipopolysaccharides. Ecosal Plus, 2018, 8(1), 10.1128/ecosalplus.ESP-0001-2018.
[http://dx.doi.org/10.1128/ecosalplus.esp-0001-2018] [PMID: 30066669]
[23]
Sarathy, J.; Dartois, V.; Lee, E. The role of transport mechanisms in mycobacterium tuberculosis drug resistance and tolerance. Pharmaceuticals, 2012, 5(11), 1210-1235.
[http://dx.doi.org/10.3390/ph5111210] [PMID: 24281307]
[24]
Smith, T; Wolff, KA; Nguyen, L. Molecular biology of drug resistance in Mycobacterium tuberculosis. Pathogenesis of Mycobacterium tuberculosis and its Interaction with the Host Organism., 2012, 53-80.
[http://dx.doi.org/10.1007/82_2012_279]
[25]
Bébéar, C.; Pereyre, S. Mechanisms of drug resistance in Mycoplasma pneumoniae. Curr. Drug Targets Infect. Disord., 2005, 5(3), 263-271.
[http://dx.doi.org/10.2174/1568005054880109] [PMID: 16181145]
[26]
Miller, W.R.; Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance in enterococci. Expert Rev. Anti Infect. Ther., 2014, 12(10), 1221-1236.
[http://dx.doi.org/10.1586/14787210.2014.956092] [PMID: 25199988]
[27]
Fernández, L.; Hancock, R.E.W. Adaptive and mutational resistance: Role of porins and efflux pumps in drug resistance. Clin. Microbiol. Rev., 2012, 25(4), 661-681.
[http://dx.doi.org/10.1128/CMR.00043-12] [PMID: 23034325]
[28]
Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence, 2018, 9(1), 522-554.
[http://dx.doi.org/10.1080/21505594.2017.1313372] [PMID: 28362216]
[29]
Egorov, A.M.; Ulyashova, M.M.; Rubtsova, M.Y. Bacterial enzymes and antibiotic resistance. Acta Nat. (Engl. Ed.), 2018, 10(4), 33-48.
[http://dx.doi.org/10.32607/20758251-2018-10-4-33-48] [PMID: 30713760]
[30]
C Reygaert, W. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol., 2018, 4(3), 482-501.
[http://dx.doi.org/10.3934/microbiol.2018.3.482] [PMID: 31294229]
[31]
Soto, S.M. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence, 2013, 4(3), 223-229.
[http://dx.doi.org/10.4161/viru.23724] [PMID: 23380871]
[32]
Sun, J.; Deng, Z.; Yan, A. Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochem. Biophys. Res. Commun., 2014, 453(2), 254-267.
[http://dx.doi.org/10.1016/j.bbrc.2014.05.090] [PMID: 24878531]
[33]
Pathania, R.; Sharma, A.; Gupta, V.K. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian J. Med. Res., 2019, 149(2), 129-145.
[http://dx.doi.org/10.4103/ijmr.IJMR_2079_17] [PMID: 31219077]
[34]
Feichtmayer, J.; Deng, L.; Griebler, C. Antagonistic microbial interactions: Contributions and potential applications for controlling pathogens in the aquatic systems. Front. Microbiol., 2017, 8, 2192.
[http://dx.doi.org/10.3389/fmicb.2017.02192] [PMID: 29184541]
[35]
Chaplin, D.D. Overview of the immune response. J. Allergy Clin. Immunol., 2010, 125(2), S3-S23.
[http://dx.doi.org/10.1016/j.jaci.2009.12.980] [PMID: 20176265]
[36]
Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front. Microbiol., 2020, 11, 582779.
[http://dx.doi.org/10.3389/fmicb.2020.582779] [PMID: 33178164]
[37]
Delcour, A.H. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta. Proteins Proteomics, 2009, 1794(5), 808-816.
[http://dx.doi.org/10.1016/j.bbapap.2008.11.005] [PMID: 19100346]
[38]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12(4), 564-582.
[http://dx.doi.org/10.1128/CMR.12.4.564] [PMID: 10515903]
[39]
Habbal, O.; Hasson, S.S.; El-Hag, A.H.; Al-Mahrooqi, Z.; Al-Hashmi, N.; Al-Bimani, Z.; Al-Balushi, M.S.; Al-Jabri, A.A. Antibacterial activity of Lawsonia inermis Linn (Henna) against Pseudomonas aeruginosa. Asian Pac. J. Trop. Biomed., 2011, 1(3), 173-176.
[http://dx.doi.org/10.1016/S2221-1691(11)60021-X] [PMID: 23569753]
[40]
Klemow, K.M.; Bilbow, E.; Grasso, D.; Jones, K.; McDermott, J.; Pape, E. Medical attributes of St. John’s wort (Hypericum perforatum). Oxidative Stress and Disease., 2004, 14, 757-780.
[41]
Neag, M.A.; Mocan, A.; Echeverría, J.; Pop, R.M.; Bocsan, C.I.; Crişan, G.; Buzoianu, A.D. Berberine: Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front. Pharmacol., 2018, 9, 557.
[http://dx.doi.org/10.3389/fphar.2018.00557] [PMID: 30186157]
[42]
Semwal, D.; Rawat, U. Antimicrobial hasubanalactam alkaloid from Stephania glabra. Planta Med., 2009, 75(4), 378-380.
[http://dx.doi.org/10.1055/s-0028-1112223] [PMID: 19148860]
[43]
Hussain, G.; Rasul, A.; Anwar, H.; Aziz, N.; Razzaq, A.; Wei, W.; Ali, M.; Li, J.; Li, X. Role of plant derived alkaloids and their mechanism in neurodegenerative disorders. Int. J. Biol. Sci., 2018, 14(3), 341-357.
[http://dx.doi.org/10.7150/ijbs.23247] [PMID: 29559851]
[44]
Al Aboody, M.S.; Mickymaray, S. Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics, 2020, 9(2), 45.
[http://dx.doi.org/10.3390/antibiotics9020045] [PMID: 31991883]
[45]
Özçelik, B.; Orhan, D.D.; Özgen, S.; Ergun, F. Antimicrobial activity of flavonoids against extended-spectrum β-lactamase (ESβL)-producing Klebsiella pneumoniae. Trop. J. Pharm. Res., 2008, 7(4), 1151-1157.
[http://dx.doi.org/10.4314/tjpr.v7i4.14701]
[46]
Abranches, J.; Zeng, L.; Kajfasz, J.K.; Palmer, S.R.; Chakraborty, B.; Wen, Z.T.; Richards, V.P.; Brady, L.J.; Lemos, J.A. Biology of oral streptococci. Microbiol. Spectr., 2018, 6(5), 6.5.11.
[http://dx.doi.org/10.1128/microbiolspec.GPP3-0042-2018] [PMID: 30338752]
[47]
Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines, 2016, 3(4), 25.
[http://dx.doi.org/10.3390/medicines3040025] [PMID: 28930135]
[48]
Chandra, H.; Bishnoi, P.; Yadav, A.; Patni, B.; Mishra, A.; Nautiyal, A. Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials—a review. Plants, 2017, 6(4), 16.
[http://dx.doi.org/10.3390/plants6020016] [PMID: 28394295]
[49]
Sulieman, A.M.; Issa, F.M.; Elkhalifa, E.A. Quantitative determination of tannin content in some sorghum cultivars and evaluation of its antimicrobial activity. Rese. Jo. Microbiol., 2007, 2(3), 284-288.
[50]
Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules, 2016, 21(5), 559.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[51]
Sowmya, T.N.; Raveesha, K.A. Polyphenol-rich purified bioactive fraction isolated from terminalia catappa l.: uhplc-ms/ms-based metabolite identification and evaluation of their antimicrobial potential. Coatings, 2021, 11(10), 1210.
[http://dx.doi.org/10.3390/coatings11101210]
[52]
Manso, T.; Lores, M.; de Miguel, T. Antimicrobial activity of polyphenols and natural polyphenolic extracts on clinical isolates. Antibiotics, 2021, 11(1), 46.
[http://dx.doi.org/10.3390/antibiotics11010046] [PMID: 35052923]
[53]
Bubonja-Šonje, M.; Knežević, S.; Abram, M. Challenges to antimicrobial susceptibility testing of plant-derived polyphenolic compounds. Arch. Indust. Hyg. Toxicol., 2020, 71(4), 300-311.
[http://dx.doi.org/10.2478/aiht-2020-71-3396] [PMID: 33410777]
[54]
Miyasaki, Y.; Rabenstein, J.D.; Rhea, J.; Crouch, M.L.; Mocek, U.M.; Kittell, P.E.; Morgan, M.A.; Nichols, W.S.; Van Benschoten, M.M.; Hardy, W.D.; Liu, G.Y. Isolation and characterization of antimicrobial compounds in plant extracts against multidrug-resistant Acinetobacter baumannii. PLoS One, 2013, 8(4), e61594.
[http://dx.doi.org/10.1371/journal.pone.0061594] [PMID: 23630600]
[55]
Tiwari, V.; Roy, R.; Tiwari, M. Antimicrobial active herbal compounds against Acinetobacter baumannii and other pathogens. Front. Microbiol., 2015, 6, 618.
[http://dx.doi.org/10.3389/fmicb.2015.00618] [PMID: 26150810]
[56]
Betts, J.W.; Hornsey, M.; Wareham, D.W.; La Ragione, R.M. In vitro and in vivo activity of theaflavin–epicatechin combinations versus multidrug-resistant Acinetobacter baumannii. Infect. Dis. Ther., 2017, 6(3), 435-442.
[http://dx.doi.org/10.1007/s40121-017-0161-2] [PMID: 28639145]
[57]
Ghosh, A.; Jayaraman, N.; Chatterji, D. Small-molecule inhibition of bacterial biofilm. ACS Omega, 2020, 5(7), 3108-3115.
[http://dx.doi.org/10.1021/acsomega.9b03695] [PMID: 32118127]
[58]
Nair, N.; Biswas, R.; Götz, F.; Biswas, L. Impact of Staphylococcus aureus on pathogenesis in polymicrobial infections. Infect. Immun., 2014, 82(6), 2162-2169.
[http://dx.doi.org/10.1128/IAI.00059-14] [PMID: 24643542]
[59]
Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; A Al-Mana, F.; Al-Yafrsi, M.A. Antioxidant and biological activities of Acacia saligna and Lawsonia inermis natural populations. Plants, 2020, 9(7), 908.
[http://dx.doi.org/10.3390/plants9070908] [PMID: 32709119]
[60]
Brown, J.C.; Huang, G.; Haley-Zitlin, V.; Jiang, X. Antibacterial effects of grape extracts on Helicobacter pylori. Appl. Environ. Microbiol., 2009, 75(3), 848-852.
[http://dx.doi.org/10.1128/AEM.01595-08] [PMID: 19047390]
[61]
Vestergaard, M.; Ingmer, H. Antibacterial and antifungal properties of resveratrol. Int. J. Antimicrob. Agents, 2019, 53(6), 716-723.
[http://dx.doi.org/10.1016/j.ijantimicag.2019.02.015] [PMID: 30825504]
[62]
Tran, H.N.H.; Graham, L.; Adukwu, E.C. In vitro antifungal activity of Cinnamomum zeylanicum bark and leaf essential oils against Candida albicans and Candida auris. Appl. Microbiol. Biotechnol., 2020, 104(20), 8911-8924.
[http://dx.doi.org/10.1007/s00253-020-10829-z] [PMID: 32880694]
[63]
Khan, R.; Islam, B.; Akram, M.; Shakil, S.; Ahmad, A.A.; Ali, S.M.; Siddiqui, M.; Khan, A. Antimicrobial activity of five herbal extracts against multi drug resistant (MDR) strains of bacteria and fungus of clinical origin. Molecules, 2009, 14(2), 586-597.
[http://dx.doi.org/10.3390/molecules14020586] [PMID: 19214149]
[64]
Prabhakar, K.; Kumar, L.S.; Rajendran, S.; Chandrasekaran, M.; Bhaskar, K.; Sajit Khan, A.K. Antifungal activity of plant extracts against Candida species from oral lesions. Indian J. Pharm. Sci., 2008, 70(6), 801-803.
[http://dx.doi.org/10.4103/0250-474X.49128] [PMID: 21369447]
[65]
Rangkadilok, N.; Tongchusak, S.; Boonhok, R.; Chaiyaroj, S.C.; Junyaprasert, V.B.; Buajeeb, W.; Akanimanee, J.; Raksasuk, T.; Suddhasthira, T.; Satayavivad, J. In vitro antifungal activities of longan (Dimocarpus longan Lour.) seed extract. Fitoterapia, 2012, 83(3), 545-553.
[http://dx.doi.org/10.1016/j.fitote.2011.12.023] [PMID: 22245574]
[66]
Wang, J.; Zhang, X.; Gao, L.; Wang, L.; Song, F.; Zhang, L.; Wan, Y. The synergistic antifungal activity of resveratrol with azoles against Candida albicans. Lett. Appl. Microbiol., 2021, 72(6), 688-697.
[http://dx.doi.org/10.1111/lam.13458] [PMID: 33550599]
[67]
Herman, A.; Herman, A.P. Herbal products and their active constituents used alone and in combination with antifungal drugs against drug-resistant Candida sp. Antibiotics, 2021, 10(6), 655.
[http://dx.doi.org/10.3390/antibiotics10060655] [PMID: 34072664]
[68]
Upadhyay, H.C.; Dwivedi, G.R.; Roy, S.; Sharma, A.; Darokar, M.P.; Srivastava, S.K. Phytol derivatives as drug resistance reversal agents. ChemMedChem, 2014, 9(8), 1860-1868.
[http://dx.doi.org/10.1002/cmdc.201402027] [PMID: 24891085]
[69]
Kan, X.; Liu, J.; Chen, Y.; Guo, W.; Xu, D.; Cheng, J.; Cao, Y.; Yang, Z.; Fu, S. Protective effect of myricetin on LPS-induced mastitis in mice through ERK1/2 and p38 protein author. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(8), 1727-1735.
[http://dx.doi.org/10.1007/s00210-021-02069-3] [PMID: 34057544]
[70]
Jang, E.J.; Cha, S.M.; Choi, S.M.; Cha, J.D. Combination effects of baicalein with antibiotics against oral pathogens. Arch. Oral Biol., 2014, 59(11), 1233-1241.
[http://dx.doi.org/10.1016/j.archoralbio.2014.07.008] [PMID: 25129811]
[71]
Chan, B.C.L.; Ip, M.; Gong, H.; Lui, S.L.; See, R.H.; Jolivalt, C.; Fung, K.P.; Leung, P.C.; Reiner, N.E.; Lau, C.B.S. Synergistic effects of diosmetin with erythromycin against ABC transporter over-expressed methicillin-resistant Staphylococcus aureus (MRSA) RN4220/pUL5054 and inhibition of MRSA pyruvate kinase. Phytomedicine, 2013, 20(7), 611-614.
[http://dx.doi.org/10.1016/j.phymed.2013.02.007] [PMID: 23541215]
[72]
Thangaraj, M.; Gengan, R.M.; Ranjan, B.; Muthusamy, R. Synthesis, molecular docking, antimicrobial, antioxidant and toxicity assessment of quinoline peptides. J. Photochem. Photobiol. B, 2018, 178, 287-295.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.11.019] [PMID: 29175602]
[73]
Buchmann, D.; Schultze, N.; Borchardt, J.; Böttcher, I.; Schaufler, K.; Guenther, S. Synergistic antimicrobial activities of epigallocatechin gallate, myricetin, daidzein, gallic acid, epicatechin, 3‐hydroxy‐6‐methoxyflavone and genistein combined with antibiotics against ESKAPE pathogens. J. Appl. Microbiol., 2022, 132(2), 949-963.
[http://dx.doi.org/10.1111/jam.15253] [PMID: 34365707]
[74]
Luo, F.; Zeng, D.; Wang, W.; Yang, Y.; Zafar, A.; Wu, Z.; Tian, Y.; Huang, Y.; Hasan, M.; Shu, X. Bio-conditioning poly-dihydromyricetin zinc nanoparticles synthesis for advanced catalytic degradation and microbial inhibition. J. Nanostructure Chem., 2021, 1-5.
[http://dx.doi.org/10.1007/s40097-021-00443-4]
[75]
Kepplinger, B.; Morton-Laing, S.; Seistrup, K.H.; Marrs, E.C.L.; Hopkins, A.P.; Perry, J.D.; Strahl, H.; Hall, M.J.; Errington, J.; Allenby, N.E.E. Mode of action and heterologous expression of the natural product antibiotic vancoresmycin. ACS Chem. Biol., 2018, 13(1), 207-214.
[http://dx.doi.org/10.1021/acschembio.7b00733] [PMID: 29185696]
[76]
Quecan, B.X.V.; Santos, J.T.C.; Rivera, M.L.C.; Hassimotto, N.M.A.; Almeida, F.A.; Pinto, U.M. Effect of quercetin rich onion extracts on bacterial quorum sensing. Front. Microbiol., 2019, 10, 867.
[http://dx.doi.org/10.3389/fmicb.2019.00867] [PMID: 31105665]
[77]
de Oliveira, D.; Tintino, S.; Braga, M.F.B.; Boligon, A.A.; Athayde, M.; Coutinho, H.; de Menezes, I.R.A.; Fachinetto, R. In vitro antimicrobial and modulatory activity of the natural products silymarin and silibinin. BioMed Res. Int., 2015, 2015, 1-7.
[http://dx.doi.org/10.1155/2015/292797] [PMID: 25866771]
[78]
Oliveira, MT; de Alencar, MV; Landim, V; Moura, GM; da Cruz, JI; Dos Santos, EA; Coutinho, HD; Andrade, JC; de Menezes, IR; Ribeiro, PR; de Brito, ES UPLC–MS–QTOF analysis and antifungal activity of Cumaru (Amburana cearensis). 3 Biotech., 2020, 10, 1-7.
[http://dx.doi.org/10.1007/s13205-020-02551-4]
[79]
Zhou, L.; Liang, Y.; Wang, W.; Tan, H.; Xiao, M.; Fan, C.; Yu, R. Biotransformation of 4-phenylcoumarin by transgenic hairy roots of Polygonum multiflorum. J. Med. Plant Res., 2011, 5(17), 4274-4278.
[80]
Winata, A.W.; Rahayu, D.U.; Handayani, S.; Dianhar, H. Microwave-assisted synthesis of 7-hydroxy-4-methyl coumarin and its bioactivity against acne-causing bacteria. IOP Conference Series: Materials Science and Engineering, 2020, 902(1), p. 012069.
[http://dx.doi.org/10.1088/1757-899X/902/1/012069]
[81]
Kwon, B.J.; Lee, M.H.; Koo, M.A.; Han, J.J.; Park, J.C. Ethyl-3,4-dihydroxybenzoate with a dual function of induction of osteogenic differentiation and inhibition of osteoclast differentiation for bone tissue engineering. Tissue Eng. Part A, 2014, 20(21-22), 2975-2984.
[http://dx.doi.org/10.1089/ten.tea.2013.0567] [PMID: 24784993]
[82]
Srivastava, N.; Tiwari, S.; Bhandari, K.; Biswal, A.K.; Rawat, A.K.S. Novel derivatives of plant monomeric phenolics: Act as inhibitors of bacterial cell-to-cell communication. Microb. Pathog., 2020, 141, 103856.
[http://dx.doi.org/10.1016/j.micpath.2019.103856] [PMID: 31794818]
[83]
Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; WenHua, L.; XiaoHui, Z. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother., 2018, 97, 67-74.
[http://dx.doi.org/10.1016/j.biopha.2017.10.064] [PMID: 29080460]
[84]
Adeyemi, O.S.; Atolani, O.; Awakan, O.J.; Olaolu, T.D.; Nwonuma, C.O.; Alejolowo, O.; Otohinoyi, D.A.; Rotimi, D.; Owolabi, A.; Batiha, G.E. Focus: Organelles: in vitro screening to identify anti-Toxoplasma compounds and in silico modeling for bioactivities and toxicity. Yale J. Biol. Med., 2019, 92(3), 369-383.
[PMID: 31543702]
[85]
Muhammad, N.; Saeed, M.; Adhikari, A.; Khan, K.M.; Khan, H. Isolation of a new bioactive cinnamic acid derivative from the whole plant of Viola betonicifolia. J. Enzyme Inhib. Med. Chem., 2013, 28(5), 997-1001.
[http://dx.doi.org/10.3109/14756366.2012.702344] [PMID: 22803667]
[86]
Abedini, E.; Khodadadi, E.; Zeinalzadeh, E.; Moaddab, S.R.; Asgharzadeh, M.; Mehramouz, B.; Dao, S.; Kafil, H. A comprehensive study on the antimicrobial properties of resveratrol as an alternative therapy. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-15.
[http://dx.doi.org/10.1155/2021/8866311] [PMID: 33815561]
[87]
Nawaz, J.; Rasul, A.; Shah, M.A.; Hussain, G.; Riaz, A.; Sarfraz, I.; Zafar, S.; Adnan, M.; Khan, A.H.; Selamoglu, Z. Cardamonin: A new player to fight cancer via multiple cancer signaling pathways. Life Sci., 2020, 250, 117591.
[http://dx.doi.org/10.1016/j.lfs.2020.117591] [PMID: 32224026]
[88]
Kępa, M.; Miklasińska-Majdanik, M.; Wojtyczka, R.D.; Idzik, D.; Korzeniowski, K.; Smoleń-Dzirba, J.; Wąsik, T.J. Antimicrobial potential of caffeic acid against Staphylococcus aureus clinical strains. BioMed Res. Int., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/7413504] [PMID: 30105241]
[89]
Do, T.H.; Duong, T.H.; Nguyen, H.T.; Nguyen, T.H.; Sichaem, J.; Nguyen, C.H.; Nguyen, H.H.; Long, N.P. Biological activities of lichen-derived monoaromatic compounds. Molecules, 2022, 27(9), 2871.
[http://dx.doi.org/10.3390/molecules27092871] [PMID: 35566220]
[90]
Topçu, S.; Şeker, M.G. In vitro antimicrobial effects and inactivation mechanisms of 5,8-dihydroxy-1,4-napthoquinone. Antibiotics, 2022, 11(11), 1537.
[http://dx.doi.org/10.3390/antibiotics11111537] [PMID: 36358192]
[91]
Kazmaier, U.; Junk, L. Recent developments on the synthesis and bioactivity of ilamycins/rufomycins and cyclomarins, marine cyclopeptides that demonstrate anti-malaria and anti-tuberculosis activity. Mar. Drugs, 2021, 19(8), 446.
[http://dx.doi.org/10.3390/md19080446] [PMID: 34436284]
[92]
Anwar, R; Hajardhini, P Antibacterial activity of gallic acid from the leaves of Altingia excelsa noronha to Enterococcus faecalis., Open Access Maced. J. Med. Sci., 2022, 10(A), 1-6.
[http://dx.doi.org/10.3889/oamjms.2022.10340]
[93]
Shestak, O.P.; Anufriev, V.P.; Novikov, V.L. Preparative production of spinochrome E, a pigment of different sea urchin species. Natural product commun., 2014, 9(7), 1934578X1400900718.
[94]
Goel, M.; Dureja, P.; Rani, A.; Uniyal, P.L.; Laatsch, H. Isolation, characterization and antifungal activity of major constituents of the Himalayan lichen Parmelia reticulata Tayl. J. Agric. Food Chem., 2011, 59(6), 2299-2307.
[http://dx.doi.org/10.1021/jf1049613] [PMID: 21351753]
[95]
Jeong, H.Y.; Jang, S.J.; Kong, H.S.; Lee, S.D.; Kim, E.U.; Chang, J.Y.; Park, S.O.; Lee, K.H.; Shin, H.S. Characterization of antibiotic resistance and stress protein in Staphylococcus aureus and Streptococcus pneumoniae. Proceedings of the PSK Conference, 2001, pp. 180-3.
[96]
Hu, Z.Q.; Zhao, W.H.; Yoda, Y.; Asano, N.; Hara, Y.; Shimamura, T. Additive, indifferent and antagonistic effects in combinations of epigallocatechin gallate with 12 non-β-lactam antibiotics against methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother., 2002, 50(6), 1051-1054.
[http://dx.doi.org/10.1093/jac/dkf250] [PMID: 12461032]
[97]
Gong, Y.Z.; Ding, W.G.; Wu, J.; Tsuji, K.; Horie, M.; Matsuura, H. Cinnamyl-3,4-dihydroxy-α-cyanocinnamate and nordihydroguaiaretic acid inhibit human Kv1.5 currents independently of lipoxygenase. Eur. J. Pharmacol., 2008, 600(1-3), 18-25.
[http://dx.doi.org/10.1016/j.ejphar.2008.10.010] [PMID: 18930721]
[98]
Alfonso, E.E.; Troche, R.; Deng, Z.; Annamalai, T.; Chapagain, P.; Tse-Dinh, Y.C.; Leng, F. Potent inhibition of bacterial DNA gyrase by digallic acid and other gallate derivatives. ChemMedChem, 2022, 17(23), e202200301.
[http://dx.doi.org/10.1002/cmdc.202200301] [PMID: 36161274]
[99]
Vinayagam, R.; Eun Lee, K.; David, E.; Nurul Matin, M.; Gu Kang, S. Facile green preparation of PLGA nanoparticles using wedelolactone: Its cytotoxicity and antimicrobial activities. Inorg. Chem. Commun., 2021, 129, 108583.
[http://dx.doi.org/10.1016/j.inoche.2021.108583]
[100]
Bakrim, S.; Machate, H.; Benali, T.; Sahib, N.; Jaouadi, I.; Omari, N.E.; Aboulaghras, S.; Bangar, S.P.; Lorenzo, J.M.; Zengin, G.; Montesano, D.; Gallo, M.; Bouyahya, A. Natural sources and pharmacological properties of pinosylvin. Plants, 2022, 11(12), 1541.
[http://dx.doi.org/10.3390/plants11121541] [PMID: 35736692]
[101]
(a) Grashorn, M. Use of phytobiotics in broiler nutrition an alternative to infeed antibiotics? J. Anim. Feed Sci., 2010, 19(3), 338-347.
[http://dx.doi.org/10.22358/jafs/66297/2010];
(b) Das, A.; Baidya, R.; Chakraborty, T.; Samanta, A.K.; Roy, S. Pharmacological basis and new insights of taxifolin: A comprehensive review. Biomed. Pharmacother., 2021, 142, 112004.
[http://dx.doi.org/10.1016/j.biopha.2021.112004] [PMID: 34388527]
[102]
Upadhyay, H.C.; Thakur, J.P.; Saikia, D.; Srivastava, S.K. Anti-tubercular agents from Ammannia baccifera (Linn.). Med. Chem. Res., 2013, 22(1), 16-21.
[http://dx.doi.org/10.1007/s00044-012-9998-9]
[103]
Mishra, K.N.; Upadhyay, H.C. Coumarin-1,2,3-triazole hybrids as leading-edge anticancer agents. Front. Drug Discov. (Lausanne), 2022, 2, 1072448.
[http://dx.doi.org/10.3389/fddsv.2022.1072448]
[104]
Sobeh, M.; Petruk, G.; Osman, S.; El Raey, M.A.; Imbimbo, P.; Monti, D.M.; Wink, M. Isolation of myricitrin and 3, 5-di-O-methyl gossypetin from Syzygium samarangense and evaluation of their involvement in protecting keratinocytes against oxidative stress via activation of the Nrf-2 pathway. Molecules, 2019, 24(9), 1839.
[http://dx.doi.org/10.3390/molecules24091839] [PMID: 31086086]
[105]
Liang, H.; He, K.; Li, T.; Cui, S.; Tang, M.; Kang, S.; Ma, W.; Song, L. Mechanism and antibacterial activity of vine tea extract and dihydromyricetin against Staphylococcus aureus. Sci. Rep., 2020, 10(1), 21416.
[http://dx.doi.org/10.1038/s41598-020-78379-y] [PMID: 33293561]
[106]
Yun, B.Y.; Zhou, L.; Xie, K.P.; Wang, Y.J.; Xie, M.J. Antibacterial activity and mechanism of baicalein. Yao Xue Xue Bao, 2012, 47(12), 1587-1592.
[PMID: 23460962]
[107]
Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J., 2017, 25(2), 149-164.
[http://dx.doi.org/10.1016/j.jsps.2016.04.025] [PMID: 28344465]
[108]
Park, K.S.; Chong, Y.; Kim, M.K. Myricetin: Biological activity related to human health. Appl. Biol. Chem., 2016, 59(2), 259-269.
[http://dx.doi.org/10.1007/s13765-016-0150-2]
[109]
Xiao, X.N.; Wang, F.; Yuan, Y.T.; Liu, J.; Liu, Y.Z.; Yi, X. Antibacterial activity and mode of action of dihydromyricetin from Ampelopsis grossedentata leaves against food-borne bacteria. Molecules, 2019, 24(15), 2831.
[http://dx.doi.org/10.3390/molecules24152831] [PMID: 31382605]
[110]
Lee, J.Y.; Lee, E.J.; Jeong, K.W.; Kim, Y.M. Antimicrobial flavonoid, 3, 6-dihydroxyflavone, have dual inhibitory activity against KAS III and KAS I. Bull. Korean Chem. Soc., 2011, 32(9), 3219-3222.
[http://dx.doi.org/10.5012/bkcs.2011.32.9.3219]
[111]
Dadi, P.K.; Ahmad, M.; Ahmad, Z. Inhibition of ATPase activity of Escherichia coli ATP synthase by polyphenols. Int. J. Biol. Macromol., 2009, 45(1), 72-79.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.04.004] [PMID: 19375450]
[112]
Cai, J.Y.; Li, J.; Hou, Y.N.; Ma, K.; Yao, G.D.; Liu, W.W.; Hayashi, T.; Itoh, K.; Tashiro, S.; Onodera, S.; Ikejima, T. Concentration-dependent dual effects of silibinin on kanamycin-induced cells death in Staphylococcus aureus. Biomed. Pharmacother., 2018, 102, 782-791.
[http://dx.doi.org/10.1016/j.biopha.2018.03.133] [PMID: 29604598]
[113]
Lou, Z.; Wang, H.; Zhu, S.; Ma, C.; Wang, Z. Antibacterial activity and mechanism of action of chlorogenic acid. J. Food Sci., 2011, 76(6), M398-M403.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02213.x] [PMID: 22417510]
[114]
Ren, X.; An, P.; Zhai, X.; Wang, S.; Kong, Q. The antibacterial mechanism of pterostilbene derived from xinjiang wine grape: A novel apoptosis inducer in Staphyloccocus aureus and Escherichia coli. Lebensm. Wiss. Technol., 2019, 101, 100-106.
[http://dx.doi.org/10.1016/j.lwt.2018.11.038]
[115]
Khan, F.; Bamunuarachchi, N.I.; Tabassum, N.; Kim, Y.M. Caffeic acid and its derivatives: Antimicrobial drugs toward microbial pathogens. J. Agric. Food Chem., 2021, 69(10), 2979-3004.
[http://dx.doi.org/10.1021/acs.jafc.0c07579] [PMID: 33656341]
[116]
Nakayama, M.; Shimatani, K.; Ozawa, T.; Shigemune, N.; Tomiyama, D.; Yui, K.; Katsuki, M.; Ikeda, K.; Nonaka, A.; Miyamoto, T. Mechanism for the antibacterial action of epigallocatechin gallate (EGCg) on Bacillus subtilis. Biosci. Biotechnol. Biochem., 2015, 79(5), 845-854.
[http://dx.doi.org/10.1080/09168451.2014.993356] [PMID: 25559894]
[117]
Lee, S.K.; Lee, H.J.; Min, H.Y.; Park, E.J.; Lee, K.M.; Ahn, Y.H.; Cho, Y.J.; Pyee, J.H. Antibacterial and antifungal activity of pinosylvin, a constituent of pine. Fitoterapia, 2005, 76(2), 258-260.
[http://dx.doi.org/10.1016/j.fitote.2004.12.004] [PMID: 15752644]
[118]
Kuban-Jankowska, A.; Sahu, K.K.; Gorska, M.; Tuszynski, J.A.; Wozniak, M. Chicoric acid binds to two sites and decreases the activity of the YopH bacterial virulence factor. Oncotarget, 2016, 7(3), 2229-2238.
[http://dx.doi.org/10.18632/oncotarget.6812] [PMID: 26735581]
[119]
Ibrahim, R.K. Introduction to Flavonoids, Volume 2. Chemistry and bio- chemistry of organic natural products by bruce A. Bohm (University of British Columbia), Harwood Academic Publishers: Amsterdam, 1998, p. 503. $145.00. ISBN 90-5702-353-9. J. Am. Chem. Soc., 1998, 122, pp. 3565-3566.
[120]
Beecher, G.R. Overview of dietary flavonoids: nomenclature, occurrence and intake. J. Nutr., 2003, 133(10), 3248S-3254S.
[http://dx.doi.org/10.1093/jn/133.10.3248S] [PMID: 14519822]
[121]
An, S.M.; Kim, H.J.; Kim, J.E.; Boo, Y.C. Flavonoids, taxifolin and luteolin attenuate cellular melanogenesis despite increasing tyrosinase protein levels. Phytother. Res., 2008, 22(9), 1200-1207.
[http://dx.doi.org/10.1002/ptr.2435] [PMID: 18729255]
[122]
Sroka, Z.; Cisowski, W. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem. Toxicol., 2003, 41(6), 753-758.
[http://dx.doi.org/10.1016/S0278-6915(02)00329-0] [PMID: 12738180]
[123]
Galato, D.; Ckless, K.; Susin, M.F.; Giacomelli, C.; Ribeiro-do-Valle, R.M.; Spinelli, A. Antioxidant capacity of phenolic and related compounds: Correlation among electrochemical, visible spectroscopy methods and structure–antioxidant activity. Redox Rep., 2001, 6(4), 243-250.
[http://dx.doi.org/10.1179/135100001101536391] [PMID: 11642715]
[124]
Topal, F.; Nar, M.; Gocer, H.; Kalin, P.; Kocyigit, U.M.; Gülçin, İ.; Alwasel, S.H. Antioxidant activity of taxifolin: An activity–structure relationship. J. Enzyme Inhib. Med. Chem., 2016, 31(4), 674-683.
[http://dx.doi.org/10.3109/14756366.2015.1057723] [PMID: 26147349]
[125]
Ribeiro, D.; Fernandes, E.; Freitas, M. Polyphenols: Mechanisms of action in human health and disease! Flavonoids as modulators of neutrophils’ oxidative burst: Structure-activity relationship, Polyphen; Mech. Action Hum. Health Dis, 2018, pp. 261-276.
[http://dx.doi.org/10.1016/B978-0-12-813006-3.00020-9]
[126]
Dinda, B.; Dinda, S.; DasSharma, S.; Banik, R.; Chakraborty, A.; Dinda, M. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur. J. Med. Chem., 2017, 131, 68-80.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.004] [PMID: 28288320]
[127]
Gasiorowski, K.; Lamer-Zarawska, E.; Leszek, J.; Parvathaneni, K.; Bhushan Yendluri, B.; Błach-Olszewska, Z.; Aliev, G. Flavones from root of Scutellaria baicalensis Georgi: Drugs of the future in neurodegeneration? CNS Neurol. Disord. Drug Targets, 2011, 10(2), 184-191.
[http://dx.doi.org/10.2174/187152711794480384] [PMID: 21222632]
[128]
Chen, H.; Gao, Y.; Wu, J.; Chen, Y.; Chen, B.; Hu, J.; Zhou, J. Exploring therapeutic potentials of baicalin and its aglycone baicalein for hematological malignancies. Cancer Lett., 2014, 354(1), 5-11.
[http://dx.doi.org/10.1016/j.canlet.2014.08.003] [PMID: 25128647]
[129]
Gong, W.; Zhao, Z.; Liu, B.; Lu, L.; Dong, J. Exploring the chemopreventive properties and perspectives of baicalin and its aglycone baicalein in solid tumors. Eur. J. Med. Chem., 2017, 126, 844-852.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.058] [PMID: 27960146]
[130]
Chang, H.T.; Chou, C.T.; Kuo, D.H.; Shieh, P.; Jan, C.R.; Liang, W.Z. The mechanism of Ca2+ movement in the involvement of baicalein-induced cytotoxicity in ZR-75-1 human breast cancer cells. J. Nat. Prod., 2015, 78(7), 1624-1634.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00173] [PMID: 26154615]
[131]
Lin, Y.T.; Yang, J.S.; Lin, H.J.; Tan, T.W.; Tang, N.Y.; Chaing, J.H.; Chang, Y.H.; Lu, H.F.; Chung, J.G. Baicalein induces apoptosis in SCC-4 human tongue cancer cells via a Ca2+-dependent mitochondrial pathway. In vivo, 2007, 21(6), 1053-1058.
[PMID: 18210755]
[132]
Lee, J.H.; Li, Y.C.; Ip, S.W.; Hsu, S.C.; Chang, N.W.; Tang, N.Y.; Yu, C.S.; Chou, S.T.; Lin, S.S.; Lino, C.C.; Yang, J.S.; Chung, J.G. The role of Ca2+ in baicalein-induced apoptosis in human breast MDA-MB-231 cancer cells through mitochondria- and caspase-3-dependent pathway. Anticancer Res., 2008, 28(3A), 1701-1711.
[PMID: 18630529]
[133]
Su, H.; Yao, S.; Zhao, W.; Li, M.; Liu, J.; Shang, W.; Xie, H.; Ke, C.; Hu, H.; Gao, M.; Yu, K.; Liu, H.; Shen, J.; Tang, W.; Zhang, L.; Xiao, G.; Ni, L.; Wang, D.; Zuo, J.; Jiang, H.; Bai, F.; Wu, Y.; Ye, Y.; Xu, Y. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol. Sin., 2020, 41(9), 1167-1177.
[http://dx.doi.org/10.1038/s41401-020-0483-6] [PMID: 32737471]
[134]
Crespy, V.; Morand, C.; Besson, C.; Manach, C.; Demigne, C.; Remesy, C. Quercetin, but not its glycosides, is absorbed from the rat stomach. J. Agric. Food Chem., 2002, 50(3), 618-621.
[http://dx.doi.org/10.1021/jf010919h] [PMID: 11804539]
[135]
Scholz, S.; Williamson, G. Interactions affecting the bioavailability of dietary polyphenols in vivo. Int. J. Vitam. Nutr. Res., 2007, 77(3), 224-235.
[http://dx.doi.org/10.1024/0300-9831.77.3.224] [PMID: 18214024]
[136]
Walle, T.; Browning, A.M.; Steed, L.L.; Reed, S.G.; Walle, U.K. Flavonoid glucosides are hydrolyzed and thus activated in the oral cavity in humans. J. Nutr., 2005, 135(1), 48-52.
[http://dx.doi.org/10.1093/jn/135.1.48] [PMID: 15623831]
[137]
Chen, X.; Yin, O.Q.P.; Zuo, Z.; Chow, M.S.S. Pharmacokinetics and modeling of quercetin and metabolites. Pharm. Res., 2005, 22(6), 892-901.
[http://dx.doi.org/10.1007/s11095-005-4584-1] [PMID: 15948033]
[138]
Graf, B.A.; Ameho, C.; Dolnikowski, G.G.; Milbury, P.E.; Chen, C.Y.; Blumberg, J.B. Rat gastrointestinal tissues metabolize quercetin. J. Nutr., 2006, 136(1), 39-44.
[http://dx.doi.org/10.1093/jn/136.1.39] [PMID: 16365056]
[139]
Azuma, K.; Ippoushi, K.; Ito, H.; Horie, H.; Terao, J. Enhancing effect of lipids and emulsifiers on the accumulation of quercetin metabolites in blood plasma after the short-term ingestion of onion by rats. Biosci. Biotechnol. Biochem., 2003, 67(12), 2548-2555.
[http://dx.doi.org/10.1271/bbb.67.2548] [PMID: 14730132]
[140]
Abotaleb, M.; Samuel, S.; Varghese, E.; Varghese, S.; Kubatka, P.; Liskova, A.; Büsselberg, D. Flavonoids in cancer and apoptosis. Cancers, 2018, 11(1), 28.
[http://dx.doi.org/10.3390/cancers11010028] [PMID: 30597838]
[141]
Chander, M. Anticancer efficacy of some plant phenolics—a recent scenario. Int. J. Curr. Microbiol. Appl. Sci., 2018, 7(10), 1746-1768.
[http://dx.doi.org/10.20546/ijcmas.2018.710.200]
[142]
Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.C.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A.M. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr., 2001, 74(4), 418-425.
[http://dx.doi.org/10.1093/ajcn/74.4.418] [PMID: 11566638]
[143]
Lafay, S.; Gil-Izquierdo, A.; Manach, C.; Morand, C.; Besson, C.; Scalbert, A. Chlorogenic acid is absorbed in its intact form in the stomach of rats. J. Nutr., 2006, 136(5), 1192-1197.
[http://dx.doi.org/10.1093/jn/136.5.1192] [PMID: 16614403]
[144]
Zhou, Z.E.; Luo, Q.S.; Xiong, J.H.; Tang, K.J. Antimicrobial mechanisms of 3-O-caffeoyl quinic acid and 3,5-di-O-caffeoyl quinic acid against Escherichia coli. Food Sci. Technol., 2014, 39(3), 228-232.
[http://dx.doi.org/10.1248/bpb.33.329]
[145]
Feng, R.; Lu, Y.; Bowman, L.L.; Qian, Y.; Castranova, V.; Ding, M. Inhibition of activator protein-1, NF-kappaB, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. J. Biol. Chem., 2005, 280(30), 27888-27895.
[http://dx.doi.org/10.1074/jbc.M503347200] [PMID: 15944151]
[146]
Francisco, V.; Costa, G.; Figueirinha, A.; Marques, C.; Pereira, P.; Miguel Neves, B.; Celeste Lopes, M.; García-Rodríguez, C.; Teresa Cruz, M.; Teresa Batista, M. Anti-inflammatory activity of Cymbopogon citratus leaves infusion via proteasome and nuclear factor-κB pathway inhibition: Contribution of chlorogenic acid. J. Ethnopharmacol., 2013, 148(1), 126-134.
[http://dx.doi.org/10.1016/j.jep.2013.03.077] [PMID: 23583902]
[147]
Ren, S.; Wu, M.; Guo, J.; Zhang, W.; Liu, X.; Sun, L.; Holyst, R.; Hou, S.; Fang, Y.; Feng, X. Sterilization of polydimethylsiloxane surface with Chinese herb extract: A new antibiotic mechanism of chlorogenic acid. Sci. Rep., 2015, 5(1), 10464.
[http://dx.doi.org/10.1038/srep10464] [PMID: 25993914]
[148]
Monserrat Hernández-Hernández, E.; Serrano-García, C.; Antonio Vázquez-Roque, R.; Díaz, A.; Monroy, E.; Rodríguez-Moreno, A.; Florán, B.; Flores, G. Chronic administration of resveratrol prevents morphological changes in prefrontal cortex and hippocampus of aged rats. Synapse, 2016, 70(5), 206-217.
[http://dx.doi.org/10.1002/syn.21888] [PMID: 26789275]
[149]
Gaballah, H.H.; Zakaria, S.S.; Elbatsh, M.M.; Tahoon, N.M. Modulatory effects of resveratrol on endoplasmic reticulum stress-associated apoptosis and oxido-inflammatory markers in a rat model of rotenone-induced Parkinson’s disease. Chem. Biol. Interact., 2016, 251, 10-16.
[http://dx.doi.org/10.1016/j.cbi.2016.03.023] [PMID: 27016191]
[150]
Wang, G.; Chen, L.; Pan, X.; Chen, J.; Wang, L.; Wang, W.; Cheng, R.; Wu, F.; Feng, X.; Yu, Y.; Zhang, H.T.; O’Donnell, J.M.; Xu, Y. The effect of resveratrol on beta amyloid-induced memory impairment involves inhibition of phosphodiesterase-4 related signaling. Oncotarget, 2016, 7(14), 17380-17392.
[http://dx.doi.org/10.18632/oncotarget.8041] [PMID: 26980711]
[151]
Murias, M.; Handler, N.; Erker, T.; Pleban, K.; Ecker, G.; Saiko, P.; Szekeres, T.; Jäger, W. Resveratrol analogues as selective cyclooxygenase-2 inhibitors: Synthesis and structure–activity relationship. Bioorg. Med. Chem., 2004, 12(21), 5571-5578.
[http://dx.doi.org/10.1016/j.bmc.2004.08.008] [PMID: 15465334]
[152]
Murias, M.; Jäger, W.; Handler, N.; Erker, T.; Horvath, Z.; Szekeres, T.; Nohl, H.; Gille, L. Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: Structure–activity relationship. Biochem. Pharmacol., 2005, 69(6), 903-912.
[http://dx.doi.org/10.1016/j.bcp.2004.12.001] [PMID: 15748702]
[153]
Villar, V.H.; Nguyen, T.L.; Terés, S.; Bodineau, C.; Durán, R.V. Escaping mTOR inhibition for cancer therapy: Tumor suppressor functions of mTOR. Mol. Cell. Oncol., 2017, 4(3), e1297284.
[http://dx.doi.org/10.1080/23723556.2017.1297284] [PMID: 28616576]
[154]
Vangan, N.; Cao, Y.; Jia, X.; Bao, W.; Wang, Y.; He, Q.; Binderiya, U.; Feng, X.; Li, T.; Hao, H.; Wang, Z. mTORC1 mediates peptidoglycan induced inflammatory cytokines expression and NF-κB activation in macrophages. Microb. Pathog., 2016, 99, 111-118.
[http://dx.doi.org/10.1016/j.micpath.2016.08.011] [PMID: 27524262]
[155]
Temiz-Resitoglu, M.; Kucukkavruk, S.P.; Guden, D.S.; Cecen, P.; Sari, A.N.; Tunctan, B.; Gorur, A.; Tamer-Gumus, L.; Buharalioglu, C.K.; Malik, K.U.; Sahan-Firat, S. Activation of mTOR/IκB-α/NF-κB pathway contributes to LPS-induced hypotension and inflammation in rats. Eur. J. Pharmacol., 2017, 802, 7-19.
[http://dx.doi.org/10.1016/j.ejphar.2017.02.034] [PMID: 28228357]
[156]
Lee, D.F.; Kuo, H.P.; Chen, C.T.; Hsu, J.M.; Chou, C.K.; Wei, Y.; Sun, H.L.; Li, L.Y.; Ping, B.; Huang, W.C.; He, X.; Hung, J.Y.; Lai, C.C.; Ding, Q.; Su, J.L.; Yang, J.Y.; Sahin, A.A.; Hortobagyi, G.N.; Tsai, F.J.; Tsai, C.H.; Hung, M.C. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell, 2007, 130(3), 440-455.
[http://dx.doi.org/10.1016/j.cell.2007.05.058] [PMID: 17693255]
[157]
Dufour, M.; Faes, S.; Dormond-Meuwly, A.; Demartines, N.; Dormond, O. PGE2-induced colon cancer growth is mediated by mTORC1. Biochem. Biophys. Res. Commun., 2014, 451(4), 587-591.
[http://dx.doi.org/10.1016/j.bbrc.2014.08.032] [PMID: 25128827]
[158]
Pan, H.; Xu, L.H.; Ouyang, D.Y.; Wang, Y.; Zha, Q.B.; Hou, X.F.; He, X.H. The second-generation mTOR kinase inhibitor INK128 exhibits anti-inflammatory activity in lipopolysaccharide-activated RAW 264.7 cells. Inflammation, 2014, 37(3), 756-765.
[http://dx.doi.org/10.1007/s10753-013-9794-9] [PMID: 24385238]
[159]
Bao, W.; Wang, Y.; Fu, Y.; Jia, X.; Li, J.; Vangan, N.; Bao, L.; Hao, H.; Wang, Z. mTORC1 regulates flagellin-induced inflammatory response in macrophages. PLoS One, 2015, 10(5), e0125910.
[http://dx.doi.org/10.1371/journal.pone.0125910] [PMID: 25942007]
[160]
Sun, Q.; Liu, Q.; Zheng, Y.; Cao, X. Rapamycin suppresses TLR4-triggered IL-6 and PGE2 production of colon cancer cells by inhibiting TLR4 expression and NF-κB activation. Mol. Immunol., 2008, 45(10), 2929-2936.
[http://dx.doi.org/10.1016/j.molimm.2008.01.025] [PMID: 18343502]
[161]
Chandrika, G.; Natesh, K.; Ranade, D.; Chugh, A.; Shastry, P. Suppression of the invasive potential of Glioblastoma cells by mTOR inhibitors involves modulation of NFκB and PKC-α signaling. Sci. Rep., 2016, 6(1), 22455.
[http://dx.doi.org/10.1038/srep22455] [PMID: 26940200]
[162]
Ekshyyan, O.; Khandelwal, A.R.; Rong, X.; Moore-Medlin, T.; Ma, X.; Alexander, J.S.; Nathan, C.O. Rapamycin targets Interleukin 6 (IL-6) expression and suppresses endothelial cell invasion stimulated by tumor cells. Am. J. Transl. Res., 2016, 8(11), 4822-4830.
[PMID: 27904683]
[163]
Orlikova, B.; Tasdemir, D.; Golais, F.; Dicato, M.; Diederich, M. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr., 2011, 6(2), 125-147.
[http://dx.doi.org/10.1007/s12263-011-0210-5] [PMID: 21484163]
[164]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur. J. Med. Chem., 2015, 98, 69-114.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.004] [PMID: 26005917]
[165]
Damasceno, S.S.; Dantas, B.B.; Ribeiro-Filho, J.; Antônio, M. Araújo, D.; Galberto M da Costa, J. Chemical Properties of Caffeic and Ferulic Acids in Biological System: Implications in Cancer Therapy. A Review. Curr. Pharm. Des., 2017, 23(20), 3015-3023.
[http://dx.doi.org/10.2174/1381612822666161208145508] [PMID: 27928956]
[166]
Zheng, L.F.; Dai, F.; Zhou, B.; Yang, L.; Liu, Z.L. Prooxidant activity of hydroxycinnamic acids on DNA damage in the presence of Cu(II) ions: Mechanism and structure-activity relationship. Food Chem. Toxicol., 2008, 46(1), 149-156.
[http://dx.doi.org/10.1016/j.fct.2007.07.010] [PMID: 17764801]
[167]
Khan, N.; Mukhtar, H. Tea polyphenols in promotion of human health. Nutrients, 2018, 11(1), 39.
[http://dx.doi.org/10.3390/nu11010039] [PMID: 30585192]
[168]
Lambert, J.D.; Elias, R.J. The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Arch. Biochem. Biophys., 2010, 501(1), 65-72.
[http://dx.doi.org/10.1016/j.abb.2010.06.013] [PMID: 20558130]
[169]
An, Z.; Qi, Y.; Huang, D.; Gu, X.; Tian, Y.; Li, P.; Li, H.; Zhang, Y. EGCG inhibits Cd2+-induced apoptosis through scavenging ROS rather than chelating Cd2+ in HL-7702 cells. Toxicol. Mech. Methods, 2014, 24(4), 259-267.
[http://dx.doi.org/10.3109/15376516.2013.879975] [PMID: 24392852]
[170]
Frei, B.; Higdon, J.V. Antioxidant activity of tea polyphenols in vivo: Evidence from animal studies. J. Nutr., 2003, 133(10), 3275S-3284S.
[http://dx.doi.org/10.1093/jn/133.10.3275S] [PMID: 14519826]
[171]
Dou, Q.P.; Taskeen, M.; Mohammad, I.; Huo, C.; Chan, T.H.; Dou, Q.P. Recent advances on tea polyphenols. Front. Biosci., 2012, E4(1), 111-131.
[http://dx.doi.org/10.2741/e363] [PMID: 22201858]
[172]
Shirakami, Y.; Shimizu, M.; Moriwaki, H. Cancer chemoprevention with green tea catechins: From bench to bed. Curr. Drug Targets, 2012, 13(14), 1842-1857.
[http://dx.doi.org/10.2174/138945012804545506] [PMID: 23140294]
[173]
Valcic, S.; Muders, A.; Jacobsen, N.E.; Liebler, D.C.; Timmermann, B.N. Antioxidant chemistry of green tea catechins. Identification of products of the reaction of (-)-epigallocatechin gallate with peroxyl radicals. Chem. Res. Toxicol., 1999, 12(4), 382-386.
[http://dx.doi.org/10.1021/tx990003t] [PMID: 10207128]
[174]
Lee, S.; Razqan, G.S.A.; Kwon, D.H. Antibacterial activity of epigallocatechin-3-gallate (EGCG) and its synergism with β-lactam antibiotics sensitizing carbapenem-associated multidrug resistant clinical isolates of Acinetobacter baumannii. Phytomedicine, 2017, 24, 49-55.
[http://dx.doi.org/10.1016/j.phymed.2016.11.007] [PMID: 28160861]
[175]
Sriram, N.; Kalayarasan, S.; Sudhandiran, G. Epigallocatechin-3-gallate augments antioxidant activities and inhibits inflammation during bleomycin-induced experimental pulmonary fibrosis through Nrf2–Keap1 signaling. Pulm. Pharmacol. Ther., 2009, 22(3), 221-236.
[http://dx.doi.org/10.1016/j.pupt.2008.12.010] [PMID: 19138753]
[176]
Surh, Y.J.; Kundu, J.; Na, H.K. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med., 2008, 74(13), 1526-1539.
[http://dx.doi.org/10.1055/s-0028-1088302] [PMID: 18937164]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy