Generic placeholder image

Current Respiratory Medicine Reviews

Editor-in-Chief

ISSN (Print): 1573-398X
ISSN (Online): 1875-6387

Review Article

COVID-19 Beyond the Lungs: Neuropsychiatric Symptoms and EEG Correlations

Author(s): Anna Gaia Attardi, Graziana Ceraolo, Federica Galletta, Maria Grazia Maimone and Greta Amore*

Volume 21, Issue 1, 2025

Published on: 04 April, 2024

Page: [81 - 92] Pages: 12

DOI: 10.2174/011573398X289180240329083706

Price: $65

Abstract

COVID-19, previously considered a mere respiratory illness affecting predominantly the adult age, is today acknowledged as the cause of a wide spectrum of multisystemic signs and symptoms, ranging from mild to severe degrees, including neurological manifestations. Even if less frequently than adults, pediatric patients may also develop severe COVID-19 and present with peculiar clinical pictures, including multi-system inflammatory syndrome (MIS-C) and neuropsychiatric manifestations. Mounting evidence is available on the potential pathogenic mechanisms underpinning the nervous system involvement and on the Post-COVID19 sequelae. However, little is known about EEG changes that may come along with them, particularly in the pediatric age. Herein, we briefly overview the neuropsychiatric COVID-19-related features in pediatric patients and the reported potential EEG correlates. Further research may help unravel new insights and provide new biomarkers regarding diagnosis, prognosis, and treatment options for post- COVID-19 neuro-cognitive disorders.

Keywords: EEG correlates, electroencephalography, MIS-C, neuropsychiatric manifestations, pediatric population, post- COVID-19 syndrome, SARS-CoV-2.

« Previous
Graphical Abstract
[1]
Sharma A, Tiwari S, Deb MK, Marty JL. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): A global pandemic and treatment strategies. Int J Antimicrob Agents 2020; 56(2): 106054.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106054] [PMID: 32534188]
[2]
Manti S, Licari A, Montagna L, et al. SARS-CoV-2 infection in pediatric population. Acta Biomed 2020; 91(11-S): e2020003.
[http://dx.doi.org/10.23750/abm.v91i11-S.10298] [PMID: 33004773]
[3]
WHO. Clinical management of COVID-19: Interim guidance. Geneva: World Health Organization 2020.
[4]
Nepal G, Shrestha GS, Rehrig JH, et al. Neurological manifestations of COVID-19 associated multi-system inflammatory syndrome in children: A systematic review and meta-analysis. J Nepal Health Res Counc 2021; 19(1): 10-8.
[http://dx.doi.org/10.33314/jnhrc.v19i1.3410] [PMID: 33934126]
[5]
Davies NG, Klepac P, Liu Y, et al. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat Med 2020; 26(8): 1205-11.
[http://dx.doi.org/10.1038/s41591-020-0962-9] [PMID: 32546824]
[6]
Esposito S, Caramelli F, Principi N. What are the risk factors for admission to the pediatric intensive unit among pediatric patients with COVID-19? Ital J Pediatr 2021; 47(1): 103.
[http://dx.doi.org/10.1186/s13052-021-01057-w] [PMID: 33941228]
[7]
Chiappini E, Licari A, Motisi MA, et al. Gastrointestinal involvement in children with SARS-COV-2 infection: An overview for the pediatrician. Pediatr Allergy Immunol 2020; 31(S26): 92-5.
[http://dx.doi.org/10.1111/pai.13373]
[8]
Bova SM, Serafini L, Capetti P, et al. Neurological involvement in multisystem inflammatory syndrome in children: Clinical, electroencephalographic and magnetic resonance imaging peculiarities and therapeutic implications. an italian single-center experience. Front Pediatr 2022; 10: 932208.
[http://dx.doi.org/10.3389/fped.2022.932208] [PMID: 36034550]
[9]
Mannan AO, Eyre M, Löbel U, et al. Neurologic and radiographic findings associated with COVID-19 infection in children. JAMA Neurol 2020; 77(11): 1440-5.
[http://dx.doi.org/10.1001/jamaneurol.2020.2687] [PMID: 32609336]
[10]
Cardinale F, Ciprandi G, Barberi S, et al. Consensus statement of the Italian society of pediatric allergy and immunology for the pragmatic management of children and adolescents with allergic or immunological diseases during the COVID-19 pandemic. Ital J Pediatr 2020; 46(1): 84.
[http://dx.doi.org/10.1186/s13052-020-00843-2] [PMID: 32546234]
[11]
Bosak M, Mazurkiewicz I, Kopeć WD, et al. High prevalence of electroencephalographic frontal intermittent rhythmic delta activity in patients with moderately severe COVID-19. Neurol Neurochir Pol 2023; 57(1): 131-5.
[http://dx.doi.org/10.5603/PJNNS.a2022.0069] [PMID: 36426929]
[12]
Khair A. Intermittent frontal rhythmic discharges as an electroencephalogram biomarker of acute SARS-CoV-2 infection-associated encephalopathy in children. Cureus 2021; 13(10): e19149.
[http://dx.doi.org/10.7759/cureus.19149] [PMID: 34868783]
[13]
Fink EL, Robertson CL, Wainwright MS, et al. Prevalence and risk factors of neurologic manifestations in hospitalized children diagnosed with acute sARS-CoV-2 or MIS-C. Pediatr Neurol 2022; 128: 33-44.
[http://dx.doi.org/10.1016/j.pediatrneurol.2021.12.010] [PMID: 35066369]
[14]
Khan S, Siddique R, Hao X, et al. The COVID-19 infection in children and its association with the immune system, prenatal stress, and neurological complications. Int J Biol Sci 2022; 18(2): 707-16.
[http://dx.doi.org/10.7150/ijbs.66906] [PMID: 35002519]
[15]
Galea M, Agius M, Vassallo N. Neurological manifestations and pathogenic mechanisms of COVID-19. Neurol Res 2022; 44(7): 571-82.
[http://dx.doi.org/10.1080/01616412.2021.2024732] [PMID: 34986754]
[16]
Theoharides TC, Kempuraj D. Role of SARS-CoV-2 Spike-Protein-Induced Activation of Microglia and Mast Cells in the Pathogenesis of Neuro-COVID. Cells 2023; 12(5): 688.
[http://dx.doi.org/10.3390/cells12050688] [PMID: 36899824]
[17]
Casabianca M, Caula C, Titomanlio L, Lenglart L. Neurological consequences of SARS-CoV-2 infections in the pediatric population. Front Pediatr 2023; 11: 1123348.
[http://dx.doi.org/10.3389/fped.2023.1123348] [PMID: 36865695]
[18]
Dix E, Roy K. COVID-19: Brain effects. Psychiatr Clin North Am 2022; 45(4): 625-37.
[http://dx.doi.org/10.1016/j.psc.2022.07.009] [PMID: 36396269]
[19]
Di Rosa G, Lenzo P, Parisi E, et al. Role of plasma homocysteine levels and MTHFR polymorphisms on IQ scores in children and young adults with epilepsy treated with antiepileptic drugs. Epilepsy Behav 2013; 29(3): 548-51.
[http://dx.doi.org/10.1016/j.yebeh.2013.09.034] [PMID: 24183735]
[20]
Antoon JW, Hall M, Howard LM, et al. COVID-19 and acute neurologic complications in children. Pediatrics 2022; 150(5): e2022058167.
[http://dx.doi.org/10.1542/peds.2022-058167] [PMID: 35949041]
[21]
Schober ME, Pavia AT, Bohnsack JF. Neurologic manifestations of COVID-19 in children: Emerging pathophysiologic insights. Pediatr Crit Care Med 2021; 22(7): 655-61.
[http://dx.doi.org/10.1097/PCC.0000000000002774] [PMID: 33965992]
[22]
Siracusa L, Cascio A, Giordano S, et al. Neurological complications in pediatric patients with SARS-CoV-2 infection: A systematic review of the literature. Ital J Pediatr 2021; 47(1): 123.
[http://dx.doi.org/10.1186/s13052-021-01066-9] [PMID: 34078441]
[23]
Amore G, Spoto G, Valentini G, et al. Overview of guillain-barrè syndrome. J Biol Regul Homeost Agents 2022; 36(S1): 3-8.
[http://dx.doi.org/10.23812/j.biol.regul.homeost.agents.202236.1S1.2]
[24]
Pascarella A, Maglione M, Lenta S, et al. Seizures in children with SARS-CoV-2 infection: Epidemiological, clinical and neurophysiological characterization. Children 2022; 9(12): 1923.
[http://dx.doi.org/10.3390/children9121923] [PMID: 36553366]
[25]
Swarz JA, Daily S, Niemi E, Hilbert SG, Ibrahim HA, Gaitanis JN. COVID-19 infection presenting as acute-onset focal status epilepticus. Pediatr Neurol 2020; 112: 7.
[http://dx.doi.org/10.1016/j.pediatrneurol.2020.07.012] [PMID: 32823139]
[26]
Perrone S, Cannavò L, Manti S, et al. Pediatric multisystem syndrome associated with SARS-CoV-2 (MIS-C): The interplay of oxidative stress and inflammation. Int J Mol Sci 2022; 23(21): 12836.
[http://dx.doi.org/10.3390/ijms232112836] [PMID: 36361640]
[27]
Shah W, Hillman T, Playford ED, Hishmeh L. Managing the long term effects of COVID-19: Summary of NICE, SIGN, and RCGP rapid guideline. BMJ 2021; 372(136): n136.
[http://dx.doi.org/10.1136/bmj.n136] [PMID: 33483331]
[28]
Bourmistrova NW, Solomon T, Braude P, Strawbridge R, Carter B. Long-term effects of COVID-19 on mental health: A systematic review. J Affect Disord 2022; 299: 118-25.
[http://dx.doi.org/10.1016/j.jad.2021.11.031] [PMID: 34798148]
[29]
Ziauddeen N, Gurdasani D, O’Hara ME, et al. Characteristics and impact of Long Covid: Findings from an online survey. PLoS One 2022; 17(3): e0264331.
[http://dx.doi.org/10.1371/journal.pone.0264331] [PMID: 35259179]
[30]
Graham EL, Clark JR, Orban ZS, et al. Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized COVID-19 “long haulers”. Ann Clin Transl Neurol 2021; 8(5): 1073-85.
[http://dx.doi.org/10.1002/acn3.51350] [PMID: 33755344]
[31]
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020; 77(6): 683-90.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[32]
Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med 2020; 382(23): 2268-70.
[http://dx.doi.org/10.1056/NEJMc2008597] [PMID: 32294339]
[33]
Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med 2021; 27(4): 601-15.
[http://dx.doi.org/10.1038/s41591-021-01283-z] [PMID: 33753937]
[34]
Mainieri G, Montini A, Nicotera A, Di Rosa G, Provini F, Loddo G. The genetics of sleep disorders in children: A narrative review. Brain Sci 2021; 11(10): 1259.
[http://dx.doi.org/10.3390/brainsci11101259] [PMID: 34679324]
[35]
Rubega M, Ciringione L, Bertuccelli M, et al. High-density EEG sleep correlates of cognitive and affective impairment at 12-month follow-up after COVID-19. Clin Neurophysiol 2022; 140: 126-35.
[http://dx.doi.org/10.1016/j.clinph.2022.05.017] [PMID: 35763985]
[36]
Edison P. Brain connectivity and neurological sequalae in COVID-19. Brain Connect 2021; 11(5): 331-2.
[http://dx.doi.org/10.1089/brain.2021.29023.ped] [PMID: 34100631]
[37]
Appelt AP, Sisconetto TA, Sucupira BKSM, et al. Changes in electrical brain activity and cognitive functions following mild to moderate COVID-19: A one-year prospective study after acute infection. Clin EEG Neurosci 2022; 53(6): 543-57.
[http://dx.doi.org/10.1177/15500594221103834] [PMID: 35635280]
[38]
Furlanis G, Buoite Stella A, Biaduzzini F, et al. Cognitive deficit in post-acute COVID-19: An opportunity for EEG evaluation? Neurol Sci 2023; 44(5): 1491-8.
[http://dx.doi.org/10.1007/s10072-023-06615-0] [PMID: 36749529]
[39]
Bektaş G, Akçay N, Boydağ K, Şevketoğlu E. Reversible splenial lesion syndrome associated with SARS-CoV-2 infection in two children. Brain Dev 2021; 43(2): 230-3.
[http://dx.doi.org/10.1016/j.braindev.2020.10.002] [PMID: 33082059]
[40]
Zombori L, Bacon M, Wood H, et al. Severe cortical damage associated with COVID-19 case report. Seizure 2021; 84: 66-8.
[http://dx.doi.org/10.1016/j.seizure.2020.11.014] [PMID: 33285362]
[41]
Akçay N, Bektaş G, Menentoğlu ME, et al. COVID-19–associated acute disseminated encephalomyelitis–like disease in 2 children. Pediatr Infect Dis J 2021; 40(11): e445-50.
[http://dx.doi.org/10.1097/INF.0000000000003295] [PMID: 34387618]
[42]
Farley M, Zuberi J. COVID-19 precipitating status epilepticus in a pediatric patient. Am J Case Rep 2020; 21: e925776.
[http://dx.doi.org/10.12659/AJCR.925776] [PMID: 32730234]
[43]
McAbee GN, Brosgol Y, Pavlakis S, Agha R, Gaffoor M. Encephalitis associated with COVID-19 infection in an 11-year-old child. Pediatr Neurol 2020; 109: 94.
[http://dx.doi.org/10.1016/j.pediatrneurol.2020.04.013] [PMID: 32586676]
[44]
Fragoso DC, Marx C, Dutra BG, et al. COVID-19 as a cause of acute neonatal encephalitis and cerebral cytotoxic edema. Pediatr Infect Dis J 2021; 40(7): e270-1.
[http://dx.doi.org/10.1097/INF.0000000000003145] [PMID: 33902082]
[45]
Natarajan S, Ganesh R, Palaniappan N, Kannan L. SARS-CoV-2 encephalitis in an adolescent girl. Indian Pediatr 2020; 57(12): 1186-7.
[http://dx.doi.org/10.1007/s13312-020-2080-7] [PMID: 33318331]
[46]
Atakla HG, Noudohounsi HACW, Barry LF, et al. COVID-19 infection in known epileptic and non-epileptic children: What is the place of chloroquine sulfate? a case report. Pan Afr Med J 2020; 37: 177.
[http://dx.doi.org/10.11604/pamj.2020.37.177.26066] [PMID: 33447332]
[47]
Madaan P, Saini L, Dhir P, et al. COVID-19 in children with west syndrome: An ambispective study. Indian J Pediatr 2022; 90(8): 754-60.
[http://dx.doi.org/10.1007/s12098-022-04201-4] [PMID: 35708881]
[48]
Kariyappa M, Govindarajan V, Kommalur A. Acute leukoencephalopathy with restricted diffusion in an infant with severe COVID-19 and dengue coinfection progressing to west syndrome. J Trop Pediatr 2021; 67(2): fmab026.
[http://dx.doi.org/10.1093/tropej/fmab026] [PMID: 33998655]
[49]
Jewell T, Arendt D, Haffley K, Beversdorf A, St Clair NE, Hsu D. Encephalopathy with akinetic mutism in a child with COVID-19 infection: A case report. WMJ 2022; 121(3): E42-5.
[PMID: 36301657]
[50]
Scaglione M, Napoli F, Prato G, et al. An atypical case of aphasia: Transitory ischemic attack in a 13-year-old patient with asymptomatic SARS-CoV-2 infection. Children 2022; 9(7): 983.
[http://dx.doi.org/10.3390/children9070983] [PMID: 35883967]
[51]
Della Corte M, Delehaye C, Savastano E, De Leva MF, Bernardo P, Varone A. Neuropsychiatric syndrome with myoclonus after SARS-CoV-2 infection in a paediatric patient. Clin Neurol Neurosurg 2022; 213: 107121.
[http://dx.doi.org/10.1016/j.clineuro.2022.107121] [PMID: 35030418]
[52]
Kim MG, Stein AA, Overby P, et al. Fatal cerebral edema in a child with COVID-19. Pediatr Neurol 2021; 114: 77-8.
[http://dx.doi.org/10.1016/j.pediatrneurol.2020.10.005] [PMID: 33246133]
[53]
Dugue R, Cay-Martínez KC, Thakur KT, et al. Neurologic manifestations in an infant with COVID-19. Neurology 2020; 94(24): 1100-2.
[http://dx.doi.org/10.1212/WNL.0000000000009653] [PMID: 32327489]
[54]
Akbar A, Ahmad S, Creeden S, Huynh H. Infant with Loeys-Dietz syndrome treated for febrile status epilepticus with COVID-19 infection: First reported case of febrile status epilepticus and focal seizures in a patient with Loeys-Dietz syndrome and review of literature. BMJ Case Rep 2022; 15(11): e250587.
[http://dx.doi.org/10.1136/bcr-2022-250587] [PMID: 36328362]
[55]
Akbar A, Ahmad S. New-onset seizures as an acute presentation with atypical EEG findings in a previously healthy child with asymptomatic COVID-19 infection. Cureus 2022; 14(3): e22899.
[http://dx.doi.org/10.7759/cureus.22899] [PMID: 35399417]
[56]
Martin PJ, Felker M, Radhakrishnan R. MR imaging findings in a neonate with COVID -19-associated encephalitis. Pediatr Neurol 2021; 119: 48-9.
[http://dx.doi.org/10.1016/j.pediatrneurol.2021.02.012] [PMID: 33895583]
[57]
François G, Cleuziou P, Michel VQ, Derambure P, Tich NTS, Chaton L. Acute corticosteroid responsive meningoencephalitis with cerebral vasculitis after COVID-19 infection in a thirteen-year-old. Neuropediatrics 2023; 54(1): 068-72.
[http://dx.doi.org/10.1055/a-1896-6154] [PMID: 35817356]
[58]
Aljomah L, Almedlej S, Baarmah D, et al. Pediatrics COVID-19 and neurological manifestations: Single tertiary centre experience. eNeurologicalSci 2021; 24: 100355.
[http://dx.doi.org/10.1016/j.ensci.2021.100355] [PMID: 34307923]
[59]
Cheng CY, Tsai CH, Wang HP, et al. Successful treatment of acute encephalitis and hepatitis in a child with COVID-19 infection. J Formos Med Assoc 2023; 122(2): 182-6.
[http://dx.doi.org/10.1016/j.jfma.2022.11.014] [PMID: 36610889]
[60]
Urso L, Distefano MG, Cambula G, et al. The case of encephalitis in a COVID-19 pediatric patient. Neurol Sci 2022; 43(1): 105-12.
[http://dx.doi.org/10.1007/s10072-021-05670-9] [PMID: 34668122]
[61]
Scheuermeier M, Chaves KQ, Sanabria MD, Lazo AH, Campos UA. First pediatric case of autoimmune encephalitis associated with covid-19 in costa rica. Cureus 2022; 14(10): e30616.
[http://dx.doi.org/10.7759/cureus.30616] [PMID: 36426346]
[62]
Nicola DP, Ceratto S, Dalmazzo C, Roasio L, Castagnola E, Sannia A. Concomitant SARS-CoV-2 infection and severe neurologic involvement in a late-preterm neonate. Neurology 2020; 95(18): 834-5.
[http://dx.doi.org/10.1212/WNL.0000000000010729]
[63]
Di Rosa G, Dicanio D, Nicotera AG, Mondello P, Cannavò L, Gitto E. Efficacy of intravenous hydrocortisone treatment in refractory neonatal seizures: A report on three cases. Brain Sci 2020; 10(11): 885.
[http://dx.doi.org/10.3390/brainsci10110885] [PMID: 33233684]
[64]
Rosa DG, Cavallaro T, Alibrandi A, et al. Predictive role of early milestones-related psychomotor profiles and long-term neurodevelopmental pitfalls in preterm infants. Early Hum Dev 2016; 101: 49-55.
[http://dx.doi.org/10.1016/j.earlhumdev.2016.04.012] [PMID: 27405056]
[65]
Cannavò L, Perrone S, Viola V, Marseglia L, Rosa DG, Gitto E. Oxidative stress and respiratory diseases in preterm newborns. Int J Mol Sci 2021; 22(22): 12504.
[http://dx.doi.org/10.3390/ijms222212504] [PMID: 34830385]
[66]
Granata T, Bisulli F, Arzimanoglou A, Rocamora R. Did the COVID-19 pandemic silence the needs of people with epilepsy? Epileptic Disord 2020; 22(4): 439-42.
[http://dx.doi.org/10.1684/epd.2020.1175] [PMID: 32759092]
[67]
Antony AR, Haneef Z. Systematic review of EEG findings in 617 patients diagnosed with COVID-19. Seizure 2020; 83: 234-41.
[http://dx.doi.org/10.1016/j.seizure.2020.10.014] [PMID: 33121875]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy