Generic placeholder image

Current Catalysis

Editor-in-Chief

ISSN (Print): 2211-5447
ISSN (Online): 2211-5455

Research Article

Laser Synthesis of Catalytically Active Materials for Organic Synthesis and Sensor Technology

Author(s): Svetlana Kochemirovskaia*, Maxim Novomlinsky, Ilya Alyukov, Yulia Denisova, Diana Ischuk, Dmitriy Mokhorov and Vladimir Kochemirovsky

Volume 13, Issue 1, 2024

Published on: 04 April, 2024

Page: [33 - 48] Pages: 16

DOI: 10.2174/0122115447290286240314051551

Price: $65

Open Access Journals Promotions 2
Abstract

Introduction: The catalytic activity of metallic nanomaterials depends on their surface morphology. A widely known method is the laser synthesis of metal nanostructures by depositing on dielectric surfaces from aqueous solutions containing metal complexes. The article analyzes the factors that favor the production of conductive, catalytic, and sensory-active deposits by laser method. It is shown that the two main factors is the presence of a large number of charged defects on heterophase surfaces and the structure of metal-containing complexes in solution. This is typical for mono- and bimetallic alloys, the components of which interact with the laser beams according to the autocatalytic type. Using the example of laser deposition from solutions of Co, Ni, Fe, Zn, and Ag salts with homo- and heterophase dielectrics, the sensory and catalytic properties of the deposits are compared by impedance spectroscopy and voltammetry. It has been shown that heterophase precipitation significantly enhances the catalysis response.

Background: It is known that the highest catalytic activity exhibits nanostructured and highly porous materials with a large specific surface area and materials containing surface heterogeneity in the form of charged acid-base centers. Such materials are necessary for the creation of new catalysts for organic synthesis and for the creation of new sensor materials for enzyme-free microbiosensors. Active development of new methods for the synthesis of such materials is underway. But not all of them give the expected result.

Methods: Laser synthesis methods have the best prospects, including the method of laser-induced metal deposition. This is the laser synthesis of metal nanostructures by depositing dielectric surfaces from aqueous solutions containing metal complexes.

Results: Аrticle analyzes the factors that favor the production of conductive, catalytic, and sensory-active deposits by laser method. It is shown that the two main factors are the presence of a large number of charged defects on heterophase surfaces and the structure of a metal-contained complex in solution. This is typical for mono- and bimetallic alloys, the components of which interact with the laser beam according to the autocatalytic type. Using the example of laser deposition from solutions of Co, Ni, Fe, Zn, and Ag salts with homo- and heterophase dielectrics, the sensory and catalytic properties of the deposits are compared by impedance spectroscopy and voltammetry.

Conclusion: It has been shown that heterophase precipitation significantly enhances the catalysis response. It is shown that the laser deposition reaction has an autocatalytic mechanism in a dynamic mode. The results of autocatalysis can be used in a stationary mode to create a microbiosensor for glucose, as well as to create a technology for laser refining rare metals and hydrogen energy in a dynamic mode.

Keywords: Laser synthesis, laser deposition, microsensor, biosensor, metal complex, autocatalysis.

Graphical Abstract
[1]
Bayati, M.; Abad, J.M.; Bridges, C.A.; Rosseinsky, M.J.; Schiffrin, D.J. Size control and electrocatalytic properties of chemically synthesized platinum nanoparticles grown on functionalised HOPG. J. Electroanal. Chem., 2008, 623(1), 19-28.
[http://dx.doi.org/10.1016/j.jelechem.2008.06.011]
[2]
Löffler, M.S.; Natter, H.; Hempelmann, R.; Wippermann, K. Preparation and characterisation of Pt–Ru model electrodes for the direct methanol fuel cell. Electrochim. Acta, 2003, 48(20-22), 3047-3051.
[http://dx.doi.org/10.1016/S0013-4686(03)00375-X]
[3]
Arya, A.; Mahajan, A.; Chundawat, T.S. Microwave-assisted one-pot synthesis of 2-substituted quinolines by using palladium nanoparticles as a catalyst developed from green alga Botryococcus braunii. Curr. Organocatal., 2020, 7(2), 82-88.
[http://dx.doi.org/10.2174/2213337206666190625112833]
[4]
Tarasevich, M.R.; Karichev, Z.R.; Bogdanovskaya, V.A.; Lubnin, E.N.; Kapustin, A.V. Kinetics of ethanol electrooxidation at RuNi catalysts. Electrochem. Commun., 2005, 7(2), 141-146.
[http://dx.doi.org/10.1016/j.elecom.2004.11.003]
[5]
Casella, I.G. Electrooxidation of aliphatic alcohols on palladium oxide catalyst prepared by pulsed electrodeposition technique. Electrochim. Acta, 2009, 54(15), 3866-3871.
[http://dx.doi.org/10.1016/j.electacta.2009.02.003]
[6]
Thakur, J.; Shinde, G. Magnetically recyclable Ag@Fe2O3 core-shell nanostructured catalyst for one-pot synthesis of 2-aryl benzimidazole and benzothiazole. Curr. Organocatal., 2022, 9(3), 237-251.
[http://dx.doi.org/10.2174/2213337209666220329125047]
[7]
Brown, N.J.; García-Trenco, A.; Weiner, J.; White, E.R.; Allinson, M.; Chen, Y.; Wells, P.P.; Gibson, E.K.; Hellgardt, K.; Shaffer, M.S.P.; Williams, C.K. From organometallic zinc and copper complexes to highly active colloidal catalysts for the conversion of CO2 to methanol. ACS Catal., 2015, 5(5), 2895-2902.
[http://dx.doi.org/10.1021/cs502038y]
[8]
Onyestyák, G.; Harnos, S.; Klébert, S.; Štolcová, M.; Kaszonyi, A.; Kalló, D. Selective reduction of acetic acid to ethanol over novel Cu2In/Al2O3 catalyst. Appl. Catal. A Gen., 2013, 464-465, 313-321.
[http://dx.doi.org/10.1016/j.apcata.2013.05.042]
[9]
Nichele, V.; Signoretto, M.; Pinna, F.; Ghedini, E.; Compagnoni, M.; Rossetti, I.; Cruciani, G.; Di Michele, A. Bimetallic Ni–Cu catalysts for the low-temperature ethanol steam reforming: importance of metal–support interactions. Catal. Lett., 2015, 145(2), 549-558.
[http://dx.doi.org/10.1007/s10562-014-1414-2]
[10]
Gawande, M.B.; Goswami, A.; Felpin, F.X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev., 2016, 116(6), 3722-3811.
[http://dx.doi.org/10.1021/acs.chemrev.5b00482] [PMID: 26935812]
[11]
Adkins, H. Hydrogenation role of the catalyst. Ind. Eng. Chem., 1940, 32(9), 1189-1192.
[http://dx.doi.org/10.1021/ie50369a028]
[12]
Sun, X.; Du, F. Synthesis under mild conditions and high catalytic property of bimetal Ni–Cu/SiO 2 hollow spheres. RSC Advances, 2015, 5(124), 102436-102440.
[http://dx.doi.org/10.1039/C5RA14294F]
[13]
Sun, Z.; Zhang, Z.H.; Yuan, T.Q.; Ren, X.; Rong, Z. Raney Ni as a versatile catalyst for biomass conversion. ACS Catal., 2021, 11(16), 10508-10536.
[http://dx.doi.org/10.1021/acscatal.1c02433]
[14]
Cunha, A.F.; Órfão, J.J.M.; Figueiredo, J.L. Methane decomposition on ni–cu alloyed raney-type catalysts. Int. J. Hydrogen Energy, 2009, 34(11), 4763-4772.
[http://dx.doi.org/10.1016/j.ijhydene.2009.03.040]
[15]
Gordeychuk, D.I.; Sorokoumov, V.N.; Mikhaylov, V.N.; Panov, M.S.; Khairullina, E.M.; Melnik, M.V.; Kochemirovsky, V.A.; Balova, I.A. Copper-based nanocatalysts produced via laser-induced ex situ generation for homo- and cross-coupling reactions. Chem. Eng. Sci., 2020, 227, 115940.
[http://dx.doi.org/10.1016/j.ces.2020.115940]
[16]
Kochemirovskaia, S.V.; Fogel, A.A.; Novomlinsky, M.O.; Mokhorov, D.A.; Kochemirovsky, V.A. The correlation between the structures of bimetallic tartrate complexes in solutions for laser-induced synthesis and sensor characteristics of microbiosensors materials. Curr. Organocatal., 2023, 10(4), 304-319.
[http://dx.doi.org/10.2174/2213337210666230427101553]
[17]
Kothari, R.; Agrawal, A. Synthesis, characterization, and pharmacological activities of copper(II) complexes of curcumin derivatives. Curr. Organocatal., 2022, 9(3), 224-236.
[http://dx.doi.org/10.2174/2213337209666220607094815]
[18]
Kochemirovsky, V.A.; Skripkin, M.Y.; Tveryanovich, Y.S.; Mereshchenko, A.S.; Gorbunov, A.O.; Panov, M.S.; Tumkin, I.I.; Safonov, S.V. Laser-induced copper deposition from aqueous and aqueous–organic solutions: state of the art and prospects of research. Russ. Chem. Rev., 2015, 84(10), 1059-1075.
[http://dx.doi.org/10.1070/RCR4535]
[19]
Tanaka, K.; Tamaru, K. Acid-base concept and catalytic activity of oxides. Bull. Chem. Soc. Jpn., 1964, 37(12), 1862-1865.
[http://dx.doi.org/10.1246/bcsj.37.1862]
[20]
Sanderson, R.T. Chemical Periodicity; Reinhold Pub. Corp.: New York, 1960, p. 24.
[21]
Wilmshurst, J.K. The sensitive ammine frequencies and electronegativities of complex transition metal ion radicals. Can. J. Chem., 1960, 38(3), 467-472.
[http://dx.doi.org/10.1139/v60-066]
[22]
Giles, R.D.; Harrison, J.A.; Thirsk, H.R. Anodic dissolution of silver and formation of Ag2O in hydroxide solutions using single crystal electrodes a faradaic impedance study. J. Electroanal. Chem. Interfacial Electrochem., 1969, 22(3), 375-388.
[http://dx.doi.org/10.1016/0022-0728(69)80012-4]
[23]
Wolkenstein, T. Electronic processes on semiconductor surfaces during chemisorption; Springer Science & Business Media, 2012.
[24]
Grujicic, D.; Pesic, B. Reaction and nucleation mechanisms of copper electrodeposition from ammoniacal solutions on vitreous carbon. Electrochim. Acta, 2005, 50(22), 4426-4443.
[http://dx.doi.org/10.1016/j.electacta.2005.02.012]
[25]
Toghill, K.E.; Compton, R.G. Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation. Int. J. Electrochem. Sci., 2010, 5(9), 1246-1301.
[http://dx.doi.org/10.1016/S1452-3981(23)15359-4]
[26]
Wang, L.; Zheng, Y.; Lu, X.; Li, Z.; Sun, L.; Song, Y. Dendritic copper-cobalt nanostructures/reduced graphene oxide-chitosan modified glassy carbon electrode for glucose sensing. Sens. Actuators B Chem., 2014, 195, 1-7.
[http://dx.doi.org/10.1016/j.snb.2014.01.007]
[27]
He, L.; Liu, Q.; Zhang, S.; Zhang, X.; Gong, C.; Shu, H.; Wang, G.; Liu, H.; Wen, S.; Zhang, B. High sensitivity of TiO2 nanorod array electrode for photoelectrochemical glucose sensor and its photo fuel cell application. Electrochem. Commun., 2018, 94, 18-22.
[http://dx.doi.org/10.1016/j.elecom.2018.07.021]
[28]
Ammara, S.; Shamaila, S. zafar, N.; Bokhari, A.; Sabah, A. Nonenzymatic glucose sensor with high performance electrodeposited nickel/copper/carbon nanotubes nanocomposite electrode. J. Phys. Chem. Solids, 2018, 120, 12-19.
[http://dx.doi.org/10.1016/j.jpcs.2018.04.015]
[29]
Yousef Elahi, M.; Heli, H.; Bathaie, S.Z.; Mousavi, M.F. Electrocatalytic oxidation of glucose at a Ni-curcumin modified glassy carbon electrode. J. Solid State Electrochem., 2006, 11(2), 273-282.
[http://dx.doi.org/10.1007/s10008-006-0104-4]
[30]
Jafarian, M.; Forouzandeh, F.; Danaee, I.; Gobal, F.; Mahjani, M.G. Electrocatalytic oxidation of glucose on Ni and NiCu alloy modified glassy carbon electrode. J. Solid State Electrochem., 2009, 13(8), 1171-1179.
[http://dx.doi.org/10.1007/s10008-008-0632-1]
[31]
Davis, F.; Higson, S.P.J. Biofuel cells—Recent advances and applications. Biosens. Bioelectron., 2007, 22(7), 1224-1235.
[http://dx.doi.org/10.1016/j.bios.2006.04.029] [PMID: 16781864]
[32]
Jaraba, P.; Agüí, L.; Yáñez-Sedeño, P.; Pingarrón, J.M. NADH amperometric sensor based on poly(3-methylthiophene)-coated cylindrical carbon fiber microelectrodes: Application to the enzymatic determination of L-lactate. Electrochim. Acta, 1998, 43(23), 3555-3565.
[http://dx.doi.org/10.1016/S0013-4686(98)00103-0]
[33]
Saei, A.A.; Dolatabadi, J.E.N.; Najafi-Marandi, P.; Abhari, A.; de la Guardia, M. Electrochemical biosensors for glucose based on metal nanoparticles. Trends Analyt. Chem., 2013, 42, 216-227.
[http://dx.doi.org/10.1016/j.trac.2012.09.011]
[34]
Chen, S.; Yuan, R.; Chai, Y.; Hu, F. Electrochemical sensing of hydrogen peroxide using metal nanoparticles: A review. Mikrochim. Acta, 2013, 180(1-2), 15-32.
[http://dx.doi.org/10.1007/s00604-012-0904-4]
[35]
Dey, R.S.; Bera, R.K.; Raj, C.R. Nanomaterial-based functional scaffolds for amperometric sensing of bioanalytes. Anal. Bioanal. Chem., 2013, 405(11), 3431-3448.
[http://dx.doi.org/10.1007/s00216-012-6606-2] [PMID: 23254456]
[36]
Łydżba-Kopczyńska, B.; Czaja, T.; Cieśla, R.; Rusek, G. Application of chemometric methods for the determination of fading and age determination of blue ballpoint inks. J. Raman Spectrosc., 2021, 52(1), 159-169.
[http://dx.doi.org/10.1002/jrs.6037]
[37]
Bhatt, P.V.; Pandey, G.; Tharmavaram, M.; Rawtani, D.; Mustansar Hussain, C. Nanotechnology and taggant technology in forensic science. In: Technology in Forensic Science: Sampling, Analysis, Data and Regulation; Wiley, 2020.
[http://dx.doi.org/10.1002/9783527827688.ch14]
[38]
Mallick, S.; Singh, K.R.B.; Nayak, V.; Singh, J.; Singh, R.P. Potentialities of core@shell nanomaterials for biosensor technologies. Mater. Lett., 2022, 306, 130912.
[http://dx.doi.org/10.1016/j.matlet.2021.130912]
[39]
Khachaturyan, A.G. Static concentration waves in the theory of order-disorder phenomena in substitutional and interstitial solid solutions. In: In Order-Disorder Transformations in Alloys: Proceedings of the International Symposium on Order-Disorder Transformations in Alloys;; Springer Berlin Heidelberg.: Tübingen, Germany, 1974; pp. 114-131.
[http://dx.doi.org/10.1007/978-3-642-80840-1_5]
[40]
Bannykh, O.A.; Budberg, P.B.; Alisova, S.P. Phase Diagrams of Binary and Multicomponent Systems Based on Iron; Metallurgia: Moscow, 1986.
[41]
Bolland, S. The encyclopedia of founding and dictionary of foundry terms used in the practice of moulding; Wiley, 1894.
[42]
Shukhardin, S.V. Dual and multi-component systems based on copper; Science: Moscow, 1979.
[43]
Lyakishev, N.P. State diagrams of binary metal systems; Mashinostroenie: Moscow, 1996.
[44]
Signorella, S.; Lafarga, R.; Ciullo, L.; Sala, L.F. Oxidation of d-glucose by Cu(II) in acidic medium. Carbohydr. Res., 1994, 259(1), 35-43.
[http://dx.doi.org/10.1016/0008-6215(94)84195-0]
[45]
Hong, B.D.; Lee, C.L. Specific activities of rhombic dodecahedral, octahedral, and cubic Cu2O nanocrystals as glucose oxidation catalysts. Chem. Eng. J., 2020, 382, 122994.
[http://dx.doi.org/10.1016/j.cej.2019.122994]
[46]
Ghanem, M.A.; Compton, R.G.; Coles, B.A.; Canals, A.; Vuorema, A.; John, P.; Marken, F. Microwave activation of the electro-oxidation of glucose in alkaline media. Phys. Chem. Chem. Phys., 2005, 7(20), 3552-3559.
[http://dx.doi.org/10.1039/b509784c] [PMID: 16294230]
[47]
Farrell, S.T.; Breslin, C.B. Oxidation and photo-induced oxidation of glucose at a polyaniline film modified by copper particles. Electrochim. Acta, 2004, 49(25), 4497-4503.
[http://dx.doi.org/10.1016/j.electacta.2004.05.007]
[48]
Banerjee, S.; Payra, S.; Saha, A. A review on synthesis of benzothiazole derivatives. Curr. Organocatal., 2018, 4(3), 164-181.
[http://dx.doi.org/10.2174/2213337205666180119143539]
[49]
Xia, L.P.; Liu, L.; Deng, N.; Zhu, Y.W.; He, J.B. Cu(III)-independent oxidation and sensing of glucose on multi-layer stacked copper nanoparticles. Mikrochim. Acta, 2015, 182(7-8), 1289-1295.
[http://dx.doi.org/10.1007/s00604-015-1447-2]
[50]
Cao, K.; Zhang, H.; Gao, Z.; Liu, Y.; Jia, Y.; Liu, H. Boosting glucose oxidation by constructing Cu–Cu 2 O heterostructures. New J. Chem., 2020, 44(42), 18449-18456.
[http://dx.doi.org/10.1039/D0NJ03700A]
[51]
Wolfart, F.; Maciel, A.; Nagata, N.; Vidotti, M. Electrocatalytical properties presented by Cu/Ni alloy modified electrodes toward the oxidation of glucose. J. Solid State Electrochem., 2013, 17(5), 1333-1338.
[http://dx.doi.org/10.1007/s10008-013-1998-2]
[52]
Kochemirovskaia, S.V.; Myund, L.A.; Ershova, K.O.; Mokhorov, D.A.; Baranova, T.A.; Ryazantsev, M.N.; Kochemirovsky, V.A. Structure of bimetallic tartrate complexes for the rapid formation of new non-enzymatic bimetallic sensors of glucose and hydrogen peroxide in aqueous solutions using laser synthesis. Mater. Lett., 2022, 306, 130973.
[http://dx.doi.org/10.1016/j.matlet.2021.130973]
[53]
Rohilla, D.; Chaudhary, S.; Umar, A. An overview of advanced nanomaterials for sensor applications. Engineered Science, 2021, 16, 47-70.
[http://dx.doi.org/10.30919/es8d552]
[54]
Kochemirovskaya, S.; Kochemirovsky, V. Laser method of micro-composite materials synthesis for new sensor platforms of an “electronic tongue”; Forensic Examinations–Terms and Techniques, 2021.
[55]
Xu, K.; Fu, C.; Gao, Z.; Wei, F.; Ying, Y.; Xu, C.; Fu, G. Nanomaterial-based gas sensors: A review. Instrum. Sci. Technol., 2018, 46(2), 115-145.
[http://dx.doi.org/10.1080/10739149.2017.1340896]
[56]
Lebedev, D.; Novomlinsky, M.; Kochemirovsky, V.; Ryzhkov, I.; Anfimova, I.; Panov, M.; Antropova, T. Glass/au composite membranes with gold nanoparticles synthesized inside pores for selective ion transport. Materials , 2020, 13(7), 1767.
[http://dx.doi.org/10.3390/ma13071767 ] [PMID: 32283851]
[57]
Wen, N.; Zhang, L.; Jiang, D.; Wu, Z.; Li, B.; Sun, C.; Guo, Z. Emerging flexible sensors based on nanomaterials: Recent status and applications. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(48), 25499-25527.
[http://dx.doi.org/10.1039/D0TA09556G]
[58]
Kochemirovskaya, S.V.; Novomlinsky, M.O.; Fogel, A.A.; Kochemirovsky, V.A. Laser synthesis of nanomaterials to create a new family of electrochemical microbiosensors. Pharmacy Formulas, 2020, 2(3), 74-88.
[http://dx.doi.org/10.17816/phf41941]
[59]
Huo, H.; Guo, C.; Li, G.; Han, X.; Xu, C. Reticular-vein-like Cu@Cu2O/reduced graphene oxide nanocomposites for a non-enzymatic glucose sensor. RSC Advances, 2014, 4(39), 20459-20465.
[http://dx.doi.org/10.1039/c4ra02390k]
[60]
Yang, Z.; Feng, J.; Qiao, J.; Yan, Y.; Yu, Q.; Sun, K. Copper oxide nanoleaves decorated multi-walled carbon nanotube as platform for glucose sensing. Anal. Methods, 2012, 4(7), 1924-1926.
[http://dx.doi.org/10.1039/c2ay25283j]
[61]
Kang, X.; Mai, Z.; Zou, X.; Cai, P.; Mo, J. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal. Biochem., 2007, 363(1), 143-150.
[http://dx.doi.org/10.1016/j.ab.2007.01.003 ] [PMID: 17288983]
[62]
Larosi, M.B.; García, J.V.; Rodríguez, A.R. Laser synthesis of nanomaterials. Nanomaterials, 2022, 12(17), 2903.
[http://dx.doi.org/10.3390/nano12172903 ] [PMID: 36079941]
[63]
Zhang, D.; Li, Z.; Sugioka, K. Laser ablation in liquids for nanomaterial synthesis: Diversities of targets and liquids. J. Phy. Photonics, 2021, 3(4), 042002.
[http://dx.doi.org/10.1088/2515-7647/ac0bfd]
[64]
Smikhovskaia, A.V.; Kochemirovskaya, S.V.; Novomlinskii, M.O.; Fogel’, A.A.; Lebedev, D.V.; Kochemirovsky, V.A.; Ermakov, S.S.; Menchikov, L.G. Laser-induced continuous generation of Ni nanoparticles for organic synthesis. Russ. Chem. Bull., 2019, 68(11), 2020-2027.
[http://dx.doi.org/10.1007/s11172-019-2661-6]
[65]
Forsythe, R.C.; Cox, C.P.; Wilsey, M.K.; Müller, A.M. Pulsed laser in liquids made nanomaterials for catalysis. Chem. Rev., 2021, 121(13), 7568-7637.
[http://dx.doi.org/10.1021/acs.chemrev.0c01069] [PMID: 34077177]
[66]
Shabalina, A.V.; Svetlichnyi, V.A.; Kulinich, S.A. Green laser ablation-based synthesis of functional nanomaterials for generation, storage, and detection of hydrogen. Curr. Opin. Green Sustain. Chem., 2022, 33, 100566.
[http://dx.doi.org/10.1016/j.cogsc.2021.100566]
[67]
Mishra, V.; Arya, A.; Chundawat, T.S. High catalytic activity of Pd nanoparticles synthesized from green alga Chlorella vulgaris in Buchwald-Hartwig synthesis of N-aryl piperazines. Curr. Organocatal., 2019, 7(1), 23-33.
[http://dx.doi.org/10.2174/2213337206666190515091945]
[68]
Kaur, N. Gold catalysts in the synthesis of five-membered N-heterocycles. Curr. Organocatal., 2017, 4(2), 122-154.
[http://dx.doi.org/10.2174/2213337204666171103142349]
[69]
K., Ghosh K.; Gupta, B.; Bhattacharya, S. Metallosurfactant aggregates as catalysts for the hydrolytic cleavage of carboxylate and phosphate esters. Curr. Organocatal., 2015, 3(1), 6-23.
[http://dx.doi.org/10.2174/2213337202666150713174927]
[70]
Seo, J.M.; Kwon, K.K.; Song, K.Y.; Chu, C.N.; Ahn, S.H. Deposition of durable micro copper patterns into glass by combining laser-induced backside wet etching and laser-induced chemical liquid phase deposition methods. Materials, 2020, 13(13), 2977.
[http://dx.doi.org/10.3390/ma13132977 ] [PMID: 32635237]
[71]
Voronin, A.S.; Nemtsev, I.V.; Molokeev, M.S.; Simunin, M.M.; Kozlova, E.A.; Markovskaya, D.V.; Lebedev, D.V.; Lopatin, D.S.; Khartov, S.V. Laser-induced chemical liquid-phase deposition plasmonic gold nanoparticles on porous tio2 film with great photoelectrochemical performance. Appl. Sci., 2021, 12(1), 30.
[http://dx.doi.org/10.3390/app12010030]
[72]
Lesnyak, V.V.; Strelets, D.Y. Method of calculating the electromagnetic wave scattering by 2d inhomogeneities located on the surfaces of large bodies. J. Commun. Technol. Electron., 2022, 67(4), 345-357.
[http://dx.doi.org/10.1134/S1064226922030081]
[73]
Jerez-Hanckes, C.; Schwab, C.; Zech, J. Electromagnetic wave scattering by random surfaces: Shape holomorphy. Math. Models Methods Appl. Sci., 2017, 27(12), 2229-2259.
[http://dx.doi.org/10.1142/S0218202517500439]
[74]
Zecchina, A.; Lamberti, C.; Bordiga, S. Surface acidity and basicity: General concepts. Catal. Today, 1998, 41(1-3), 169-177.
[http://dx.doi.org/10.1016/S0920-5861(98)00047-9]
[75]
Cui, X.; Li, W.; Ryabchuk, P.; Junge, K.; Beller, M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal., 2018, 1(6), 385-397.
[http://dx.doi.org/10.1038/s41929-018-0090-9]
[76]
Sobolev, V.V.; Bilan, N.V.; Baskevych, O.S.; Stefanovich, L.I. Electrical charges as catalysts of chemical reactions on a solid surface. Sci. Bull. Nat. Hirn. Uni., 2018, (4), 50-58.
[http://dx.doi.org/10.29202/nvngu/2018-4/7]
[77]
Bai, Y.; Huang, H.; Wang, C.; Long, R.; Xiong, Y. Engineering the surface charge states of nanostructures for enhanced catalytic performance. Mater. Chem. Front., 2017, 1(10), 1951-1964.
[http://dx.doi.org/10.1039/C7QM00020K]
[78]
Che, F.; Gray, J.T.; Ha, S.; Kruse, N.; Scott, S.L.; McEwen, J.S. Elucidating the roles of electric fields in catalysis: A perspective. ACS Catal., 2018, 8(6), 5153-5174.
[http://dx.doi.org/10.1021/acscatal.7b02899]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy