Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Scoping Review

Antimicrobial Potential of Natural Compounds of Zingiberaceae Plants and their Synthetic Analogues: A Scoping Review of In vitro and In silico Approaches

Author(s): Kok-Hou Yit and Zamirah Zainal-Abidin*

Volume 24, Issue 13, 2024

Published on: 04 April, 2024

Page: [1158 - 1184] Pages: 27

DOI: 10.2174/0115680266294573240328050629

open access plus

Abstract

Aims: There has been increased scientific interest in bioactive compounds and their synthetic derivatives to promote the development of antimicrobial agents that could be used sustainably and overcome antibiotic resistance.

Methods: We conducted this scoping review to collect evidence related to the antimicrobial potential of diverse natural compounds from Zingiberaceae plants and their synthetic derivatives. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Extension for Scoping Reviews guidelines. The literature search was conducted using PubMed, Web of Science and Scopus electronic databases for relevant studies published from 2012 to 2023. A total of 28 scientific studies fulfilled the inclusion criteria. The authors of these studies implemented in vitro and in silico methods to examine the antimicrobial potency and underlying mechanisms of the investigated compounds.

Result: The evidence elucidates the antimicrobial activity of natural secondary metabolites from Zingiberaceae species and their synthetic derivatives against a broad panel of gram-positive and gram-negative bacteria, fungi and viruses.

Conclusion: To date, researchers have proposed the application of bioactive compounds derived from Zingiberaceae plants and their synthetic analogues as antimicrobial agents. Nevertheless, more investigations are required to ascertain their efficacy and to broaden their commercial applicability.

Keywords: Antimicrobial, Bioactive compounds, Synthetic derivatives, Zingiberaceae, In vitro, In silico.

« Previous
Graphical Abstract
[1]
Kumar, V.; Marković, T.; Emerald, M.; Dey, A. Herbs: Composition and dietary importance. In: Encyclopedia of Food and Health; Caballero, B.; Finglas, P.M.; Toldrá, F., Eds.; Academic Press: London, UK, 2016; pp. 332-337.
[http://dx.doi.org/10.1016/B978-0-12-384947-2.00376-7]
[2]
Alolga, R.N.; Wang, F.; Zhang, X.; Li, J.; Tran, L.S.P.; Yin, X. Bioactive compounds from the Zingiberaceae family with known antioxidant activities for possible therapeutic uses. Antioxidants, 2022, 11(7), 1281.
[http://dx.doi.org/10.3390/antiox11071281] [PMID: 35883772]
[3]
Rachkeeree, A.; Kantadoung, K.; Suksathan, R.; Puangpradab, R.; Page, P.A.; Sommano, S.R. Nutritional compositions and phytochemical properties of the edible flowers from selected Zingiberaceae found in Thailand. Front. Nutr., 2018, 5, 3.
[http://dx.doi.org/10.3389/fnut.2018.00003] [PMID: 29450200]
[4]
Zhou, Y.Q.; Liu, H.; He, M.X.; Wang, R.; Zeng, Q.Q.; Wang, Y.; Ye, W.C.; Zhang, Q.W. A review of the botany, phytochemical, and pharmacological properties of galangal. In: Natural and Artificial Flavoring Agents and Food Dyes; Grumezescu, A.M.; Holban, A.M., Eds.; Academic Press: London, UK, 2018; pp. 351-396.
[http://dx.doi.org/10.1016/B978-0-12-811518-3.00011-9]
[5]
Kumar, K.M.; Asish, G.; Sabu, M.; Balachandran, I. Significance of gingers (Zingiberaceae) in Indian System of Medicine - Ayurveda: An overview. Anc. Sci. Life, 2013, 32(4), 253-261.
[http://dx.doi.org/10.4103/0257-7941.131989] [PMID: 24991077]
[6]
Sharifi-Rad, M.; Varoni, E.; Salehi, B.; Sharifi-Rad, J.; Matthews, K.; Ayatollahi, S.; Kobarfard, F.; Ibrahim, S.; Mnayer, D.; Zakaria, Z.; Sharifi-Rad, M.; Yousaf, Z.; Iriti, M.; Basile, A.; Rigano, D. Plants of the genus Zingiber as a source of bioactive phytochemicals: From tradition to pharmacy. Molecules, 2017, 22(12), 2145.
[http://dx.doi.org/10.3390/molecules22122145] [PMID: 29207520]
[7]
Deng, M.; Yun, X.; Ren, S.; Qing, Z.; Luo, F. Plants of the genus Zingiber: A review of their ethnomedicine, phytochemistry and pharmacology. Molecules, 2022, 27(9), 2826.
[http://dx.doi.org/10.3390/molecules27092826] [PMID: 35566177]
[8]
Feng, T.; Su, J.; Ding, Z.H.; Zheng, Y.T.; Li, Y.; Leng, Y.; Liu, J.K. Chemical constituents and their bioactivities of “Tongling White Ginger” (Zingiber officinale). J. Agric. Food Chem., 2011, 59(21), 11690-11695.
[http://dx.doi.org/10.1021/jf202544w] [PMID: 21954969]
[9]
Ghasemzadeh, A.; Jaafar, H.; Baghdadi, A.; Tayebi-Meigooni, A. Formation of 6-, 8- and 10-shogaol in ginger through application of different drying methods: altered antioxidant and antimicrobial activity. Molecules, 2018, 23(7), 1646.
[http://dx.doi.org/10.3390/molecules23071646] [PMID: 29976903]
[10]
Semwal, R.B.; Semwal, D.K.; Combrinck, S.; Viljoen, A.M. Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry, 2015, 117, 554-568.
[http://dx.doi.org/10.1016/j.phytochem.2015.07.012] [PMID: 26228533]
[11]
Mao, Q.Q.; Xu, X.Y.; Cao, S.Y.; Gan, R.Y.; Corke, H.; Beta, T.; Li, H.B. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods, 2019, 8(6), 185.
[http://dx.doi.org/10.3390/foods8060185] [PMID: 31151279]
[12]
Akullo, J.O.; Kiage, B.; Nakimbugwe, D.; Kinyuru, J. Effect of aqueous and organic solvent extraction on in-vitro antimicrobial activity of two varieties of fresh ginger (Zingiber officinale) and garlic (Allium sativum). Heliyon, 2022, 8(9), e10457.
[http://dx.doi.org/10.1016/j.heliyon.2022.e10457] [PMID: 36091965]
[13]
Babaeekhou, L.; Ghane, M. Antimicrobial activity of ginger on cariogenic bacteria: Molecular networking and molecular docking analyses. J. Biomol. Struct. Dyn., 2021, 39(6), 2164-2175.
[http://dx.doi.org/10.1080/07391102.2020.1745283] [PMID: 32189576]
[14]
Gunasena, M.T.; Rafi, A.; Mohd Zobir, S.A.; Hussein, M.Z.; Ali, A.; Kutawa, A.B.; Abdul Wahab, M.A.; Sulaiman, M.R.; Adzmi, F.; Ahmad, K. Phytochemicals profiling, antimicrobial activity and mechanism of action of essential oil extracted from ginger (Zingiber officinale Roscoe cv. Bentong) against Burkholderia glumae causative agent of bacterial panicle blight disease of rice. Plants, 2022, 11(11), 1466.
[http://dx.doi.org/10.3390/plants11111466] [PMID: 35684239]
[15]
Rana, V.S.; Verdeguer, M.; Blazquez, M.A. Chemical composition of the essential oil of Zingiber zerumbet var. darcyi. Nat. Prod. Commun., 2012, 7(10), 1934578X1200701.
[http://dx.doi.org/10.1177/1934578X1200701031] [PMID: 23157013]
[16]
Hemn, H.O.; Noordin, M.M.; Rahman, H.S.; Hazilawati, H.; Zuki, A.; Chartrand, M.S. Antihypercholesterolemic and antioxidant efficacies of zerumbone on the formation, development, and establishment of atherosclerosis in cholesterol-fed rabbits. Drug Des. Devel. Ther., 2015, 9, 4173-4208.
[PMID: 26347047]
[17]
Moreira da Silva, T.; Pinheiro, C.D.; Puccinelli Orlandi, P.; Pinheiro, C.C.; Soares Pontes, G. Zerumbone from Zingiber zerumbet (L.) smith: A potential prophylactic and therapeutic agent against the cariogenic bacterium Streptococcus mutans. BMC Complement. Altern. Med., 2018, 18(1), 301.
[http://dx.doi.org/10.1186/s12906-018-2360-0] [PMID: 30424764]
[18]
Huang, C.; Lu, H.F.; Chen, Y.H.; Chen, J.C.; Chou, W.H.; Huang, H.C. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin induced caspase-dependent and –independent apoptosis via Smad or Akt signaling pathways in HOS cells. BMC Complementary Medicine and Therapies, 2020, 20(1), 68.
[http://dx.doi.org/10.1186/s12906-020-2857-1] [PMID: 32126993]
[19]
Dosoky, N.; Setzer, W. Chemical composition and biological activities of essential oils of Curcuma species. Nutrients, 2018, 10(9), 1196.
[http://dx.doi.org/10.3390/nu10091196] [PMID: 30200410]
[20]
Burapan, S.; Kim, M.; Paisooksantivatana, Y.; Eser, B.E.; Han, J. Thai Curcuma species: Antioxidant and bioactive compounds. Foods, 2020, 9(9), 1219.
[http://dx.doi.org/10.3390/foods9091219] [PMID: 32887356]
[21]
Sharifi-Rad, J.; Rayess, Y.E.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S.; Neffe-Skocińska, K.; Zielińska, D.; Salehi, B.; Setzer, W.N.; Dosoky, N.S.; Taheri, Y.; El Beyrouthy, M.; Martorell, M.; Ostrander, E.A.; Suleria, H.A.R.; Cho, W.C.; Maroyi, A.; Martins, N. Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front. Pharmacol., 2020, 11, 01021.
[http://dx.doi.org/10.3389/fphar.2020.01021] [PMID: 33041781]
[22]
Cheng, X.L.; Li, H.X.; Chen, J.; Wu, P.; Xue, J.H.; Zhou, Z.Y.; Xia, N.H.; Wei, X.Y. Bioactive diarylheptanoids from Alpinia coriandriodora. Nat. Prod. Bioprospect., 2021, 11(1), 63-72.
[http://dx.doi.org/10.1007/s13659-020-00264-y] [PMID: 32902805]
[23]
Kong, L-Y.; Zhang, W-J.; Luo, J-G. The genus Alpinia: A review of its phytochemistry and pharmacology. World J. Tradit. Chin. Med., 2016, 2(1), 26-41.
[http://dx.doi.org/10.15806/j.issn.2311-8571.2015.0026]
[24]
Subramanian, P.; Nishan, M. Biological activities of greater galangal, Alpinia galanga - A review. J. Bot. Sci., 2015, S1, 15-19.
[25]
Ghosh, S.; Rangan, L. Alpinia: The gold mine of future therapeutics. 3 Biotech, 2013, 3(3), 173-185.
[26]
A, F.M.S.U-D.; Mohammad, A.B. Genus Etlingera - A review on chemical composition and antimicrobial activity of essential oils. J. Med. Plants Res., 2019, 13(7), 135-156.
[http://dx.doi.org/10.5897/JMPR2019.6740]
[27]
Vairappan, C.S.; Nagappan, T.; Palaniveloo, K. Essential oil composition, cytotoxic and antibacterial activities of five Etlingera species from Borneo. Nat. Prod. Commun., 2012, 7(2), 1934578X1200700.
[http://dx.doi.org/10.1177/1934578X1200700233] [PMID: 22474969]
[28]
Ud-Daula, A.F.M.S.; Demirci, F.; Abu Salim, K.; Demirci, B.; Lim, L.B.L.; Baser, K.H.C.; Ahmad, N. Chemical composition, antioxidant and antimicrobial activities of essential oils from leaves, aerial stems, basal stems, and rhizomes of Etlingera fimbriobracteata (K.Schum.) R.M.Sm. Ind. Crops Prod., 2016, 84, 189-198.
[http://dx.doi.org/10.1016/j.indcrop.2015.12.034]
[29]
Abdelwahab, S.I.; Zaman, F.Q.; Mariod, A.A.; Yaacob, M.; Ahmed Abdelmageed, A.H.; Khamis, S. Chemical composition, antioxidant and antibacterial properties of the essential oils of Etlingera elatior and Cinnamomum pubescens Kochummen. J. Sci. Food Agric., 2010, 90(15), 2682-2688.
[http://dx.doi.org/10.1002/jsfa.4140] [PMID: 20945508]
[30]
Mahdavi, B.; Yaacob, A.; Din, L. Antioxidant and antimicrobial activity of the extracts from different parts of Etlingera sayapensis (Zingiberaceae). Sains Malays., 2017, 46(9), 1565-1571.
[http://dx.doi.org/10.17576/jsm-2017-4609-27]
[31]
Naksang, P.; Tongchitpakdee, S.; Thumanu, K.; Oruna-Concha, M.J.; Niranjan, K.; Rachtanapun, C. Assessment of antimicrobial activity, mode of action and volatile compounds of Etlingera pavieana essential oil. Molecules, 2020, 25(14), 3245.
[http://dx.doi.org/10.3390/molecules25143245] [PMID: 32708709]
[32]
Daniel-Jambun, D.; Dwiyanto, J.; Lim, Y.Y.; Tan, J.B.L.; Muhamad, A.; Yap, S.W.; Lee, S.M. Investigation on the antimicrobial activities of gingers ( Etlingera coccinea (Blume) S.Sakai & Nagam and Etlingera sessilanthera R.M.Sm.) endemic to Borneo. J. Appl. Microbiol., 2017, 123(4), 810-818.
[http://dx.doi.org/10.1111/jam.13536] [PMID: 28708293]
[33]
Nurul Saidah, D.; Salwani, I.; Mohd Hilmi, AB. in vitro antibacterial properties of Etlingera elatior flower extracts against acne-inducing bacteria: Propionibacterium acnes and Staphylococcus aureus. IIUM Med. J. Malaysia, 2019, 18(3), 128-135.
[34]
Cai, R.; Yue, X.; Wang, Y.; Yang, Y.; Sun, D.; Li, H.; Chen, L. Chemistry and bioactivity of plants from the genus Amomum. J. Ethnopharmacol., 2021, 281, 114563.
[http://dx.doi.org/10.1016/j.jep.2021.114563] [PMID: 34438033]
[35]
Van, H. Chemical constituents and biological activities of essential oils of Amomum genus (Zingiberaceae). Asian Pac. J. Trop. Biomed., 2021, 11(12), 519-526.
[http://dx.doi.org/10.4103/2221-1691.331267]
[36]
Makhija, P.; Handral, H.K.; Mahadevan, G.; Kathuria, H.; Sethi, G.; Grobben, B. Black cardamom (Amomum subulatum Roxb.) fruit extracts exhibit apoptotic activity against lung cancer cells. J. Ethnopharmacol., 2022, 287, 114953.
[http://dx.doi.org/10.1016/j.jep.2021.114953] [PMID: 34968666]
[37]
Khanh Pham, N.; Tuan Nguyen, H.; Binh Nguyen, Q. A review on the ethnomedicinal uses, phytochemistry and pharmacology of plant species belonging to Kaempferia genus (Zingiberaceae). Pharmaceutical Sciences Asia, 2021, 48(1), 1-24.
[http://dx.doi.org/10.29090/psa.2021.01.19.070]
[38]
Elshamy, A.I.; Mohamed, T.A.; Essa, A.F.; Abd-ElGawad, A.M.; Alqahtani, A.S.; Shahat, A.A.; Yoneyama, T.; Farrag, A.R.H.; Noji, M.; El-Seedi, H.R.; Umeyama, A.; Paré, P.W.; Hegazy, M.F. Recent advances in Kaempferia phytochemistry and biological activity: A comprehensive review. Nutrients, 2019, 11(10), 2396.
[http://dx.doi.org/10.3390/nu11102396] [PMID: 31591364]
[39]
Munda, S.; Saikia, P.; Lal, M. Chemical composition and biological activity of essential oil of Kaempferia galanga : A review. J. Essent. Oil Res., 2018, 30(5), 303-308.
[http://dx.doi.org/10.1080/10412905.2018.1486240]
[40]
Shamsol, Z.; Iskandar, M.I.; Zainal Ariffin, Z.; Safian, M.F. Chemical constituents, antioxidant and antimicrobial activities of Kaempferia galanga rhizome essential oils. Int. J. Soc. Sci. Res., 2021, 3(4), 405-419.
[41]
Tran, C.; Tuan, N.; Nguyen, T.; An, N.; Thi, P.; Nguyen, T.; Thi, N.; Hai, T.; Thanh, N.; Nhi, Y. Morphological and molecular characterisation of Distichochlamys citrea M.F. Newman in Bach Ma national park, Thua Thien Hue province, Vietnam. Biodiversitas, 2022, 23, 2066-2079.
[42]
Van Chen, T.; Cuong, T.D.; Quy, P.T.; Bui, T.Q.; Van Tuan, L.; Van Hue, N.; Triet, N.T.; Ho, D.V.; Bao, N.C.; Nhung, N.T.A. Antioxidant activity and α-glucosidase inhibitability of Distichochlamys citrea M.F. Newman rhizome fractionated extracts: in vitro and in silico screenings. Chem. Zvesti, 2022, 76(9), 5655-5675.
[http://dx.doi.org/10.1007/s11696-022-02273-2] [PMID: 35669698]
[43]
Huệ, N.; Cuong, T.; Quy, P.; Bui, T.; Hai, N.; Nguyen, T.; Thanh, D.; Nhi, N.; Thai, N.; Tran, C.; Ai Nhung, N.T. Antimicrobial properties of Distichochlamys citrea M.F.Newman rhizome n-hexane extract against Streptococcus pyogenes: Experimental evidences and computational screening. ChemistrySelect, 2022, 7, 1-17.
[44]
Le, T.H.; Dao, T.M.C.; Nguyen, V.H.; Do, N.D.; Isiaka, A.O. Volatile constituents of Distichochlamys citrea M. F. Newman and Distichochlamys orlowii K. Larsen M. F. Newman (Zingiberaceae) from Vietnam. J. Med. Plants Res., 2017, 11(9), 188-193.
[http://dx.doi.org/10.5897/JMPR2016.6337]
[45]
Kubra, I.R.; Bettadaiah, B.K.; Murthy, P.S.; Rao, L.J.M. Structure-function activity of dehydrozingerone and its derivatives as antioxidant and antimicrobial compounds. J. Food Sci. Technol., 2014, 51(2), 245-255.
[http://dx.doi.org/10.1007/s13197-011-0488-8] [PMID: 24493881]
[46]
Manjunatha, J.R.; Bettadaiah, B.K.; Negi, P.S.; Srinivas, P. Synthesis of quinoline derivatives of tetrahydrocurcumin and zingerone and evaluation of their antioxidant and antibacterial attributes. Food Chem., 2013, 136(2), 650-658.
[http://dx.doi.org/10.1016/j.foodchem.2012.08.052] [PMID: 23122110]
[47]
Marliyana, S.; Mujahidin, D.; Syah, Y. Pinostrobin derivatives from prenylation reaction and their antibacterial activity against clinical bacteria. IOP Conf. Ser. Mater. Sci. Eng., 2018, pp. 1-5.
[48]
Oyedemi, B.O.M.; Kotsia, E.M.; Stapleton, P.D.; Gibbons, S. Capsaicin and gingerol analogues inhibit the growth of efflux-multidrug resistant bacteria and R-plasmids conjugal transfer. J. Ethnopharmacol., 2019, 245, 111871.
[http://dx.doi.org/10.1016/j.jep.2019.111871] [PMID: 31022566]
[49]
Santosh Kumar, S.C.; Srinivas, P.; Negi, P.S.; Bettadaiah, B.K. Antibacterial and antimutagenic activities of novel zerumbone analogues. Food Chem., 2013, 141(2), 1097-1103.
[http://dx.doi.org/10.1016/j.foodchem.2013.04.021] [PMID: 23790891]
[50]
Siddique, H.; Pendry, B.; Rahman, M.M. Terpenes from Zingiber montanum and their screening against multi-drug resistant and methicillin-resistant Staphylococcus aureus. Molecules, 2019, 24(3), 385.
[http://dx.doi.org/10.3390/molecules24030385] [PMID: 30678230]
[51]
Lee, S.Y.; Shetye, G.S.; Son, S.R.; Lee, H.; Klein, L.L.; Yoshihara, J.K.; Ma, R.; Franzblau, S.G.; Cho, S.; Jang, D.S. Anti-microbial activity of aliphatic alcohols from Chinese black cardamom (Amomum tsao-ko) against Mycobacterium tuberculosis H37Rv. Plants, 2022, 12(1), 34.
[http://dx.doi.org/10.3390/plants12010034] [PMID: 36616162]
[52]
Pandey, D.; Gupta, A. Bioactive compound in Curcuma caesia (Roxb.) from bastar and its spectral analysis by HPLC, UV-Vis, FT-IR, NMR, and ESI-MS. Int. J. Pharm. Sci. Res., 2019, 10, 139-147.
[53]
Tian, M.; Wu, X.; Hong, Y.; Wang, H.; Deng, G.; Zhou, Y. Comparison of chemical composition and bioactivities of essential oils from fresh and dry rhizomes of Zingiber Zerumbet (L.) Smith. BioMed Res. Int., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/9641284] [PMID: 32104711]
[54]
Pham, T.V.; Hoang, H.N.T.; Nguyen, H.T.; Nguyen, H.M.; Huynh, C.T.; Vu, T.Y.; Do, A.T.; Nguyen, N.H.; Do, B.H. Anti-inflammatory and antimicrobial activities of compounds isolated from Distichochlamys benenica. BioMed Res. Int., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/6624347] [PMID: 33880371]
[55]
Daniel-Jambun, D.; Ong, K.S.; Lim, Y.Y.; Tan, J.B.L.; Yap, S.W.; Lee, S.M. Bactericidal and cytotoxic activity of a diarylheptanoid (etlingerin) isolated from a ginger ( Etlingera pubescens ) endemic to Borneo. J. Appl. Microbiol., 2019, 127(1), 59-67.
[http://dx.doi.org/10.1111/jam.14287] [PMID: 31006174]
[56]
Mehta, J.; Rolta, R.; Dev, K. Role of medicinal plants from North Western Himalayas as an efflux pump inhibitor against MDR AcrAB-TolC Salmonella enterica serovar typhimurium: in vitro and in silico studies. J. Ethnopharmacol., 2022, 282(3), 114589.
[http://dx.doi.org/10.1016/j.jep.2021.114589] [PMID: 34492321]
[57]
Kim, H.R.; Eom, Y.B. Antifungal and anti-biofilm effects of 6-shogaol against Candida auris. J. Appl. Microbiol., 2021, 130(4), 1142-1153.
[http://dx.doi.org/10.1111/jam.14870] [PMID: 32981148]
[58]
Yamano, S.; Tsukuda, Y.; Mizuhara, N.; Yamaguchi, Y.; Ogita, A.; Fujita, K.I. Dehydrozingerone enhances the fungicidal activity of glabridin against Saccharomyces cerevisiae and Candida albicans. Lett. Appl. Microbiol., 2023, 76(4), ovad040.
[http://dx.doi.org/10.1093/lambio/ovad040] [PMID: 36990694]
[59]
Mehmood, A.; Khan, S.; Khan, S.; Ahmed, S.; Ali, A.; xue, M.; ali, L.; Hamza, M.; munir, A.; ur Rehman, S.; Mehmood Khan, A.; Hussain Shah, A.; Bai, Q. in silico analysis of quranic and prophetic medicinals plants for the treatment of infectious viral diseases including corona virus. Saudi J. Biol. Sci., 2021, 28(5), 3137-3151.
[http://dx.doi.org/10.1016/j.sjbs.2021.02.058] [PMID: 33642896]
[60]
Zubair, M.; Maulana, S.; Widodo, A.; Pitopang, R.; Arba, M.; Hariono, M. LC-MS/MS, docking and molecular dynamics approaches to identify potential SARS-CoV-2 3-chymotrypsin-like protease inhibitors from Zingiber officinale Roscoe. Molecules, 2021, 26(17), 5230.
[http://dx.doi.org/10.3390/molecules26175230] [PMID: 34500664]
[61]
Al-Sanea, M.M.; Abelyan, N.; Abdelgawad, M.A.; Musa, A.; Ghoneim, M.M.; Al-Warhi, T.; Aljaeed, N.; Alotaibi, O.J.; Alnusaire, T.S.; Abdelwahab, S.F.; Helmy, A.; Abdelmohsen, U.R.; Youssif, K.A. Strawberry and ginger silver nanoparticles as potential inhibitors for SARS-CoV-2 assisted by in silico modeling and metabolic profiling. Antibiotics, 2021, 10(7), 824.
[http://dx.doi.org/10.3390/antibiotics10070824] [PMID: 34356745]
[62]
Babaeekhou, L.; Ghane, M.; Abbas-Mohammadi, M. in silico targeting SARS-CoV-2 spike protein and main protease by biochemical compounds. Biologia, 2021, 76(11), 3547-3565.
[http://dx.doi.org/10.1007/s11756-021-00881-z] [PMID: 34565804]
[63]
Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature, 2020, 581(7807), 221-224.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[64]
Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483), 1260-1263.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[65]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[66]
Wijaya, R.M.; Hafidzhah, M.A.; Kharisma, V.D.; Ansori, A.N.M.; Parikesit, A.A. COVID-19 in silico drug with zingiber officinale natural product compound library targeting the M-pro protein. Makara J. Sci., 2021, 25(3), 162-17.
[67]
Umashankar, V.; Deshpande, S.H.; Hegde, H.V.; Singh, I.; Chattopadhyay, D. Phytochemical moieties from Indian traditional medicine for targeting dual hotspots on SARS-CoV-2 spike protein: An integrative in-silico approach. Front. Med., 2021, 8, 672629.
[http://dx.doi.org/10.3389/fmed.2021.672629] [PMID: 34026798]
[68]
Mohamad Taib, M.N.A.; Anuar, N.; Mohd Hanafiah, K.; Al-Shammary, A.A.K.; Saaid, M.; Awang, K. Chemicals constituents isolated from cultivate Alpinia conchigera Griff. and antimicrobial activity. Trop. Life Sci. Res., 2020, 31(1), 159-178.
[http://dx.doi.org/10.21315/tlsr2020.31.1.10] [PMID: 32963717]
[69]
Sirat, H.M.; Jani, N.A. Chemical constituents of the leaf of Alpinia mutica Roxb. Nat. Prod. Res., 2013, 27(16), 1468-1470.
[http://dx.doi.org/10.1080/14786419.2012.718772] [PMID: 22946537]
[70]
Sidahmed, H.M.A.; Hashim, N.M.; Abdulla, M.A.; Ali, H.M.; Mohan, S.; Abdelwahab, S.I.; Taha, M.M.E.; Fai, L.M.; Vadivelu, J. Antisecretory, gastroprotective, antioxidant and anti-Helicobcter pylori activity of zerumbone from Zingiber zerumbet (L.) Smith. PLoS One, 2015, 10(3), e0121060.
[http://dx.doi.org/10.1371/journal.pone.0121060] [PMID: 25798602]
[71]
Cerveira, M.M.; Vianna, H.S.; Ferrer, E.M.K.; da Rosa, B.N.; de Pereira, C.M.P.; Baldissera, M.D.; Lopes, L.Q.S.; Rech, V.C.; Giongo, J.L.; de Almeida Vaucher, R. Bioprospection of novel synthetic monocurcuminoids: Antioxidant, antimicrobial, and in vitro cytotoxic activities. Biomed. Pharmacother., 2021, 133, 111052.
[http://dx.doi.org/10.1016/j.biopha.2020.111052] [PMID: 33378958]
[72]
Konappa, N.; Udayashankar, A.C.; Krishnamurthy, S.; Pradeep, C.K.; Chowdappa, S.; Jogaiah, S. GC–MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Sci. Rep., 2020, 10(1), 16438.
[http://dx.doi.org/10.1038/s41598-020-73442-0] [PMID: 33009462]
[73]
Khuntia, S.; Sahoo, B.C.; Lenka, J.; Kar, B.; Sahoo, S. in-silico prediction and in vitro validation of antioxidant, antibacterial and antifungal potential of Black Turmeric (Curcuma caesia Roxb.) essential oils and its constituents. Ind. Crops Prod., 2023, 203(2), 117185.
[http://dx.doi.org/10.1016/j.indcrop.2023.117185]
[74]
Aisy, D.U.; Adawiyah, R.; Rozaliyani, A.; Estuningtyas, A.; Fadilah, F. The antifungal activities of Syzygium aromaticum and Alpinia purpurata extracts against Candida krusei: Bioactivity tests, molecular modeling, and toxicity tests. Asian Pac. J. Cancer Prev., 2023, 24(10), 3403-3409.
[http://dx.doi.org/10.31557/APJCP.2023.24.10.3403] [PMID: 37898844]
[75]
Reis, C.A.; Tauber, R.; Blanchard, V. Glycosylation is a key in SARS-CoV-2 infection. J. Mol. Med., 2021, 99(8), 1023-1031.
[http://dx.doi.org/10.1007/s00109-021-02092-0] [PMID: 34023935]
[76]
Gong, Y.; Qin, S.; Dai, L.; Tian, Z. The glycosylation in SARS- CoV-2 and its receptor ACE2. Signal Transduct. Target. Ther., 2021, 6(1), 396.
[http://dx.doi.org/10.1038/s41392-021-00809-8] [PMID: 34782609]
[77]
Chang, L.J.; Chen, T.H. NSP16 2′-O-MTase in coronavirus pathogenesis: Possible prevention and treatments strategies. Viruses, 2021, 13(4), 538.
[http://dx.doi.org/10.3390/v13040538] [PMID: 33804957]
[78]
Vithani, N.; Ward, M.D.; Zimmerman, M.I.; Novak, B.; Borowsky, J.H.; Singh, S.; Bowman, G.R. SARS-CoV-2 Nsp16 activation mechanism and a cryptic pocket with pan-coronavirus antiviral potential. Biophys. J., 2021, 120(14), 2880-2889.
[http://dx.doi.org/10.1016/j.bpj.2021.03.024] [PMID: 33794150]
[79]
Karim, M.; Saul, S.; Ghita, L.; Sahoo, M.K.; Ye, C.; Bhalla, N.; Lo, C.W.; Jin, J.; Park, J.G.; Martinez-Gualda, B.; East, M.P.; Johnson, G.L.; Pinsky, B.A.; Martinez-Sobrido, L.; Asquith, C.R.M.; Narayanan, A.; De Jonghe, S.; Einav, S. Numb-associated kinases are required for SARS-CoV-2 infection and are cellular targets for antiviral strategies. Antiviral Res., 2022, 204, 105367.
[http://dx.doi.org/10.1016/j.antiviral.2022.105367] [PMID: 35738348]
[80]
García-Cárceles, J.; Caballero, E.; Gil, C.; Martínez, A. kinase inhibitors as underexplored antiviral agents. J. Med. Chem., 2022, 65(2), 935-954.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00302] [PMID: 33970631]
[81]
Narusaka, M.; Hatanaka, T.; Narusaka, Y. Inactivation of plant and animal viruses by proanthocyanidins from Alpinia zerumbet extract. Plant Biotechnol., 2021, 38(4), 453-455.
[http://dx.doi.org/10.5511/plantbiotechnology.21.0925a] [PMID: 35087311]
[82]
Durão, P.; Balbontín, R.; Gordo, I. Evolutionary mechanisms shaping the maintenance of antibiotic resistance. Trends Microbiol., 2018, 26(8), 677-691.
[http://dx.doi.org/10.1016/j.tim.2018.01.005] [PMID: 29439838]
[83]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[84]
Khameneh, B.; Iranshahy, M.; Soheili, V.; Fazly Bazzaz, B.S. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Control, 2019, 8(1), 118.
[http://dx.doi.org/10.1186/s13756-019-0559-6] [PMID: 31346459]
[85]
Ventola, C.L. The antibiotic resistance crisis: part 1: Causes and threats. P&T, 2015, 40(4), 277-283.
[PMID: 25859123]
[86]
Gow, N.A.R.; Johnson, C.; Berman, J.; Coste, A.T.; Cuomo, C.A.; Perlin, D.S.; Bicanic, T.; Harrison, T.S.; Wiederhold, N.; Bromley, M.; Chiller, T.; Edgar, K. The importance of antimicrobial resistance in medical mycology. Nat. Commun., 2022, 13(1), 5352.
[http://dx.doi.org/10.1038/s41467-022-32249-5] [PMID: 36097014]
[87]
Arastehfar, A.; Gabaldón, T.; Garcia-Rubio, R.; Jenks, J.D.; Hoenigl, M.; Salzer, H.J.F.; Ilkit, M.; Lass-Flörl, C.; Perlin, D.S. Drug-resistant fungi: An emerging challenge threatening our limited antifungal armamentarium. Antibiotics, 2020, 9(12), 877.
[http://dx.doi.org/10.3390/antibiotics9120877] [PMID: 33302565]
[88]
Kumar, M.; Kuroda, K.; Dhangar, K.; Mazumder, P.; Sonne, C.; Rinklebe, J.; Kitajima, M. Potential emergence of antiviral-resistant pandemic viruses via environmental drug exposure of animal reservoirs. Environ. Sci. Technol., 2020, 54(14), 8503-8505.
[http://dx.doi.org/10.1021/acs.est.0c03105] [PMID: 32609508]
[89]
Marino, A.; Cosentino, F.; Ceccarelli, M.; Moscatt, V.; Pampaloni, A.; Scuderi, D.; D’andrea, F.; Rullo, E.; Nunnari, G.; Benanti, F.; Celesia, B.; Cacopardo, B. Entecavir resistance in a patient with treatment-naïve HBV: A case report. Mol. Clin. Oncol., 2021, 14(6), 113.
[http://dx.doi.org/10.3892/mco.2021.2275] [PMID: 33903819]
[90]
Stannard, H.L.; Mifsud, E.J.; Wildum, S.; Brown, S.K.; Koszalka, P.; Shishido, T.; Kojima, S.; Omoto, S.; Baba, K.; Kuhlbusch, K.; Hurt, A.C.; Barr, I.G. Assessing the fitness of a dual-antiviral drug resistant human influenza virus in the ferret model. Commun. Biol., 2022, 5(1), 1026.
[http://dx.doi.org/10.1038/s42003-022-04005-4] [PMID: 36171475]
[91]
Howe, A.Y.M.; Rodrigo, C.; Cunningham, E.B.; Douglas, M.W.; Dietz, J.; Grebely, J.; Popping, S.; Sfalcin, J.A.; Parczewski, M.; Sarrazin, C.; de Salazar, A.; Fuentes, A.; Sayan, M.; Quer, J.; Kjellin, M.; Kileng, H.; Mor, O.; Lennerstrand, J.; Fourati, S.; Di Maio, V.C.; Chulanov, V.; Pawlotsky, J.M.; Harrigan, P.R.; Ceccherini-Silberstein, F.; Garcia, F. Characteristics of hepatitis C virus resistance in an international cohort after a decade of direct-acting antivirals. JHEP Rep., 2022, 4(5), 100462.
[http://dx.doi.org/10.1016/j.jhepr.2022.100462] [PMID: 35434589]
[92]
Bergmann, M.; Beer, R.; Kofler, M.; Helbok, R.; Pfausler, B.; Schmutzhard, E. Acyclovir resistance in herpes simplex virus type I encephalitis: A case report. J. Neurovirol., 2017, 23(2), 335-337.
[http://dx.doi.org/10.1007/s13365-016-0489-5] [PMID: 27787806]
[93]
Malvy, D.; Treilhaud, M.; Bouée, S.; Crochard, A.; Vallée, D.; El Hasnaoui, A.; Aymard, M. A retrospective, case-control study of acyclovir resistance in herpes simplex virus. Clin. Infect. Dis., 2005, 41(3), 320-326.
[http://dx.doi.org/10.1086/431585] [PMID: 16007528]
[94]
Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms, 2021, 9(10), 2041.
[http://dx.doi.org/10.3390/microorganisms9102041] [PMID: 34683362]
[95]
Gupta, P.D.; Birdi, T.J. Development of botanicals to combat antibiotic resistance. J. Ayurveda Integr. Med., 2017, 8(4), 266-275.
[http://dx.doi.org/10.1016/j.jaim.2017.05.004] [PMID: 28869082]
[96]
Howes, M.J.R.; Fang, R.; Houghton, P.J. Effect of Chinese herbal medicine on Alzheimer’s disease. Int. Rev. Neurobiol., 2017, 135, 29-56.
[http://dx.doi.org/10.1016/bs.irn.2017.02.003] [PMID: 28807163]
[97]
Niknam, Z.; Jafari, A.; Golchin, A.; Danesh Pouya, F.; Nemati, M.; Rezaei-Tavirani, M.; Rasmi, Y. Potential therapeutic options for COVID-19: An update on current evidence. Eur. J. Med. Res., 2022, 27(1), 6.
[http://dx.doi.org/10.1186/s40001-021-00626-3] [PMID: 35027080]
[98]
Kamenshchikov, N.O.; Berra, L.; Carroll, R.W. Therapeutic effects of inhaled nitric oxide therapy in COVID-19 patients. Biomedicines, 2022, 10(2), 369.
[http://dx.doi.org/10.3390/biomedicines10020369] [PMID: 35203578]
[99]
Balaji, A.P.B.; Bhuvaneswari, S.; Raj, L.S.; Bupesh, G.; Meenakshisundaram, K.K.; Saravanan, K.M. A review on the potential species of the Zingiberaceae family with anti-viral efficacy towards enveloped viruses. J. Pure Appl. Microbiol., 2022, 16(2), 796-813.
[http://dx.doi.org/10.22207/JPAM.16.2.35]
[100]
Yap, B.K.; Lee, C-Y.; Choi, S.B.; Kamarulzaman, E.E.; Hariono, M.; Wahab, H.A. in silico identification of novel inhibitors. In: Encyclopedia of Bioinformatics and Computational Biology; Ranganathan, S.; Gribskov, M.; Nakai, K.; Schönbach, C., Eds.; Academic Press: London, UK, 2019; pp. 761-779.
[http://dx.doi.org/10.1016/B978-0-12-809633-8.20158-1]
[101]
Huang, Y.; Yang, C.; Xu, X.; Xu, W.; Liu, S. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol. Sin., 2020, 41(9), 1141-1149.
[http://dx.doi.org/10.1038/s41401-020-0485-4] [PMID: 32747721]
[102]
Shin, D.; Mukherjee, R.; Grewe, D.; Bojkova, D.; Baek, K.; Bhattacharya, A.; Schulz, L.; Widera, M.; Mehdipour, A.R.; Tascher, G.; Geurink, P.P.; Wilhelm, A.; van der Heden van Noort, G.J.; Ovaa, H.; Müller, S.; Knobeloch, K.P.; Rajalingam, K.; Schulman, B.A.; Cinatl, J.; Hummer, G.; Ciesek, S.; Dikic, I. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature, 2020, 587(7835), 657-662.
[http://dx.doi.org/10.1038/s41586-020-2601-5] [PMID: 32726803]
[103]
Robinson, J.A. Folded synthetic peptides and other molecules targeting outer membrane protein complexes in gram-negative bacteria. Front Chem., 2019, 7, 45.
[http://dx.doi.org/10.3389/fchem.2019.00045] [PMID: 30788339]
[104]
Weng, C.J.; Wu, C.F.; Huang, H.W.; Ho, C.T.; Yen, G.C. Anti-invasion effects of 6-shogaol and 6-gingerol, two active components in ginger, on human hepatocarcinoma cells. Mol. Nutr. Food Res., 2010, 54(11), 1618-1627.
[http://dx.doi.org/10.1002/mnfr.201000108] [PMID: 20521273]
[105]
Njateng, G.S.S.; Du, Z.; Gatsing, D.; Mouokeu, R.S.; Liu, Y.; Zang, H.X.; Gu, J.; Luo, X.; Kuiate, J.R. Antibacterial and antioxidant properties of crude extract, fractions and compounds from the stem bark of Polyscias fulva Hiern (Araliaceae). BMC Complement. Altern. Med., 2017, 17(1), 99.
[http://dx.doi.org/10.1186/s12906-017-1572-z] [PMID: 28173794]
[106]
Kesara, A.J.; Puangpaka, U. Polyploidy in the ginger family from Thailand. In: Chromosomal Abnormalities; Tülay Aşkın, Ç.; Subrata, D., Eds.; IntechOpen: London, UK, 2020; pp. 1-15.
[107]
Munn, Z.; Peters, M.D.J.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol., 2018, 18(1), 143.
[http://dx.doi.org/10.1186/s12874-018-0611-x] [PMID: 30453902]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy