Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Structural Perspectives in the Development of Novel EGFR Inhibitors for the Treatment of NSCLC

Author(s): Rahul Makhija, Anushka Sharma, Rahul Dubey and Vivek Asati*

Volume 24, Issue 19, 2024

Published on: 04 April, 2024

Page: [1746 - 1783] Pages: 38

DOI: 10.2174/0113895575296174240323172754

Price: $65

conference banner
Abstract

Non-small cell Lung cancer (NSCLC) is the most common type of lung cancer, which is caused by high consumption of tobacco and smoking. It is an epithelial lung cancer that affects about 2.2 million people across the globe, according to International Agency for Research on Cancer (IARC). Non-small cell lung cancer is a malignant tumor caused by EGFR mutation that occurs in the in-frame deletion of exon 19 and L858R point mutation in exon 21. Presently, clinically available inhibitors of EGFR (including erlotinib, lapatinib, gefitinib, selumetinib, etc.) are not specific and responsible for undesirable adverse effects. Moreover, to solve this problem search for newer EGFR inhibitors is the utmost need for the treatment and/or management of increasing lung cancer burden. The discovery of therapeutic agents that inhibit the specific target in tumorous cells, such as EGFR, is one of the successful strategies in treating many cancer therapies, including lung cancer. The exhaustive literature survey (2018-2023) has shown the importance of medicinally privileged pyrimidine derivatives together, fused and/or clubbed with other heterocyclic rings to design and develop novel EGFR inhibitors. Pyrimidine derivatives substituted with phenylamine, indole, pyrrole, piperazine, pyrazole, thiophene, pyridine and quinazoline derivatives substituted with phenylamine, pyrimidine, morpholine, pyrrole, dioxane, acrylamide, indole, pyridine, furan, pyrimidine, pyrazole etc. are privileged heterocyclic rings shown promising activity by inhibiting EGFR and TKIs. The present review summarizes the structure-activity relationship (SAR) and enzyme inhibitory activity, including IC50 values, percentage inhibition, and kinetic studies of potential compounds from various literature. The review also includes various aspects of molecular docking studies with compounds under clinical trials and patents filed on pyrimidine-based EGFR inhibitors in treating non-small cell lung cancer. The present review may benefit the medicinal chemist for developing novel compounds such as EGFR inhibitors.

Keywords: Pyrimidine derivatives, EGFR inhibitor, Non-small cell lung cancer, molecular hybrids, SAR.

Graphical Abstract
[1]
Chhikara, B.S.; Parang, K. Global Cancer Statistics 2022: The trends projection analysis. Chem. Biol. Lett., 2023, 10(1), 451-451.
[2]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789.
[http://dx.doi.org/10.1002/ijc.33588] [PMID: 33818764]
[3]
Kulothungan, V.; Sathishkumar, K.; Leburu, S.; Ramamoorthy, T.; Stephen, S.; Basavarajappa, D.; Tomy, N.; Mohan, R.; Menon, G.R.; Mathur, P. Burden of cancers in India - estimates of cancer crude incidence, YLLs, YLDs and DALYs for 2021 and 2025 based on National Cancer Registry Program. BMC Cancer, 2022, 22(1), 527.
[http://dx.doi.org/10.1186/s12885-022-09578-1] [PMID: 35546232]
[4]
Rumgay, H.; Arnold, M.; Ferlay, J.; Lesi, O.; Cabasag, C.J.; Vignat, J.; Laversanne, M.; McGlynn, K.A.; Soerjomataram, I. Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol., 2022, 77(6), 1598-1606.
[http://dx.doi.org/10.1016/j.jhep.2022.08.021] [PMID: 36208844]
[5]
Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc., 2008, 83(5), 584-594.
[http://dx.doi.org/10.1016/S0025-6196(11)60735-0] [PMID: 18452692]
[6]
Gazdar, A.F.; Zhou, C. Lung cancer in never-smokers: A different disease.IASLC Thoracic Oncology; Elsevier: Amsterdam, 2018, pp. 23-29.
[http://dx.doi.org/10.1016/B978-0-323-52357-8.00004-4]
[7]
Cho, J.; Chen, L.; Sangji, N.; Okabe, T.; Yonesaka, K.; Francis, J.M.; Flavin, R.J.; Johnson, W.; Kwon, J.; Yu, S.; Greulich, H.; Johnson, B.E.; Eck, M.J.; Jänne, P.A.; Wong, K.K.; Meyerson, M. Cetuximab response of lung cancer-derived EGF receptor mutants is associated with asymmetric dimerization. Cancer Res., 2013, 73(22), 6770-6779.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1145] [PMID: 24063894]
[8]
Noronha, V.; Joshi, A.; Gokarn, A.; Sharma, V.; Patil, V.; Janu, A.; Purandare, N.; Chougule, A.; Jambhekar, N.; Prabhash, K. The importance of brain metastasis in EGFR mutation positive NSCLC patients. Chemother. Res. Pract., 2014, 2014, 1-4.
[http://dx.doi.org/10.1155/2014/856156] [PMID: 25548673]
[9]
Yang, C.Y.; Yang, J.C.H.; Yang, P.C. Precision management of advanced non–small cell lung cancer. Annu. Rev. Med., 2020, 71(1), 117-136.
[http://dx.doi.org/10.1146/annurev-med-051718-013524] [PMID: 31986082]
[10]
Hynes, N.E.; Lane, H.A. ERBB receptors and cancer: The complexity of targeted inhibitors. Nat. Rev. Cancer, 2005, 5(5), 341-354.
[http://dx.doi.org/10.1038/nrc1609] [PMID: 15864276]
[11]
Batra, U.; Biswas, B.; Prabhash, K.; Krishna, M.V. Differential clinicopathological features, treatments and outcomes in patients with Exon 19 deletion and Exon 21 L858R EGFR mutation-positive adenocarcinoma non-small-cell lung cancer. BMJ Open Respir. Res., 2023, 10(1), e001492.
[http://dx.doi.org/10.1136/bmjresp-2022-001492] [PMID: 37321664]
[12]
Shah, R.; Lester, J.F. Tyrosine kinase inhibitors for the treatment of EGFR mutation-positive non–small-cell lung cancer: A clash of the generations. Clin. Lung Cancer, 2020, 21(3), e216-e228.
[http://dx.doi.org/10.1016/j.cllc.2019.12.003] [PMID: 32014348]
[13]
Caban, M.; Koblmueller, B.; Groza, D.; Schueffl, H.H.; Terenzi, A.; Tolios, A.; Mohr, T.; Mathuber, M.; Kryeziu, K.; Jaunecker, C.; Pirker, C.; Keppler, B.K.; Berger, W.; Kowol, C.R.; Heffeter, P. A novel EGFR inhibitor acts as potent tool for hypoxia-activated prodrug systems and exerts strong synergistic activity with VEGFR inhibition in vitro and in vivo. Cancer Lett., 2023, 565, 216237.
[http://dx.doi.org/10.1016/j.canlet.2023.216237] [PMID: 37211067]
[14]
Tang, Z.H.; Lu, J.J. Osimertinib resistance in non-small cell lung cancer: Mechanisms and therapeutic strategies. Cancer Lett., 2018, 420, 242-246.
[http://dx.doi.org/10.1016/j.canlet.2018.02.004] [PMID: 29425688]
[15]
Zhou, C.; Ramalingam, S.S.; Kim, T.M.; Kim, S.W.; Yang, J.C.H.; Riely, G.J.; Mekhail, T.; Nguyen, D.; Garcia Campelo, M.R.; Felip, E.; Vincent, S.; Jin, S.; Griffin, C.; Bunn, V.; Lin, J.; Lin, H.M.; Mehta, M.; Jänne, P.A. Treatment outcomes and safety of mobocertinib in platinum-pretreated patients with EGFR exon 20 insertion–positive metastatic non–small cell lung cancer: A phase 1/2 open-label nonrandomized clinical trial. JAMA Oncol., 2021, 7(12), e214761-e214761.
[http://dx.doi.org/10.1001/jamaoncol.2021.4761] [PMID: 34647988]
[16]
Herbst, R.S.; Shin, D.M. Monoclonal antibodies to target epidermal growth factor receptor–positive tumors. Cancer, 2002, 94(5), 1593-1611.
[http://dx.doi.org/10.1002/cncr.10372] [PMID: 11920518]
[17]
Pao, W.; Miller, V.; Zakowski, M.; Doherty, J.; Politi, K.; Sarkaria, I.; Singh, B.; Heelan, R.; Rusch, V.; Fulton, L.; Mardis, E.; Kupfer, D.; Wilson, R.; Kris, M.; Varmus, H. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci. USA, 2004, 101(36), 13306-13311.
[http://dx.doi.org/10.1073/pnas.0405220101] [PMID: 15329413]
[18]
Chang, S.; Zhang, L.; Xu, S.; Luo, J.; Lu, X.; Zhang, Z.; Xu, T.; Liu, Y.; Tu, Z.; Xu, Y.; Ren, X.; Geng, M.; Ding, J.; Pei, D.; Ding, K. Design, synthesis, and biological evaluation of novel conformationally constrained inhibitors targeting epidermal growth factor receptor threonine790 → methionine790 mutant. J. Med. Chem., 2012, 55(6), 2711-2723.
[http://dx.doi.org/10.1021/jm201591k] [PMID: 22339342]
[19]
Ciardiello, F.; Tortora, G. Epidermal growth factor receptor (EGFR) as a target in cancer therapy: understanding the role of receptor expression and other molecular determinants that could influence the response to anti-EGFR drugs. Eur. J. Cancer, 2003, 39(10), 1348-1354.
[http://dx.doi.org/10.1016/S0959-8049(03)00235-1] [PMID: 12826036]
[20]
Abourehab, M.A.S.; Alqahtani, A.M.; Youssif, B.G.M.; Gouda, A.M. Globally approved EGFR inhibitors: Insights into their syntheses, target kinases, biological activities, receptor interactions, and metabolism. Molecules, 2021, 26(21), 6677.
[http://dx.doi.org/10.3390/molecules26216677] [PMID: 34771085]
[21]
Zhou, K.; Zhao, S.; Guo, W.; Ding, L. Efficacy and safety of erlotinib combined with bevacizumab in the treatment of non-small cell lung cancer. Medicine (Baltimore), 2020, 99(3), e18771.
[http://dx.doi.org/10.1097/MD.0000000000018771] [PMID: 32011468]
[22]
Wakeling, A.E.; Guy, S.P.; Woodburn, J.R.; Ashton, S.E.; Curry, B.J.; Barker, A.J.; Gibson, K.H. ZD1839 (Iressa): An orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res., 2002, 62(20), 5749-5754.
[PMID: 12384534]
[23]
Liang, Y.; Zhang, T.; Zhang, J. Natural tyrosine kinase inhibitors acting on the epidermal growth factor receptor: Their relevance for cancer therapy. Pharmacol. Res., 2020, 161, 105164.
[http://dx.doi.org/10.1016/j.phrs.2020.105164] [PMID: 32846211]
[24]
Gao, Y.; Liu, P.; Shi, R. Anlotinib as a molecular targeted therapy for tumors. (Review) Oncol. Lett., 2020, 20(2), 1001-1014.
[http://dx.doi.org/10.3892/ol.2020.11685] [PMID: 32724339]
[25]
Deming, D.A.; Cavalcante, L.L.; Lubner, S.J.; Mulkerin, D.L.; LoConte, N.K.; Eickhoff, J.C.; Kolesar, J.M.; Fioravanti, S.; Greten, T.F.; Compton, K.; Doyle, A.G.; Wilding, G.; Duffy, A.; Liu, G. A phase I study of selumetinib (AZD6244/ARRY-142866), a MEK1/2 inhibitor, in combination with cetuximab in refractory solid tumors and KRAS mutant colorectal cancer. Invest. New Drugs, 2016, 34(2), 168-175.
[http://dx.doi.org/10.1007/s10637-015-0314-7] [PMID: 26666244]
[26]
Shi, Y.; Li, B.; Wu, L.; Pan, Y.; Pan, Z.; Liu, Y.; Fan, Y.; Ji, Y.; Fang, J.; Shi, Q.; Shi, J.; Gao, H.; Hu, Y.; Wang, X.; He, Z.; Ma, R.; Zhang, Y.; Jiang, D.; Bai, Y.; Zhang, Y.; Huang, L.; Zhou, T.; Liu, H.; Wang, D.; Wen, Q.; Chen, G.; Zang, A.; Wang, X.; Zhang, X.; Hu, J.; Yang, R.; Zhang, G.; Gu, K.; Wang, L.; Wang, Q.; Wei, Z.; Li, Z.; Lu, H.; Zhang, H.; Chen, H.; Song, T. Efficacy and safety of limertinib (ASK120067) in patients with locally advanced or metastatic EGFR Thr790Met-mutated NSCLC: A multicenter, single-arm, phase 2b study. J. Thorac. Oncol., 2022, 17(10), 1205-1215.
[http://dx.doi.org/10.1016/j.jtho.2022.05.011] [PMID: 35659581]
[27]
Tan, F.; Shen, X.; Wang, D.; Xie, G.; Zhang, X.; Ding, L.; Hu, Y.; He, W.; Wang, Y.; Wang, Y. Icotinib (BPI-2009H), a novel EGFR tyrosine kinase inhibitor, displays potent efficacy in preclinical studies. Lung Cancer, 2012, 76(2), 177-182.
[http://dx.doi.org/10.1016/j.lungcan.2011.10.023] [PMID: 22112293]
[28]
Wu, Y.L.; Kim, D.W.; Felip, E.; Zhang, L.; Liu, X.; Zhou, C.C.; Tan, D.S.W. Phase (Ph) II safety and efficacy results of a single-arm ph ib/II study of capmatinib (INC280)+ gefitinib in patients (pts) with EGFR-mutated (mut), cMET-positive (cMET+) non-small cell lung cancer. J. Clin. Oncol., 2016, 34(15)
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.9020]
[29]
Harvey, R.D.; Adams, V.R.; Beardslee, T.; Medina, P. Afatinib for the treatment of EGFR mutation-positive NSCLC: A review of clinical findings. J. Oncol. Pharm. Pract., 2020, 26(6), 1461-1474.
[http://dx.doi.org/10.1177/1078155220931926] [PMID: 32567494]
[30]
Zhang, T.; Qu, R.; Chan, S.; Lai, M.; Tong, L.; Feng, F.; Chen, H.; Song, T.; Song, P.; Bai, G.; Liu, Y.; Wang, Y.; Li, Y.; Su, Y.; Shen, Y.; Sun, Y.; Chen, Y.; Geng, M.; Ding, K.; Ding, J.; Xie, H. Discovery of a novel third-generation EGFR inhibitor and identification of a potential combination strategy to overcome resistance. Mol. Cancer, 2020, 19(1), 90.
[http://dx.doi.org/10.1186/s12943-020-01202-9] [PMID: 32404161]
[31]
Denis, M.G.; Bennouna, J. Osimertinib for front-line treatment of locally advanced or metastatic EGFR-mutant NSCLC patients: Efficacy, acquired resistance and perspectives for subsequent treatments. Cancer Manag. Res., 2020, 12, 12593-12602.
[http://dx.doi.org/10.2147/CMAR.S218751] [PMID: 33324104]
[32]
Fathi Maroufi, N.; Rashidi, M.R.; Vahedian, V.; Akbarzadeh, M.; Fattahi, A.; Nouri, M. Therapeutic potentials of Apatinib in cancer treatment: Possible mechanisms and clinical relevance. Life Sci., 2020, 241, 117106.
[http://dx.doi.org/10.1016/j.lfs.2019.117106] [PMID: 31786193]
[33]
Lee, T.S.; Kim, J.Y.; Lee, M.H.; Cho, I.R.; Paik, W.H.; Ryu, J.K.; Kim, Y.T.; Lee, S.H. Savolitinib: A promising targeting agent for cancer. Cancers (Basel), 2023, 15(19), 4708.
[http://dx.doi.org/10.3390/cancers15194708] [PMID: 37835402]
[34]
Suraweera, A.; O’Byrne, K.J.; Richard, D.J. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: Achieving the full therapeutic potential of HDACi. Front. Oncol., 2018, 8, 92.
[http://dx.doi.org/10.3389/fonc.2018.00092] [PMID: 29651407]
[35]
D’Argento, E.; Rossi, S.; Schinzari, G.; Strippoli, A.; Basso, M.; Cassano, A.; Barone, C. From 2000 to 2016: Which second-line treatment in advanced non-small cell lung cancer? Curr. Treat. Options Oncol., 2016, 17, 1-19.
[36]
Awad, M.M.; Shaw, A.T. ALK inhibitors in non–small cell lung cancer: Crizotinib and beyond. Clin. Adv. Hematol. Oncol., 2014, 12(7), 429-439.
[37]
Jung, M.; Lee, K.M. Im, Y.; Seok, S.H.; Chung, H.; Kim, D.Y.; Han, D.; Lee, C.H.; Hwang, E.H.; Park, S.Y.; Koh, J.; Kim, B.; Nikas, I.P.; Lee, H.; Hwang, D.; Ryu, H.S. Nicotinamide (niacin) supplement increases lipid metabolism and ROS‐induced energy disruption in triple‐negative breast cancer: potential for drug repositioning as an anti‐tumor agent. Mol. Oncol., 2022, 16(9), 1795-1815.
[http://dx.doi.org/10.1002/1878-0261.13209] [PMID: 35278276]
[38]
Iida, M.; Harari, P.M.; Wheeler, D.L.; Toulany, M. Targeting AKT/PKB to improve treatment outcomes for solid tumors. Mutat. Res., 2020, 819-820, 111690.
[http://dx.doi.org/10.1016/j.mrfmmm.2020.111690] [PMID: 32120136]
[39]
Garcia, J.; Hurwitz, H.I.; Sandler, A.B.; Miles, D.; Coleman, R.L.; Deurloo, R.; Chinot, O.L. Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat. Rev., 2020, 86, 102017.
[http://dx.doi.org/10.1016/j.ctrv.2020.102017] [PMID: 32335505]
[40]
Musiol, R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin. Drug Discov., 2017, 12(6), 583-597.
[http://dx.doi.org/10.1080/17460441.2017.1319357] [PMID: 28399679]
[41]
Gao, W. CRM1 inhibitors reduce primary and acquired resistance of EGFR inhibitors in lung cancer cells. U.S. Patent 11266624 2022.
[42]
Method for predicting responsiveness to a treatment with an EGFR inhibitor. U.S. Patent 10400284, 2022 2019.
[43]
Chong, S. Combinations of inhibitors of Mek, Egfr and Erbb2 in the treatment of Kras-Mutant lung cancer. E.U. Patent 2968564 2019.
[44]
Lebwohl, D. Combination therapies of EGFR inhibitors. U.S. Patent 9993551 2018.
[45]
Bo, H.C. Method of treating epithelial growth factor receptor (EGFR) T790M-positive non-small cell lung cancer by administering a combination of a VEGFR-2 antibody and Osimertinib. U.S. Patent 11471457 2022.
[46]
Iwao, M. Fourth-generation EGFR tyrosine kinase inhibitor. U.S. Patent 112861261 2022.
[47]
Hao, H. Combination therapy of a met inhibitor and an Egfr inhibitor. E.U. Patent 112861261 2020.
[48]
Hewings, D.S. Egfr inhibitors. E.U.Patent 4076665 2023.
[49]
Singh, S. Drug selection for non-small cell lung cancer therapy. U.S. Patent 10640830 2020.
[50]
Katayama, R. Therapeutic agent for lung cancer that has acquired EGFR-TKI resistance. U.S. Patent 11419871 2022.
[51]
Daniel, A. Method for treating gefitinib resistant cancer. U.S. Patent 10603314 2020.
[52]
Cosimo, D. Egfr inhibitors for the treatment of cancer. E.U. Patent 3986895 2023.
[53]
Jimbo, T. Combination therapy of Axl inhibitor and EGFR tyrosine kinase inhibitor. U.S. Patent 11318124 2022.
[54]
Yan, D. Method of treating cancer with a combination of MER tyrosine kinase inhibitor and an epidermal growth factor receptor (EGFR) inhibitor. U.S. Patent 10709708 2020.
[55]
Katayama, R. Therapeutic agent for lung cancer that has acquired EGFR-TKI resistance.. U.S. Patent 10813933 2020.
[56]
Yang, L. Pyrimidine compounds useful as tyrosine kinase inhibitors. U.S. Patent 11708335 2023.
[57]
Dai, X. EGFR inhibitors. U.S. Patent 11639344 2023.
[58]
Anthony, B. Combination of ceritinib with an Egfr inhibitor. E.U. Patent 3206717 2020.
[59]
Bunker, K.D. EGFR inhibitor compounds. U.S. Patent 11098030 2021.
[60]
Gijsbertus, J. Combination of 10-propargyl-10-deazaaminopterin and erlotinib for the treatment of non-small cell lung cancer. U.S. Patent 9901578 2018.
[61]
An, B.; Fan, Y.; Li, W.; Nie, W.; Nie, H.; Wang, M.; Feng, J.; Yao, H.; Zhang, Y.; Li, X.; Tian, G. Discovery of potent and effective inhibitors containing sulfoxide structures targeting EML4-ALK rearrangement and EGFR mutant non-small cell lung cancer. Bioorg. Chem., 2023, 138, 106653.
[http://dx.doi.org/10.1016/j.bioorg.2023.106653] [PMID: 37302317]
[62]
Mao, Y.Z.; Xi, X.X.; Zhao, H.Y.; Zhang, Y.L.; Zhang, S.Q. Design, synthesis and evaluation of new pyrimidine derivatives as EGFRC797S tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2023, 91, 129381.
[http://dx.doi.org/10.1016/j.bmcl.2023.129381] [PMID: 37336419]
[63]
Li, Y.; Chang, Y.; Fu, J.; Ding, R.; Zhang, L.; Liang, T.; Liu, Y.; Liu, Y.; Hu, J. Design, synthesis and biological evaluation of aminopyrimidine derivatives bearing a 4,5,6,7-tetrahydrothieno[3,2-c]pyridine as potent EGFR inhibitors. Eur. J. Med. Chem., 2021, 226, 113845.
[http://dx.doi.org/10.1016/j.ejmech.2021.113845] [PMID: 34534838]
[64]
Ai, M.; Wang, C.; Tang, Z.; Liu, K.; Sun, X.; Ma, T.; Li, Y.; Ma, X.; Li, L.; Chen, L. Design and synthesis of diphenylpyrimidine derivatives (DPPYs) as potential dual EGFR T790M and FAK inhibitors against a diverse range of cancer cell lines. Bioorg. Chem., 2020, 94, 103408.
[http://dx.doi.org/10.1016/j.bioorg.2019.103408] [PMID: 31706682]
[65]
Huang, J.; Huang, J.; Wang, N.; Wang, L.; Li, L.; Wang, C.; Sun, X.; Li, Y.; Huang, G.; Ma, X. Identification of 2(1H)-pyrimidinones as potential EGFR T790M inhibitors for the treatment of gefitinib-resistant non-small cell lung cancer. Bioorg. Chem., 2019, 89, 102994.
[http://dx.doi.org/10.1016/j.bioorg.2019.102994] [PMID: 31185393]
[66]
Zhang, Y.; Lv, H.; Luo, L.; Xu, Y.; Pan, Y.; Wang, Y.; Lin, H.; Xiong, J.; Guo, P.; Zhang, J.; Li, X.; Ye, F. Design, synthesis and pharmacological evaluation of N4,N6-disubstituted pyrimidine-4,6-diamine derivatives as potent EGFR inhibitors in non-small cell lung cancer. Eur. J. Med. Chem., 2018, 157, 1300-1325.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.031] [PMID: 30195240]
[67]
Chen, L.; Chi, F.; Wang, T.; Wang, N.; Li, W.; Liu, K.; Shu, X.; Ma, X.; Xu, Y. The synthesis of 4-arylamido-2-arylaminoprimidines as potent EGFR T790M/L858R inhibitors for NSCLC. Bioorg. Med. Chem., 2018, 26(23-24), 6087-6095.
[http://dx.doi.org/10.1016/j.bmc.2018.11.009] [PMID: 30471829]
[68]
Farag, A.K.; Ahn, B.S.; Yoo, J.S.; Karam, R.; Roh, E.J. Design, synthesis, and biological evaluation of pseudo-bicyclic pyrimidine-based compounds as potential EGFR inhibitors. Bioorg. Chem., 2022, 126, 105918.
[http://dx.doi.org/10.1016/j.bioorg.2022.105918] [PMID: 35696765]
[69]
Ding, S.; Gao, Z.; Hu, Z.; Qi, R.; Zheng, X.; Dong, X.; Zhang, M.; Shen, J.; Long, T.; Zhu, Y.; Tian, L.; Song, W.; Liu, R.; Li, Y.; Sun, J.; Duan, W.; Liu, J.; Chen, Y. Design, synthesis and biological evaluation of novel osimertinib derivatives as reversible EGFR kinase inhibitors. Eur. J. Med. Chem., 2022, 238, 114492.
[http://dx.doi.org/10.1016/j.ejmech.2022.114492] [PMID: 35696862]
[70]
Jia, T.; Miao, R.; Lin, J.; Zhang, C.; Zeng, L.; Zhang, J.; Shao, J.; Pan, Z.; Wang, H.; Zhu, H.; Cheng, W. Design, synthesis and biological evaluation of novel tumor hypoxia-activated EGFR tyrosine kinase inhibitors. Bioorg. Chem., 2022, 129, 106138.
[http://dx.doi.org/10.1016/j.bioorg.2022.106138] [PMID: 36115310]
[71]
Zhao, B.; Zhao, C.; Hu, X.; Xu, S.; Lan, Z.; Guo, Y.; Yang, Z.; Zhu, W.; Zheng, P. Design, synthesis and 3D-QSAR analysis of novel thiopyranopyrimidine derivatives as potential antitumor agents inhibiting A549 and Hela cancer cells. Eur. J. Med. Chem., 2020, 185, 111809.
[http://dx.doi.org/10.1016/j.ejmech.2019.111809] [PMID: 31683104]
[72]
Pawara, R.; Ahmad, I.; Nayak, D.; Belamkar, S.; Surana, S.; Kundu, C.N.; Patil, C.; Patel, H. Design and synthesis of the novel, selective WZ4002 analogue as EGFR-L858R/T790M tyrosine kinase inhibitors for targeted drug therapy in non-small-cell lung cancer (NSCLC). J. Mol. Struct., 2022, 1254, 132313.
[http://dx.doi.org/10.1016/j.molstruc.2021.132313]
[73]
Xia, Z.; Huang, R.; Zhou, X.; Chai, Y.; Chen, H.; Ma, L.; Yu, Q.; Li, Y.; Li, W.; He, Y. The synthesis and bioactivity of pyrrolo[2,3-d]pyrimidine derivatives as tyrosine kinase inhibitors for NSCLC cells with EGFR mutations. Eur. J. Med. Chem., 2021, 224, 113711.
[http://dx.doi.org/10.1016/j.ejmech.2021.113711] [PMID: 34315040]
[74]
Sherbiny, F.F.; Bayoumi, A.H.; El-Morsy, A.M.; Sobhy, M.; Hagras, M. Design, Synthesis, biological Evaluation, and molecular docking studies of novel Pyrazolo[3,4-d]Pyrimidine derivative scaffolds as potent EGFR inhibitors and cell apoptosis inducers. Bioorg. Chem., 2021, 116, 105325.
[http://dx.doi.org/10.1016/j.bioorg.2021.105325] [PMID: 34507234]
[75]
Tian, L.; Li, X.; Lv, Z.; Yang, Y.; Wang, L.; Xu, D.; Ma, X.; Xu, Y. Design, synthesis, and biological evaluation of 2-arylamino-4-(piperidin-4-yloxy)pyrimidines as potent EGFRT790M/L858R inhibitors to treat non-small cell lung cancer. Bioorg. Med. Chem., 2022, 74, 117052.
[http://dx.doi.org/10.1016/j.bmc.2022.117052] [PMID: 36288657]
[76]
Xiao, Z.; Zhou, Z.; Chu, C.; Zhang, Q.; Zhou, L.; Yang, Z.; Li, X.; Yu, L.; Zheng, P.; Xu, S.; Zhu, W. Design, synthesis and antitumor activity of novel thiophene-pyrimidine derivatives as EGFR inhibitors overcoming T790M and L858R/T790M mutations. Eur. J. Med. Chem., 2020, 203, 112511.
[http://dx.doi.org/10.1016/j.ejmech.2020.112511] [PMID: 32679450]
[77]
Elmetwally, S.A.; Saied, K.F.; Eissa, I.H.; Elkaeed, E.B. Design, synthesis and anticancer evaluation of thieno[2,3-d]pyrimidine derivatives as dual EGFR/HER2 inhibitors and apoptosis inducers. Bioorg. Chem., 2019, 88, 102944.
[http://dx.doi.org/10.1016/j.bioorg.2019.102944] [PMID: 31051400]
[78]
Zhang, H.; Wang, J.; Zhao, H.Y.; Yang, X.Y.; Lei, H.; Xin, M.; Cao, Y.X.; Zhang, S.Q. Synthesis and biological evaluation of irreversible EGFR tyrosine kinase inhibitors containing pyrido[3,4-d]pyrimidine scaffold. Bioorg. Med. Chem., 2018, 26(12), 3619-3633.
[http://dx.doi.org/10.1016/j.bmc.2018.05.039] [PMID: 29853340]
[79]
Zhang, H.; Wang, J.; Shen, Y.; Wang, H.Y.; Duan, W.M.; Zhao, H.Y.; Hei, Y.Y.; Xin, M.; Cao, Y.X.; Zhang, S.Q. Discovery of 2,4,6-trisubstitued pyrido[3,4-d]pyrimidine derivatives as new EGFR-TKIs. Eur. J. Med. Chem., 2018, 148, 221-237.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.051] [PMID: 29466773]
[80]
Guo, Y.; Gao, B.; Gao, P.; Wang, Y.; Gou, S. Design, synthesis and biological evaluation of phosphoroxy quinazoline derivatives as potential EGFRT790M/C797S inhibitors. Bioorg. Med. Chem., 2023, 90, 117338.
[http://dx.doi.org/10.1016/j.bmc.2023.117338] [PMID: 37269687]
[81]
Amin, M.M.; Abuo-Rahma, G.E.D.A.; Shaykoon, M.S.A.; Marzouk, A.A.; Abourehab, M.A.S.; Saraya, R.E.; Badr, M.; Sayed, A.M.; Beshr, E.A.M. Design, synthesis, cytotoxic activities, and molecular docking of chalcone hybrids bearing 8-hydroxyquinoline moiety with dual tubulin/EGFR kinase inhibition. Bioorg. Chem., 2023, 134, 106444.
[http://dx.doi.org/10.1016/j.bioorg.2023.106444] [PMID: 36893547]
[82]
Hasanvand, Z.; Oghabi Bakhshaiesh, T.; Peytam, F.; Firoozpour, L.; Hosseinzadeh, E.; Motahari, R.; Moghimi, S.; Nazeri, E.; Toolabi, M.; Momeni, F.; Bijanzadeh, H.; Khalaj, A.; Baratte, B.; Josselin, B.; Robert, T.; Bach, S.; Esmaeili, R.; Foroumadi, A. Imidazo[1,2-a]quinazolines as novel, potent EGFR-TK inhibitors: Design, synthesis, bioactivity evaluation, and in silico studies. Bioorg. Chem., 2023, 133, 106383.
[http://dx.doi.org/10.1016/j.bioorg.2023.106383] [PMID: 36764231]
[83]
Gan, W.; Wang, C.; Pan, Q.; Li, Y.; Guo, Y.; Fan, D.; Peng, Y.; Rao, Z.; Xu, S.; Zheng, P.; Zhu, W. Discovery of novel 4-arylamino-quinazoline derivatives as EGFRL858R/T790M inhibitors with the potential to inhibit the non-small cell lung cancers. Bioorg. Chem., 2022, 127, 105994.
[http://dx.doi.org/10.1016/j.bioorg.2022.105994] [PMID: 35792314]
[84]
Zhang, B.; Xu, Z.; Liu, Q.; Xia, S.; Liu, Z.; Liao, Z.; Gou, S. Design, synthesis and biological evaluation of cinnamamide-quinazoline derivatives as potential EGFR inhibitors to reverse T790M mutation. Bioorg. Chem., 2021, 117, 105420.
[http://dx.doi.org/10.1016/j.bioorg.2021.105420] [PMID: 34655841]
[85]
Zhang, B.; Liu, Z.; Xia, S.; Liu, Q.; Gou, S. Design, synthesis and biological evaluation of sulfamoylphenyl-quinazoline derivatives as potential EGFR/CAIX dual inhibitors. Eur. J. Med. Chem., 2021, 216, 113300.
[http://dx.doi.org/10.1016/j.ejmech.2021.113300] [PMID: 33640672]
[86]
Amin, N.H.; Elsaadi, M.T.; Zaki, S.S.; Abdel-Rahman, H.M. Design, synthesis and molecular modeling studies of 2-styrylquinazoline derivatives as EGFR inhibitors and apoptosis inducers. Bioorg. Chem., 2020, 105, 104358.
[http://dx.doi.org/10.1016/j.bioorg.2020.104358] [PMID: 33074119]
[87]
Wei, H.; Duan, Y.; Gou, W.; Cui, J.; Ning, H.; Li, D.; Qin, Y.; Liu, Q.; Li, Y. Design, synthesis and biological evaluation of novel 4-anilinoquinazoline derivatives as hypoxia-selective EGFR and VEGFR-2 dual inhibitors. Eur. J. Med. Chem., 2019, 181, 111552.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.055] [PMID: 31387063]
[88]
Kardile, R.A.; Sarkate, A.P.; Lokwani, D.K.; Tiwari, S.V.; Azad, R.; Thopate, S.R. Design, synthesis, and biological evaluation of novel quinoline derivatives as small molecule mutant EGFR inhibitors targeting resistance in NSCLC: In vitro screening and ADME predictions. Eur. J. Med. Chem., 2023, 245(Pt 1), 114889.
[http://dx.doi.org/10.1016/j.ejmech.2022.114889] [PMID: 36375337]
[89]
Qin, X.; Liu, P.; Li, Y.; Hu, L.; Liao, Y.; Cao, T.; Yang, L. Design, synthesis and biological evaluation of novel 3,4-dihydro-2H-[1,4]oxazino[2,3-f]quinazolin derivatives as EGFR-TKIs. Bioorg. Med. Chem. Lett., 2023, 80, 129104.
[http://dx.doi.org/10.1016/j.bmcl.2022.129104] [PMID: 36509365]
[90]
Li, X.; Wang, D.; Li, S.; Xue, W.; Qian, X.; Liu, K.; Li, Y.; Lin, Q.; Dong, G.; Meng, F.; Jian, L. Discovery of N-(1,3,4-thiadiazol-2-yl)benzamide derivatives containing a 6,7-methoxyquinoline structure as novel EGFR/HER-2 dual-target inhibitors against cancer growth and angiogenesis. Bioorg. Chem., 2022, 119, 105469.
[http://dx.doi.org/10.1016/j.bioorg.2021.105469] [PMID: 34915285]
[91]
Qin, X.; Yang, L.; Liu, P.; Yang, L.; Chen, L.; Hu, L.; Jiang, M. Design, synthesis and biological evaluation of 2,3-dihydro-[1,4]dioxino[2,3-f]quinazoline derivatives as EGFR inhibitors. Bioorg. Chem., 2021, 110, 104743.
[http://dx.doi.org/10.1016/j.bioorg.2021.104743] [PMID: 33714020]
[92]
Pawara, R.; Ahmad, I.; Nayak, D.; Wagh, S.; Wadkar, A.; Ansari, A.; Belamkar, S.; Surana, S.; Nath Kundu, C.; Patil, C.; Patel, H. Novel, selective acrylamide linked quinazolines for the treatment of double mutant EGFR-L858R/T790M Non-Small-Cell lung cancer (NSCLC). Bioorg. Chem., 2021, 115, 105234.
[http://dx.doi.org/10.1016/j.bioorg.2021.105234] [PMID: 34399322]
[93]
Karnik, K.S.; Sarkate, A.P.; Tiwari, S.V.; Azad, R.; Wakte, P.S. Free energy perturbation guided Synthesis with Biological Evaluation of Substituted Quinoline derivatives as small molecule L858R/T790M/C797S mutant EGFR inhibitors targeting resistance in Non-Small Cell Lung Cancer (NSCLC). Bioorg. Chem., 2021, 115, 105226.
[http://dx.doi.org/10.1016/j.bioorg.2021.105226] [PMID: 34364055]
[94]
OuYang, Y.; Zou, W.; Peng, L.; Yang, Z.; Tang, Q.; Chen, M.; Jia, S.; Zhang, H.; Lan, Z.; Zheng, P.; Zhu, W. Design, synthesis, antiproliferative activity and docking studies of quinazoline derivatives bearing 2,3-dihydro-indole or 1,2,3,4-tetrahydroquinoline as potential EGFR inhibitors. Eur. J. Med. Chem., 2018, 154, 29-43.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.006] [PMID: 29775935]
[95]
Zou, M.; Li, J.; Jin, B.; Wang, M.; Chen, H.; Zhang, Z.; Zhang, C.; Zhao, Z.; Zheng, L. Design, synthesis and anticancer evaluation of new 4-anilinoquinoline-3-carbonitrile derivatives as dual EGFR/HER2 inhibitors and apoptosis inducers. Bioorg. Chem., 2021, 114, 105200.
[http://dx.doi.org/10.1016/j.bioorg.2021.105200] [PMID: 34375195]
[96]
Allam, H.A.; Aly, E.E.; Farouk, A.K.B.A.W.; El Kerdawy, A.M.; Rashwan, E.; Abbass, S.E.S. Design and Synthesis of some new 2,4,6-trisubstituted quinazoline EGFR inhibitors as targeted anticancer agents. Bioorg. Chem., 2020, 98, 103726.
[http://dx.doi.org/10.1016/j.bioorg.2020.103726] [PMID: 32171987]
[97]
Zhou, Z.; He, J.; Yang, F.; Pan, Q.; Yang, Z.; Zheng, P.; Xu, S.; Zhu, W. Design, synthesis and evaluation of anti-proliferative activity of 2-aryl-4-aminoquinazoline derivatives as EGFR inhibitors. Bioorg. Chem., 2021, 112, 104848.
[http://dx.doi.org/10.1016/j.bioorg.2021.104848] [PMID: 33819737]
[98]
Shaheen, M.A.; El-Emam, A.A.; El-Gohary, N.S. Design, synthesis and biological evaluation of new series of hexahydroquinoline and fused quinoline derivatives as potent inhibitors of wild-type EGFR and mutant EGFR (L858R and T790M). Bioorg. Chem., 2020, 105, 104274.
[http://dx.doi.org/10.1016/j.bioorg.2020.104274] [PMID: 33339080]
[99]
Elbastawesy, M.A.I.; Aly, A.A.; Ramadan, M.; Elshaier, Y.A.M.M.; Youssif, B.G.M.; Brown, A.B.; El-Din A Abuo-Rahma, G. Novel Pyrazoloquinolin-2-ones: Design, synthesis, docking studies, and biological evaluation as antiproliferative EGFR-TK inhibitors. Bioorg. Chem., 2019, 90, 103045.
[http://dx.doi.org/10.1016/j.bioorg.2019.103045] [PMID: 31212178]
[100]
Foraboschi, P. Appunti per una inedita epistemologia dell’ingegneria strutturale suggestions for a new epistemology of structural engineering. Air Iuav Institut. Res. Arch., 2023, 2023.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy