Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Exploring Synthesis and Medicinal Applications of Andrographolide Derivatives: A Review

Author(s): Tanzeela Qadir, Shoaib Shaikh, Saadat A. Kanth, Jyotika Singh, Maria Baby and Praveen Kumar Sharma*

Volume 28, Issue 9, 2024

Published on: 03 April, 2024

Page: [686 - 699] Pages: 14

DOI: 10.2174/0113852728296785240308054135

Price: $65

Abstract

Andrographolide, derived from the plant Andrographis paniculata (AP), exhibits a diverse range of biological activities, encompassing anti-bacterial, anti-tumor, antiinflammatory, anti-obesity, anti-viral, anti-fibrotic, hypoglycemic, and immunomodulatory properties. Notably, numerous analogues of andrographolide have been synthesized, incorporating significant chemical structural modifications to enhance bioavailability and druggability. A comprehensive exploration into their molecular and cellular mechanisms of action has also been undertaken, enriching our understanding. The investigation highlights the potential of related terpenoid analogues from Andrographis paniculata, beyond the diterpene lactone andrographolide, to hold promise in disease treatment due to structural similarities and diverse pharmacological effects. This review offers insights into the anticipated synthesis and therapeutic applications of andrographolide derivatives across a spectrum of disorders.

Keywords: Andrographolide, cytotoxicity, conventional methods, anticancer, Andrographis paniculata, anti-bacerial properties.

Graphical Abstract
[1]
(a) Platz, E.A. Reducing cancer burden in the population: an overview of epidemiologic evidence to support policies, systems, and environmental changes. Epidemiol. Rev., 2017, 39(1), 1-10.
[http://dx.doi.org/10.1093/epirev/mxx009] [PMID: 28460082];
b) Qadir, T.; Amin, A.; Sharma, P.K.; Jeelani, I.; Abe, H. A review on medicinally important heterocyclic compounds. Open Med. Chem. J., 2022, 16(1), e187410452202280.
[http://dx.doi.org/10.2174/18741045-v16-e2202280];
c) Qadir, T.; Amin, A.; Salhotra, A.; Sharma, P.K.; Jeelani, I.; Abe, H. Recent advances in the synthesis of benzothiazole and its derivatives. Curr. Org. Chem., 2022, 26(2), 189-214.
[http://dx.doi.org/10.2174/1385272826666211229144446];
d) Amin, A.; Qadir, T.; Salhotra, A.; Sharma, P.K.; Jeelani, I.; Abe, H. Pharmacological significance of synthetic bioactive thiazole derivatives. Curr. Bioact. Compd., 2022, 18(9), e030322201633.
[http://dx.doi.org/10.2174/1573407218666220303100501];
e) Sharma, P.K.; Kumar, M.; Mohan, V. Synthesis and antimicrobial activity of 2H-pyrimido[2,1-b]benzothiazol-2-ones. Res. Chem. Intermed., 2010, 36(8), 985-993.
[http://dx.doi.org/10.1007/s11164-010-0211-9];
f) Sharma, P.K.; Fogla, A.; Rathore, B.S.; Kumar, M. Synthesis and antimicrobial activity of structurally flexible heterocycles with the 1,4-thiazine heterosystem. Res. Chem. Intermed., 2011, 37(8), 1103-1111.
[http://dx.doi.org/10.1007/s11164-011-0320-0];
g) Sharma, P.K.; Amin, A.; Kumar, M. A review: Medicinally important nitrogen sulphur containing heterocycles. Open Med. Chem. J., 2020, 14(1), 49-64.
[http://dx.doi.org/10.2174/1874104502014010049];
h) Sharma, P.K.; Makkar, R.; Singh, S. Antibacterial, antifungal and antioxidant activities of substituted 4H-1,4-benzothiazines. Pharma Chem., 2016, 8(11), 156-159.;
i) Sharma, P.K.; Kumar, M. Synthesis of bioactive substituted pyrazolylbenzothiazinones. Res. Chem. Intermed., 2015, 41(9), 6141-6148.
[http://dx.doi.org/10.1007/s11164-014-1727-1];
j) Sharma, P.K.; Kumar, M.; Vats, S. Synthesis and antimicrobial activity of morpholinyl/piperazinylbenzothiazines. Med. Chem. Res., 2012, 21(8), 2072-2078.
[http://dx.doi.org/10.1007/s00044-011-9732-z];
k) Sharma, P.K.; Kumar, G. Synthesis, spectral, energetic and reactivity properties of phenothiazines: Experimental and computational approach. J. Chem. Pharm. Res., 2015, 7(11), 462-473.;
l) Amin, A.; Qadir, T.; Sharma, P.K.; Jeelani, I.; Abe, H. A review on the medicinal and industrial applications of N-containing heterocycles. Open Med. Chem. J., 2022, 16(1), e187410452209010.
[http://dx.doi.org/10.2174/18741045-v16-e2209010];
m) George, N.; Singh, G.; Singh, R.; Singh, G.; Singh, H.; Kaur, G.; Singh, J. Click modified bis-appended Schiff base 1,2,3-triazole chemosensor for detection of Pb(II)ion and computational studies. J. Mol. Struct., 2023, 1288, 135666.
[http://dx.doi.org/10.1016/j.molstruc.2023.135666];
n) George, N.; Singh, G.; Singh, R.; Singh, G.; Singh, H.; Kaur, G.; Singh, J. Schiff base functionalized 1,2,3-triazole derivative for Fe(III) ion recognition, as N,O,O-Fe-O,O,N sandwich complex: DFT analysis. Polyhedron, 2023, 242, 116496.
[http://dx.doi.org/10.1016/j.poly.2023.116496];
o) George, N.; Singh, G.; Singh, R.; Singh, G. Anita Devi; Singh, H.; Kaur, G.; Singh, J. Microwave accelerated green approach for tailored 1,2,3–triazoles via CuAAC. Sustain. Chem. Pharm., 2022, 30, 100824.
[http://dx.doi.org/10.1016/j.scp.2022.100824]
[2]
Mohammed, Y.H.I.; Shamkh, I.M.; Alharthi, N.S.; Shanawaz, M.A.; Alzahrani, H.A.; Jabbar, B.; Beigh, S.; Alghamdi, S.; Alsakhen, N.; Khidir, E.B.; Alhuthali, H.M.; Karamalla, T.H.E.; Rabie, A.M. Discovery of 1-(5-bromopyrazin-2-yl)-1-[3-(trifluoromethyl)benzyl]urea as a promising anticancer drug via synthesis, characterization, biological screening, and computational studies. Sci. Rep., 2023, 13(1), 22824.
[http://dx.doi.org/10.1038/s41598-023-44662-x] [PMID: 38129413]
[3]
Rabie, A.M. Accurate conventional and microwave-assisted synthesis of galloyl hydrazide. MethodsX, 2020, 7, 100737.
[http://dx.doi.org/10.1016/j.mex.2019.11.010] [PMID: 32025504]
[4]
Rabie, A.M. Four three-winged nitrogenous heterocyclic derivatives of citric acid scaffold: The first synthesis and characterization of these newly discovered fan-like compounds. Russ. J. Org. Chem., 2021, 57(3), 417-421.
[http://dx.doi.org/10.1134/S1070428021030131]
[5]
Nashaan, F.A.; Al-Rawi, M.S.; Alhammer, A.H.; Rabie, A.M.; Tomma, J.H. Synthesis, characterization, and cytotoxic activity of some imides from galloyl hydrazide. Euras. Chem. Commun., 2022, 4(10), 966-975.
[6]
Rabie, A.M.; Tantawy, A.S.; Badr, S.M. Design, synthesis, and biological evaluation of novel 5-substituted-2-(3,4,5-trihydroxyphenyl)-1,3,4-oxadia-zoles as potent antioxidants. Am. J. Org. Chem, 2016, 6, 54-80.
[http://dx.doi.org/10.5923/j.ajoc.20160602.02]
[7]
Rabie, A.M.; Tantawy, A.S.; Badr, S.M.I. Design, synthesis, and biological evaluation of new 5-substituted-1, 3, 4-thiadiazole-2-thiols as potent antioxidants. Researcher, 2018, 10, 21-43.
[8]
Rabie, A.M. Improved synthesis of the anti-SARS-CoV-2 investigational agent (E)-N-(4-cyanobenzylidene)-6-fluoro-3-hydroxypyrazine-2-carboxa-mide (cyanorona-20). Revista de Chimie, 2022, 73(4), 69-75.
[http://dx.doi.org/10.37358/RC.22.4.8555]
[9]
Rabie, A.M. Revisiting and updating cyanorona-20: The selective SARS-CoV-2 inhibitor. J. Biomed. Res. Environ. Sci., 2022, 3(4), 477-484.
[http://dx.doi.org/10.37871/jbres1468]
[10]
Rabie, A.M. Potent inhibitory activities of the adenosine analogue cordycepin on SARS-CoV-2 replication. ACS Omega, 2022, 7(3), 2960-2969.
[http://dx.doi.org/10.1021/acsomega.1c05998] [PMID: 35071937]
[11]
Rabie, A.M.; Abdalla, M. Forodesine and Riboprine exhibit strong anti-SARS-CoV-2 repurposing potential: In silico and in vitro studies. ACS Bio Med Chem Au, 2022, 2(6), 565-585.
[http://dx.doi.org/10.1021/acsbiomedchemau.2c00039] [PMID: 37582236]
[12]
Rabie, A.M. New potential inhibitors of coronaviral main protease (CoV-Mpro): Strychnine bush, pineapple, and ginger could be natural enemies of COVID-19. Int. J. New.Chem., 2022, 9(3), 225-237.
[13]
Rabie, A.M. Potential clinical benefits of combination of black seed, licorice, and turmeric supplements within the treatment regimens of bell’s palsy. J. ISSN, 2021, 2766, 2276.
[14]
Rabie, A.M. Exploration of the potent toxic intracellular effects of the natural adenosine analog cordycepin against SARS-CoV-2 replication. J. Mod. Biol. Drug. Discov., 2022, 1(1)
[15]
Rabie, A.M.; Abdalla, M. Evaluation of a series of nucleoside analogs as effective anticoronaviral-2 drugs against the Omicron-B.1.1.529/BA.2 subvariant: A repurposing research study. Med. Chem. Res., 2023, 32(2), 326-341.
[http://dx.doi.org/10.1007/s00044-022-02970-3] [PMID: 36593869]
[16]
Su, S.C.; Hsieh, M.J.; Yang, W.E.; Chung, W.H.; Reiter, R.J.; Yang, S.F. Cancer metastasis: Mechanisms of inhibition by melatonin. J. Pineal Res., 2017, 62(1), e12370.
[http://dx.doi.org/10.1111/jpi.12370] [PMID: 27706852]
[17]
Inabathina, Y. Iso-Andrographolide Derivatives Induces Apoptosis in Breast Cancer Cells; (Doctoral dissertation, Tuskegee University), 2023.
[18]
Li, X.; Yu, J.; Wu, X.; Hu, C.; Wang, X. Synthesis of 12-quinoline substituted andrographolide derivatives and their preliminary evaluation as anti-aggregation drugs. Aust. J. Chem., 2023, 76(2), 100-114.
[http://dx.doi.org/10.1071/CH22248]
[19]
Bosco, F.; Ruga, S.; Citraro, R.; Leo, A.; Guarnieri, L.; Maiuolo, J.; Oppedisano, F.; Macrì, R.; Scarano, F.; Nucera, S.; Bava, I.; Palma, E.; Muscoli, C.; Hancke, J.; De Sarro, G.; Mollace, V. The effects of Andrographis paniculata (Burm.F.) Wall. Ex nees and andrographolide on neuroinflammation in the treatment of neurodegenerative diseases. Nutrients, 2023, 15(15), 3428.
[http://dx.doi.org/10.3390/nu15153428] [PMID: 37571363]
[20]
Kumar, G.; Thapa, S.; Tali, J.A.; Singh, D.; Sharma, B.K.; Panda, K.N.; Singh, S.K.; Shankar, R. Site-selective synthesis of C-17 ester derivatives of natural andrographolide for evaluation as a potential anticancer agent. ACS Omega, 2023, 8(6), 6099-6123.
[http://dx.doi.org/10.1021/acsomega.3c00036] [PMID: 36816646]
[21]
Tundis, R.; Patra, J.K.; Bonesi, M.; Das, S.; Nath, R.; Das Talukdar, A.; Das, G.; Loizzo, M.R. Anti-cancer agent: The labdane diterpenoid-andrographolide. Plants, 2023, 12(10), 1969.
[http://dx.doi.org/10.3390/plants12101969] [PMID: 37653887]
[22]
Adiguna, S.P.; Panggabean, J.A.; Swasono, R.T.; Rahmawati, S.I.; Izzati, F.; Bayu, A.; Putra, M.Y.; Formisano, C.; Giuseppina, C. Evaluations of andrographolide-rich fractions of Andrographis paniculata with enhanced potential antioxidant, anticancer, antihypertensive, and anti-inflammatory activities. Plants, 2023, 12(6), 1220.
[http://dx.doi.org/10.3390/plants12061220] [PMID: 36986909]
[23]
Tiwari, R.; Rathore, H.; Mishra, R.; Jain, V. Andrographolide and its analogues in colon cancer (anti-tumor activity). J. Coast. Life Med., 2023, 11, 616-631.
[24]
Zhang, Q.; Cui, Q. Target protein identification of andrographolide based on isomer approach. J. Pharm. Biomed. Anal., 2023, 222, 115111.
[http://dx.doi.org/10.1016/j.jpba.2022.115111] [PMID: 36279844]
[25]
Qin, X.; Wang, X.; Tian, M.; Dong, Z.; Wang, J.; Wang, C.; Huang, Q. The role of andrographolide in the prevention and treatment of liver diseases. Phytomedicine, 2023, 109, 154537.
[http://dx.doi.org/10.1016/j.phymed.2022.154537] [PMID: 36610122]
[26]
Messire, G.; Serreau, R.; Berteina-Raboin, S. Antioxidant effects of catechins (EGCG), andrographolide, and curcuminoids compounds for skin protection, cosmetics, and dermatological uses: An update. Antioxidants, 2023, 12(7), 1317.
[http://dx.doi.org/10.3390/antiox12071317] [PMID: 37507856]
[27]
Tan, W.S.D.; Liao, W.; Zhou, S.; Wong, W.S.F. Is there a future for andrographolide to be an anti-inflammatory drug? Deciphering its major mechanisms of action. Biochem. Pharmacol., 2017, 139, 71-81.
[http://dx.doi.org/10.1016/j.bcp.2017.03.024] [PMID: 28377280]
[28]
Bosco, F.; Ruga, S.; Citraro, R.; Leo, A.; Guarnieri, L.; Maiuolo, J.; Oppedisano, F.; Macrì, R.; Scarano, F.; Nucera, S.; Bava, I. The effect of Andrographis paniculata and its derivatives in neurodegenerative diseases and neuroinflammation. Nutrients, 2023, 15, 3428.
[http://dx.doi.org/10.20944/preprints202306.2174.v1]
[29]
Jain, P.; Satija, J.; Sudandiradoss, C. Discovery of andrographolide hit analog as a potent cyclooxygenase-2 inhibitor through consensus MD-simulation, electrostatic potential energy simulation and ligand efficiency metrics. Sci. Rep., 2023, 13(1), 8147.
[http://dx.doi.org/10.1038/s41598-023-35192-7] [PMID: 37208387]
[30]
Agrawal, P.; Nair, M.S. Binding mechanism of andrographolide with intramolecular antiparallel G-quadruplexes of therapeutic importance: An in-silico analysis. Mol. Simul., 2023, 49(8), 816-828.
[http://dx.doi.org/10.1080/08927022.2023.2193647]
[31]
Wang, Z.; Zhang, Y.X.; Shi, J.Z.; Wang, C.C.; Zhang, M.Q.; Yan, Y.; Wang, Y.R.; Zhao, L.L.; Kou, J.J.; Zhao, Q.H.; Xie, X.M.; He, Y-Y.; Song, J-K.; Han, G.; Pang, X-B. The mechanism of triacetyl andrographolide in inhibiting proliferation of pulmonary artery smooth muscle cells. Int. J. Drug Discov. Pharmacol., 2023, pp. 105-116.
[http://dx.doi.org/10.53941/ijddp.2023.100009]
[32]
Barbosa, H.; Espinoza, G.Z.; Amaral, M.; de Castro Levatti, E.V.; Abiuzi, M.B.; Veríssimo, G.C.; Fernandes, P.D.O.; Maltarollo, V.G.; Tempone, A.G.; Honorio, K.M.; Lago, J.H.G. Andrographolide: A diterpenoid from Cymbopogon schoenanthus identified as a new hit compound against Trypanosoma cruzi using machine learning and experimental approaches. J. Chem. Inf. Model., 2023, 64(7), 2565-2576.
[PMID: 38148604]
[33]
Aldurrah, Z.; Mohd Kauli, F.S.; Abdul Rahim, N.; Zainal, Z.; Afzan, A.; Al Zarzour, R.H.; Muhamad Salhimi, S.; Che Zain, M.S.; Zakaria, F. Antidepressant evaluation of Andrographis paniculata nees extract and andrographolide in chronic unpredictable stress zebrafish model. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2023, 271, 109678.
[http://dx.doi.org/10.1016/j.cbpc.2023.109678] [PMID: 37301417]
[34]
Kalaiarasi, G.; Parveen, S.; Subarkhan, M. Andrographolide coordinated ruthenium(II) arene complexes: Synthesis, spectral characterization, antioxidant assays, in vitro cytotoxicity, and apoptosis investigation. J. Coord. Chem., 2023, 76(16-24), 1907-1920.
[http://dx.doi.org/10.1080/00958972.2023.2291750]
[35]
Mishra, S.K.; Tripathi, S.; Shukla, A.; Oh, S.H.; Kim, H.M. Andrographolide and analogues in cancer prevention. Front. Biosci., 2015, 7(2), 255-266.
[PMID: 25553378]
[36]
Chakravarti, R.N.; Chakravarti, D. Andrographolide, the active constituent of Andrographis paniculata nees; a preliminary communication. Ind. Med. Gaz., 1951, 86(3), 96-97.
[PMID: 14860885]
[37]
Mishra, S.K.; Sangwan, N.S.; Sangwan, R.S. Phcog rev.: Plant review Andrographis paniculata (Kalmegh): A review. Pharmacogn. Rev., 2007, 1(2), 283-298.
[38]
Srivastava, N.; Akhila, A. Biosynthesis of andrographolide in Andrographis paniculata. Phytochemistry, 2010, 71(11-12), 1298-1304.
[http://dx.doi.org/10.1016/j.phytochem.2010.05.022] [PMID: 20557910]
[39]
Yuan, H.; Sun, B.; Gao, F.; Lan, M. Synergistic anticancer effects of andrographolide and paclitaxel against A549 NSCLC cells. Pharm. Biol., 2016, 54(11), 2629-2635.
[http://dx.doi.org/10.1080/13880209.2016.1176056] [PMID: 27159496]
[40]
Lim, J.C.W.; Goh, F.Y.; Sagineedu, S.R.; Yong, A.C.H.; Sidik, S.M.; Lajis, N.H.; Wong, W.S.F.; Stanslas, J. A semisynthetic diterpenoid lactone inhibits NF-κB signalling to ameliorate inflammation and airway hyperresponsiveness in a mouse asthma model. Toxicol. Appl. Pharmacol., 2016, 302, 10-22.
[http://dx.doi.org/10.1016/j.taap.2016.04.004] [PMID: 27089844]
[41]
Wang, J.; Tan, X.F.; Nguyen, V.S.; Yang, P.; Zhou, J.; Gao, M.; Li, Z.; Lim, T.K.; He, Y.; Ong, C.S.; Lay, Y.; Zhang, J.; Zhu, G.; Lai, S.L.; Ghosh, D.; Mok, Y.K.; Shen, H.M.; Lin, Q. A quantitative chemical proteomics approach to profile the specific cellular targets of andrographolide, a promising anticancer agent that suppresses tumor metastasis. Mol. Cell. Proteomics, 2014, 13(3), 876-886.
[http://dx.doi.org/10.1074/mcp.M113.029793] [PMID: 24445406]
[42]
Guo, W.; Liu, W.; Chen, G.; Hong, S.; Qian, C.; Xie, N.; Yang, X.; Sun, Y.; Xu, Q. Water-soluble andrographolide sulfonate exerts anti-sepsis action in mice through down-regulating p38 MAPK, STAT3 and NF-κB pathways. Int. Immunopharmacol., 2012, 14(4), 613-619.
[http://dx.doi.org/10.1016/j.intimp.2012.09.002] [PMID: 23036579]
[43]
Lee, J.C.; Tseng, C.K.; Young, K.C.; Sun, H.Y.; Wang, S.W.; Chen, W.C.; Lin, C.K.; Wu, Y.H. Andrographolide exerts anti‐hepatitis C virus activity by up‐regulating haeme oxygenase‐1 via the p38 MAPK/N rf2 pathway in human hepatoma cells. Br. J. Pharmacol., 2014, 171(1), 237-252.
[http://dx.doi.org/10.1111/bph.12440] [PMID: 24117426]
[44]
Luo, Y.; Wang, K.; Zhang, M.; Zhang, D.; Wu, Y.; Wu, X.; Hua, W. Synthesis of new ent-labdane diterpene derivatives from andrographolide and evaluation on cytotoxic activities. Bioorg. Med. Chem. Lett., 2015, 25(11), 2421-2424.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.086] [PMID: 25913115]
[45]
Wang, W.; Wu, Y.; Chen, X.; Zhang, P.; Li, H.; Chen, L. Synthesis of new ent-labdane diterpene derivatives from andrographolide and evaluation of their anti-inflammatory activities. Eur. J. Med. Chem., 2019, 162, 70-79.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.002] [PMID: 30419492]
[46]
Ding, L.; Li, J.; Song, B.; Xiao, X.; Huang, W.; Zhang, B.; Tang, X.; Qi, M.; Yang, Q.; Yang, Q.; Yang, L.; Wang, Z. Andrographolide prevents high-fat diet-induced obesity in C57BL/6 mice by suppressing the sterol regulatory element-binding protein pathway. J. Pharmacol. Exp. Ther., 2014, 351(2), 474-483.
[http://dx.doi.org/10.1124/jpet.114.217968] [PMID: 25204338]
[47]
Woo, A.Y.H.; Waye, M.M.Y.; Tsui, S.K.W.; Yeung, S.T.W.; Cheng, C.H.K. Andrographolide up-regulates cellular-reduced glutathione level and protects cardiomyocytes against hypoxia/reoxygenation injury. J. Pharmacol. Exp. Ther., 2008, 325(1), 226-235.
[http://dx.doi.org/10.1124/jpet.107.133918] [PMID: 18174384]
[48]
Das, S.; Pradhan, G.K.; Das, S.; Nath, D.; Das Saha, K. Enhanced protective activity of nano formulated andrographolide against arsenic induced liver damage. Chem. Biol. Interact., 2015, 242, 281-289.
[http://dx.doi.org/10.1016/j.cbi.2015.10.011] [PMID: 26485141]
[49]
Yang, E.J.; Song, K.S. Andrographolide, a major component of Andrographis paniculata leaves, has the neuroprotective effects on glutamate-induced HT22 cell death. J. Funct. Foods, 2014, 9, 162-172.
[http://dx.doi.org/10.1016/j.jff.2014.04.023]
[50]
Zhang, Z.; Lai, D.; Wang, L.; Yu, P.; Zhu, L.; Guo, B.; Xu, L.; Zhou, L.; Sun, Y.; Lee, S.M.Y.; Wang, Y. Neuroprotective effects of the andrographolide analogue AL-1 in the MPP+/MPTP-induced Parkinson’s disease model in vitro and in mice. Pharmacol. Biochem. Behav., 2014, 122, 191-202.
[http://dx.doi.org/10.1016/j.pbb.2014.03.028] [PMID: 24726706]
[51]
Liu, W.; Guo, W.; Guo, L.; Gu, Y.; Cai, P.; Xie, N.; Yang, X.; Shu, Y.; Wu, X.; Sun, Y.; Xu, Q. Andrographolide sulfonate ameliorates experimental colitis in mice by inhibiting Th1/Th17 response. Int. Immunopharmacol., 2014, 20(2), 337-345.
[http://dx.doi.org/10.1016/j.intimp.2014.03.015] [PMID: 24704625]
[52]
Peng, S.; Hang, N.; Liu, W.; Guo, W.; Jiang, C.; Yang, X.; Xu, Q.; Sun, Y. Andrographolide sulfonate ameliorates lipopolysaccharide-induced acute lung injury in mice by down-regulating MAPK and NF-κB pathways. Acta Pharm. Sin. B, 2016, 6(3), 205-211.
[http://dx.doi.org/10.1016/j.apsb.2016.02.002] [PMID: 27175331]
[53]
Coon, J.T.; Ernst, E. Andrographis paniculata in the treatment of upper respiratory tract infections: A systematic review of safety and efficacy. Planta Med., 2004, 70(4), 293-298.
[http://dx.doi.org/10.1055/s-2004-818938] [PMID: 15095142]
[54]
Jayakumar, T.; Hsieh, C.Y.; Lee, J.J.; Sheu, J.R. Experimental and clinical pharmacology of Andrographis paniculata and its major bioactive phytoconstituent andrographolide. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-16.
[http://dx.doi.org/10.1155/2013/846740] [PMID: 23634174]
[55]
Islam, M.T. Andrographolide, an up-coming multi-edged plant-derived sword in cancers. Asian J. Ethnopharmacol. Med. Foods, 2016, 2, 1-3.
[56]
Lim, J.C.W.; Chan, T.K.; Ng, D.S.W.; Sagineedu, S.R.; Stanslas, J.; Wong, W.S.F. Andrographolide and its analogues: Versatile bioactive molecules for combating inflammation and cancer. Clin. Exp. Pharmacol. Physiol., 2012, 39(3), 300-310.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05633.x] [PMID: 22017767]
[57]
Kumar, G.; Singh, D.; Tali, J.A.; Dheer, D.; Shankar, R. Andrographolide: Chemical modification and its effect on biological activities. Bioorg. Chem., 2020, 95, 103511.
[http://dx.doi.org/10.1016/j.bioorg.2019.103511] [PMID: 31884143]
[58]
Aromdee, C. Modifications of andrographolide to increase some biological activities: A patent review (2006 – 2011). Expert Opin. Ther. Pat., 2012, 22(2), 169-180.
[http://dx.doi.org/10.1517/13543776.2012.661718] [PMID: 22329509]
[59]
Hao, M.; Lv, M.; Xu, H. Andrographolide: Synthetic methods and biological activities. Mini Rev. Med. Chem., 2020, 20(16), 1633-1652.
[http://dx.doi.org/10.2174/1389557520666200429100326] [PMID: 32348215]
[60]
Zhou, B.; Zhang, D.; Wu, X. Biological activities and corresponding SARs of andrographolide and its derivatives. Mini Rev. Med. Chem., 2013, 13(2), 298-309.
[PMID: 23438057]
[61]
Niranjan, A.; Tewari, S.K.; Lehri, A. Biological activities of Kalmegh (Andrographis paniculata nees) and its active principles: A review. Indian J. Nat. Prod. Resour., 2010, 1, 125-135.
[62]
Adiguna, S.P.; Panggabean, J.A.; Atikana, A.; Untari, F.; Izzati, F.; Bayu, A.; Rosyidah, A.; Rahmawati, S.I.; Putra, M.Y. Antiviral activities of andrographolide and its derivatives: Mechanism of action and delivery system. Pharmaceuticals, 2021, 14(11), 1102.
[http://dx.doi.org/10.3390/ph14111102] [PMID: 34832884]
[63]
Mussard, E.; Cesaro, A.; Lespessailles, E.; Legrain, B.; Berteina-Raboin, S.; Toumi, H. Andrographolide, a natural antioxidant: An update. Antioxidants, 2019, 8(12), 571.
[http://dx.doi.org/10.3390/antiox8120571] [PMID: 31756965]
[64]
Kishore, V.; Yarla, N.; Bishayee, A.; Putta, S.; Malla, R.; Neelapu, N.; Challa, S.; Das, S.; Shiralgi, Y.; Hegde, G.; Dhananjaya, B. Multi-targeting andrographolide and its natural analogs as potential therapeutic agents. Curr. Top. Med. Chem., 2017, 17(8), 845-857.
[http://dx.doi.org/10.2174/1568026616666160927150452] [PMID: 27697058]
[65]
Wang, B.; Ge, L.; Huang, W.; Zhang, H.; Qian, H.; Li, J.; Zheng, Y. Synthesis and preliminary anti-HIV activities of andrographolide derivatives. Med. Chem., 2010, 6(4), 252-258.
[http://dx.doi.org/10.2174/1573406411006040252] [PMID: 20879977]
[66]
Zhang, H.; Li, S.; Si, Y.; Xu, H. Andrographolide and its derivatives: Current achievements and future perspectives. Eur. J. Med. Chem., 2021, 224, 113710.
[http://dx.doi.org/10.1016/j.ejmech.2021.113710] [PMID: 34315039]
[67]
Khanal, P.; Dey, Y.N.; Patil, R.; Chikhale, R.; Wanjari, M.M.; Gurav, S.S.; Patil, B.M.; Srivastava, B.; Gaidhani, S.N. Combination of system biology to probe the anti-viral activity of andrographolide and its derivative against COVID-19. RSC Advances, 2021, 11(9), 5065-5079.
[http://dx.doi.org/10.1039/D0RA10529E] [PMID: 35424441]
[68]
Kandanur, S.G.S.; Tamang, N.; Golakoti, N.R.; Nanduri, S. Andrographolide: A natural product template for the generation of structurally and biologically diverse diterpenes. Eur. J. Med. Chem., 2019, 176, 513-533.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.022] [PMID: 31151068]
[69]
Dai, Y.; Chen, S.R.; Chai, L.; Zhao, J.; Wang, Y.; Wang, Y. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Crit. Rev. Food. Sci. Nutrit., 2019, 59(sup1), S17-S29.
[70]
A S, B.G.; Prasana, J.C.; Muthu, S.; Abraham, C.S.; David, H.A. Spectroscopic and quantum/classical mechanics based computational studies to compare the ability of andrographolide and its derivative to inhibit nitric oxide synthase. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 218, 374-387.
[http://dx.doi.org/10.1016/j.saa.2019.04.040] [PMID: 31030004]
[71]
Paemanee, A.; Hitakarun, A.; Wintachai, P.; Roytrakul, S.; Smith, D.R. A proteomic analysis of the anti-dengue virus activity of andrographolide. Biomed. Pharmacother., 2019, 109, 322-332.
[http://dx.doi.org/10.1016/j.biopha.2018.10.054] [PMID: 30396090]
[72]
Mokenapelli, S.; Yerrabelli, J.R.; Das, N.; Roy, P.; Chitneni, P.R. Synthesis and cytotoxicity of novel 14α-O-(andrographolide-3-subsitutedisoxazole-5-carboxylate) derivatives. Nat. Prod. Res., 2021, 35(21), 3738-3744.
[http://dx.doi.org/10.1080/14786419.2020.1736060] [PMID: 32146848]
[73]
Tran, Q.T.N.; Tan, W.S.D.; Wong, W.S.F.; Chai, C.L.L. Polypharmacology of andrographolide: Beyond one molecule one target. Nat. Prod. Rep., 2021, 38(4), 682-692.
[http://dx.doi.org/10.1039/D0NP00049C] [PMID: 33021616]
[74]
Pancham, Y.; Patil, N.B.G.; Mannur, V. Development and validation of analytical method for determination of andrographolide in Bulk powder. Int. J. Pharma Res. Health Sci., 2019, 7(1), 2899-2903.
[http://dx.doi.org/10.21276/ijprhs.2019.01.08]
[75]
Iwu, M.M.; Okunji, C.O.; Tchimene, M.; Sokomba, E. Antiviral activity of andrographolide against Ebola virus, Dengue fever and SARS coronavirus; Res. Sq, 2020.
[76]
Yerragunta, V.; Waghray, K.; Subhashini, N.J. Anti-cancer activity of andrographolide: A review. J. Pharm. Res. Int., 2021, 33(43B), 1-9.
[77]
Malik, Z.; Parveen, R.; Parveen, B.; Zahiruddin, S.; Aasif Khan, M.; Khan, A.; Massey, S.; Ahmad, S.; Husain, S.A. Anticancer potential of andrographolide from Andrographis paniculata (Burm. F.) nees and its mechanisms of action. J. Ethnopharmacol., 2021, 272, 113936.
[http://dx.doi.org/10.1016/j.jep.2021.113936] [PMID: 33610710]
[78]
Arsakhant, P.; Sirion, U.; Chairoungdua, A.; Suksen, K.; Piyachaturawat, P.; Suksamrarn, A.; Saeeng, R. Design and synthesis of C-12 dithiocarbamate andrographolide analogues as an anticancer agent. Bioorg. Med. Chem. Lett., 2020, 30(14), 127263.
[http://dx.doi.org/10.1016/j.bmcl.2020.127263] [PMID: 32527561]
[79]
Hossain, S.; Urbi, Z.; Karuniawati, H.; Mohiuddin, R.B.; Moh Qrimida, A.; Allzrag, A.M.M.; Ming, L.C.; Pagano, E.; Capasso, R. Andrographis paniculata (Burm. F.) wall. Ex nees: an updated review of phytochemistry, antimicrobial pharmacology, and clinical safety and efficacy. Life, 2021, 11(4), 348.
[http://dx.doi.org/10.3390/life11040348] [PMID: 33923529]
[80]
Yue, G.G.L.; Li, L.; Lee, J.K.M.; Kwok, H.F.; Wong, E.C.W.; Li, M.; Fung, K.P.; Yu, J.; Chan, A.W.H.; Chiu, P.W.Y.; Lau, C.B.S. Multiple modulatory activities of Andrographis paniculata on immune responses and xenograft growth in esophageal cancer preclinical models. Phytomedicine, 2019, 60, 152886.
[http://dx.doi.org/10.1016/j.phymed.2019.152886] [PMID: 30910259]
[81]
Chen, Z.; Tang, W.J.; Zhou, Y.H.; Chen, Z.M.; Liu, K. Andrographolide inhibits non-small cell lung cancer cell proliferation through the activation of the mitochondrial apoptosis pathway and by reprogramming host glucose metabolism. Ann. Transl. Med., 2021, 9(22), 1701.
[http://dx.doi.org/10.21037/atm-21-5975] [PMID: 34988210]
[82]
Luo, W.; Jia, L.; Zhang, J.W.; Wang, D.J.; Ren, Q.; Zhang, W. Andrographolide against lung cancer-new pharmacological insigths based on high-throughput metabolomics analysis combined with network pharmacology. Front. Pharmacol., 2021, 12, 596652.
[http://dx.doi.org/10.3389/fphar.2021.596652]
[83]
Soo, H.L.; Quah, S.Y.; Sulaiman, I.; Sagineedu, S.R.; Lim, J.C.W.; Stanslas, J. Advances and challenges in developing andrographolide and its analogues as cancer therapeutic agents. Drug Discov. Today, 2019, 24(9), 1890-1898.
[http://dx.doi.org/10.1016/j.drudis.2019.05.017] [PMID: 31154065]
[84]
Vemula, S.; Gupta, M.K.; Tatireddygari, V.R.A.; Vadde, R. Pancreatic cancer chemoprevention: A review on molecular pathways involved in carcinogenesis and targeting with terpenoids, and new potential antitumor drugs. In: Theranostic Approach for Pancreatic Cancer; Elsevier, 2019; pp. 245-261.
[http://dx.doi.org/10.1016/B978-0-12-819457-7.00012-8]
[85]
Li, J.; Huang, W.; Zhang, H.; Wang, X.; Zhou, H. Synthesis of andrographolide derivatives and their TNF-α and IL-6 expression inhibitory activities. Bioorg. Med. Chem. Lett., 2007, 17(24), 6891-6894.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.009] [PMID: 17962017]
[86]
Kulangiappar, K.; Anbukulandainathan, M.; Raju, T. Nuclear versus side-chain bromination of 4-methoxy toluene by an electrochemical method. Synth. Commun., 2014, 1(44), 2494-2502.
[http://dx.doi.org/10.1080/00397911.2014.905599]
[87]
Huang, X.; Zhang, B.; Xu, H. Synthesis of andrographolide-related esters as insecticidal and acaricidal agents. Bioorg. Med. Chem. Lett., 2018, 28(3), 360-364.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.038] [PMID: 29287959]
[88]
Preet, R.; Chakraborty, B.; Siddharth, S.; Mohapatra, P.; Das, D.; Satapathy, S.R.; Das, S.; Maiti, N.C.; Maulik, P.R.; Kundu, C.N.; Chowdhury, C. Synthesis and biological evaluation of andrographolide analogues as anti-cancer agents. Eur. J. Med. Chem., 2014, 85, 95-106.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.088] [PMID: 25078313]
[89]
Ur Rahman, M.; Ayoob, I. Microwave-assisted synthesis of andrographolide analogues as potent β-Glycosidase inhibitors. SynOpen, 2018, 2(02), 0200-0206.
[90]
Nanduri, S.; Nyavanandi, V.K.; Sanjeeva Rao Thunuguntla, S.; Kasu, S.; Pallerla, M.K.; Sai Ram, P.; Rajagopal, S.; Ajaya Kumar, R.; Ramanujam, R.; Moses Babu, J.; Vyas, K.; Sivalakshmi Devi, A.; Om Reddy, G.; Akella, V. Synthesis and structure–activity relationships of andrographolide analogues as novel cytotoxic agents. Bioorg. Med. Chem. Lett., 2004, 14(18), 4711-4717.
[http://dx.doi.org/10.1016/j.bmcl.2004.06.090] [PMID: 15324893]
[91]
Jiang, X.; Yu, P.; Jiang, J.; Zhang, Z.; Wang, Z.; Yang, Z.; Tian, Z.; Wright, S.C.; Larrick, J.W.; Wang, Y. Synthesis and evaluation of antibacterial activities of andrographolide analogues. Eur. J. Med. Chem., 2009, 44(7), 2936-2943.
[http://dx.doi.org/10.1016/j.ejmech.2008.12.014] [PMID: 19152987]
[92]
Song, Z.; Huang, S.; He, Y.; Li, J.; Lin, K.; Xue, X. Synthesis and anti-fibrosis activity study of 14-deoxyandrographolide-19-oic acid and 14-deoxydidehydroandrographolide-19-oic acid derivatives. Eur. J. Med. Chem., 2018, 157, 805-816.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.046] [PMID: 30144698]
[93]
Liu, J.; Sun, B.; Zhao, X.; Xing, J.; Gao, Y.; Chang, W.; Ji, J.; Zheng, H.; Cui, C.; Ji, A.; Lou, H. Discovery of potent orally active protease-activated receptor 1 (PAR1) antagonists based on andrographolide. J. Med. Chem., 2017, 60(16), 7166-7185.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00951] [PMID: 28745507]
[94]
Zhang, S.; Zhang, Y.; Fang, Y.; Chen, H.; Hao, M.; Tan, Q.; Hu, C.; Zhou, H.; Xu, J.; Gu, Q. Synthesis and evaluation of andrographolide derivatives as potent anti-osteoporosis agents in vitro and in vivo. Eur. J. Med. Chem., 2021, 213, 113185.
[http://dx.doi.org/10.1016/j.ejmech.2021.113185] [PMID: 33485256]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy