Review Article

Role of miRNAs in Brain Development

Author(s): Himanshu Sharma, Monika Kaushik, Priyanka Goswami, Sanakattula Sreevani, Ananya Chakraborty, Sumel Ashique* and Radheshyam Pal

Volume 13, Issue 2, 2024

Published on: 02 April, 2024

Page: [96 - 109] Pages: 14

DOI: 10.2174/0122115366287127240322054519

Price: $65

conference banner
Abstract

Non-coding RNAs that are small in size, called microRNAs (miRNAs), exert a consequence in neutralizing gene activity after transcription. The nervous system is a massively expressed organ, and an expanding body of research reveals the vital functions that miRNAs play in the brain's growth and neural activity. The significant benefit of miRNAs on the development of the central nervous system is currently shown through new scientific methods that concentrate on targeting and eradicating vital miRNA biogenesis pathways the elements involving Dicer and DGCR8. Modulation of miRNA has been associated with numerous essential cellular processes on neural progenitors, like differentiation, proliferation, and destiny determination. Current research discoveries that emphasize the significance of miRNAs in the complex process of brain development are included in this book. The miRNA pathway plays a major role in brain development, its operational dynamics, and even diseases. Recent studies on miRNA-mediated gene regulation within neural discrepancy, the circadian period and synaptic remodeling are signs of this. We also discussed how these discoveries may affect our comprehension of the fundamental processes behind brain diseases, highlighting the novel therapeutic opportunities miRNAs provide for treating various human illnesses.

Keywords: miRNA, biogenesis, miR-17-92, miR-9, bio-markers, brain physiology, brain development, neurodegeneration.

Graphical Abstract
[1]
Salta E, De Strooper B. Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurol 2012; 11(2): 189-200.
[http://dx.doi.org/10.1016/S1474-4422(11)70286-1] [PMID: 22265214]
[2]
Cui Y, Qi Y, Ding L, et al. miRNA dosage control in development and human disease. Trends Cell Biol 2023; 34(1): 31-47.
[PMID: 37419737]
[3]
Prajzlerová K, Šenolt L, Filková M. Is there a potential of circulating miRNAs as biomarkers in rheumatic diseases? Genes Dis 2023; 10(4): 1263-78.
[http://dx.doi.org/10.1016/j.gendis.2022.08.011] [PMID: 37397550]
[4]
Makkar R, Behl T, Bungau S, et al. Nutraceuticals in neurological disorders. Int J Mol Sci 2020; 21(12): 4424.
[http://dx.doi.org/10.3390/ijms21124424] [PMID: 32580329]
[5]
Matt SM, Roth ED, Roth TL. Role of epigenetics in the brain. In: In Epigenetics in Psychiatry. Academic Press 2021; pp. 85-109.
[http://dx.doi.org/10.1016/B978-0-12-823577-5.00007-6]
[6]
Liu J, Zhou F, Guan Y, et al. The biogenesis of miRNAs and their role in the development of amyotrophic lateral sclerosis. Cells 2022; 11(3): 572.
[http://dx.doi.org/10.3390/cells11030572] [PMID: 35159383]
[7]
Panni S, Corbelli A, Sztuba-Solinska J. Regulation of non-coding RNAs. In: In Navigating Non-Coding RNA. Academic Press 2023; pp. 209-71.
[http://dx.doi.org/10.1016/B978-0-323-90406-3.00009-9]
[8]
Mayr C, Hemann MT, Bartel DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 2007; 315(5818): 1576-9.
[http://dx.doi.org/10.1126/science.1137999] [PMID: 17322030]
[9]
Denli AM, Tops BBJ, Plasterk RHA, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature 2004; 432(7014): 231-5.
[http://dx.doi.org/10.1038/nature03049] [PMID: 15531879]
[10]
Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: Stepwise processing and subcellular localization. EMBO J 2002; 21(17): 4663-70.
[http://dx.doi.org/10.1093/emboj/cdf476] [PMID: 12198168]
[11]
Bartel DP, Chen CZ. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 2004; 5(5): 396-400.
[http://dx.doi.org/10.1038/nrg1328] [PMID: 15143321]
[12]
Li S, Lei Z, Sun T. The role of microRNAs in neurodegenerative diseases: A review. Cell Biol Toxicol 2023; 39(1): 53-83.
[http://dx.doi.org/10.1007/s10565-022-09761-x] [PMID: 36125599]
[13]
Rezaee D, Saadatpour F, Akbari N, et al. The role of microRNAs in the pathophysiology of human central nervous system: A focus on neurodegenerative diseases. Ageing Res Rev 2023; 92: 102090.
[http://dx.doi.org/10.1016/j.arr.2023.102090] [PMID: 37832609]
[14]
Saraiva C, Esteves M, Bernardino L. MicroRNA: Basic concepts and implications for regeneration and repair of neurodegenerative diseases. Biochem Pharmacol 2017; 141: 118-31.
[http://dx.doi.org/10.1016/j.bcp.2017.07.008] [PMID: 28709951]
[15]
Zhao J, Zhou Y, Guo M, et al. MicroRNA-7: Expression and function in brain physiological and pathological processes. Cell Biosci 2020; 10(1): 77.
[http://dx.doi.org/10.1186/s13578-020-00436-w] [PMID: 32537124]
[16]
Juźwik CA, S Drake S, Zhang Y, et al. microRNA dysregulation in neurodegenerative diseases: A systematic review. Prog Neurobiol 2019; 182: 101664.
[http://dx.doi.org/10.1016/j.pneurobio.2019.101664] [PMID: 31356849]
[17]
Pu M, Chen J, Tao Z, et al. Regulatory network of miRNA on its target: Coordination between transcriptional and post-transcriptional regulation of gene expression. Cell Mol Life Sci 2019; 76(3): 441-51.
[http://dx.doi.org/10.1007/s00018-018-2940-7] [PMID: 30374521]
[18]
Breving K, Esquela-Kerscher A. The complexities of microRNA regulation: Mirandering around the rules. Int J Biochem Cell Biol 2010; 42(8): 1316-29.
[http://dx.doi.org/10.1016/j.biocel.2009.09.016] [PMID: 19800023]
[19]
Shu P, Wu C, Liu W, et al. The spatiotemporal expression pattern of microRNAs in the developing mouse nervous system. J Biol Chem 2019; 294(10): 3444-53.
[http://dx.doi.org/10.1074/jbc.RA118.004390] [PMID: 30578296]
[20]
Dogini DB, Ribeiro PAO, Rocha C, Pereira TC, Lopes-Cendes I. MicroRNA expression profile in murine central nervous system development. J Mol Neurosci 2008; 35(3): 331-7.
[http://dx.doi.org/10.1007/s12031-008-9068-4] [PMID: 18452032]
[21]
Coolen M, Bally-Cuif L. MicroRNAs in brain development and physiology. Curr Opin Neurobiol 2009; 19(5): 461-70.
[http://dx.doi.org/10.1016/j.conb.2009.09.006] [PMID: 19846291]
[22]
DeVeale B, Swindlehurst-Chan J, Blelloch R. The roles of microRNAs in mouse development. Nat Rev Genet 2021; 22(5): 307-23.
[http://dx.doi.org/10.1038/s41576-020-00309-5] [PMID: 33452500]
[23]
Davis GM, Haas MA, Pocock R. MicroRNAs: not “fine-tuners” but key regulators of neuronal development and function. Front Neurol 2015; 6: 245.
[http://dx.doi.org/10.3389/fneur.2015.00245] [PMID: 26635721]
[24]
Cochella L, Hobert O. Diverse functions of microRNAs in nervous system development. Curr Top Dev Biol 2012; 99: 115-43.
[http://dx.doi.org/10.1016/B978-0-12-387038-4.00005-7] [PMID: 22365737]
[25]
Kosik KS. The neuronal microRNA system. Nat Rev Neurosci 2006; 7(12): 911-20.
[http://dx.doi.org/10.1038/nrn2037] [PMID: 17115073]
[26]
Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression. Genes Dev 2004; 18(5): 504-11.
[http://dx.doi.org/10.1101/gad.1184404] [PMID: 15014042]
[27]
Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 2010; 79(1): 351-79.
[http://dx.doi.org/10.1146/annurev-biochem-060308-103103] [PMID: 20533884]
[28]
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. cell 2005; 120(1): 15-20.
[29]
Rajewsky N. microRNA target predictions in animals. Nat Genet 2006; 38(S6): S8-S13.
[http://dx.doi.org/10.1038/ng1798] [PMID: 16736023]
[30]
Kloosterman WP, Plasterk RHA. The diverse functions of microRNAs in animal development and disease. Dev Cell 2006; 11(4): 441-50.
[http://dx.doi.org/10.1016/j.devcel.2006.09.009] [PMID: 17011485]
[31]
Siomi H, Siomi MC. Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 2010; 38(3): 323-32.
[http://dx.doi.org/10.1016/j.molcel.2010.03.013] [PMID: 20471939]
[32]
Wu Z-D, Feng Y, Ma Z-X, et al. MicroRNAs: Protective regulators for neuron growth and development. Neural Regen Res 2023; 18(4): 734-45.
[http://dx.doi.org/10.4103/1673-5374.353481] [PMID: 36204829]
[33]
Saba R, Schratt GM. MicroRNAs in neuronal development, function and dysfunction. Brain Res 2010; 1338: 3-13.
[http://dx.doi.org/10.1016/j.brainres.2010.03.107] [PMID: 20380818]
[34]
Ambros V. The functions of animal microRNAs. Nature 2004; 431(7006): 350-5.
[http://dx.doi.org/10.1038/nature02871] [PMID: 15372042]
[35]
Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer’s disease: An integrative review. Prog Neurobiol 2017; 156: 1-68.
[http://dx.doi.org/10.1016/j.pneurobio.2017.03.004] [PMID: 28322921]
[36]
Elshaer SS, Abulsoud AI, Fathi D, et al. miRNAs role in glioblastoma pathogenesis and targeted therapy: Signaling pathways interplay. Pathol Res Pract 2023; 246: 154511.
[http://dx.doi.org/10.1016/j.prp.2023.154511] [PMID: 37178618]
[37]
Zhao J, Zeng X, Liu J, et al. Marasmius androsaceus mitigates depression-exacerbated intestinal radiation injuries through reprogramming hippocampal miRNA expression. Biomed Pharmacother 2023; 165: 115157.
[http://dx.doi.org/10.1016/j.biopha.2023.115157] [PMID: 37454593]
[38]
Gizak A, Duda P, Pielka E, McCubrey JA, Rakus D. GSK3 and miRNA in neural tissue: From brain development to neurodegenerative diseases. Biochim Biophys Acta Mol Cell Res 2020; 1867(7): 118696.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118696] [PMID: 32165184]
[39]
Yang J, Wang X, Hao W, et al. MicroRNA-488: A miRNA with diverse roles and clinical applications in cancer and other human diseases. Biomed Pharmacother 2023; 165: 115115.
[http://dx.doi.org/10.1016/j.biopha.2023.115115] [PMID: 37418982]
[40]
Berardino BG, Fesser EA, Cánepa ET. Perinatal protein malnutrition alters expression of miRNA biogenesis genes Xpo5 and Ago2 in mice brain. Neurosci Lett 2017; 647: 38-44.
[http://dx.doi.org/10.1016/j.neulet.2017.03.012] [PMID: 28300636]
[41]
Carvalho LB, dos Santos Sanna PL, dos Santos Afonso CC, et al. MicroRNA biogenesis machinery activation and lncRNA and REST overexpression as neuroprotective responses to fight inflammation in the hippocampus. J Neuroimmunol 2023; 382: 578149.
[http://dx.doi.org/10.1016/j.jneuroim.2023.578149] [PMID: 37481910]
[42]
Uppala SN, Tryphena KP, Naren P, Srivastava S, Singh SB, Khatri DK. Involvement of miRNA on epigenetics landscape of Parkinson’s disease: From pathogenesis to therapeutics. Mech Ageing Dev 2023; 213: 111826.
[http://dx.doi.org/10.1016/j.mad.2023.111826] [PMID: 37268278]
[43]
Ristori E, Lopez-Ramirez MA, Narayanan A, et al. Dicer-miR-107 interaction regulates biogenesis of specific miRNAs crucial for neurogenesis. Dev Cell 2015; 32(5): 546-60.
[http://dx.doi.org/10.1016/j.devcel.2014.12.013] [PMID: 25662174]
[44]
Yang JS, Lai EC. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 2011; 43(6): 892-903.
[http://dx.doi.org/10.1016/j.molcel.2011.07.024] [PMID: 21925378]
[45]
Vartak A, Goyal D, Kumar H. Role of axon guidance molecules in ascending and descending paths in spinal cord regeneration. Neuroscience 2023; 533: 36-52.
[http://dx.doi.org/10.1016/j.neuroscience.2023.08.034] [PMID: 37704063]
[46]
Fiorenza A, Barco A. Role of dicer and the miRNA system in neuronal plasticity and brain function. Neurobiol Learn Mem 2016; 135: 3-12.
[http://dx.doi.org/10.1016/j.nlm.2016.05.001] [PMID: 27163737]
[47]
Jairajpuri DS, Malalla ZH, Mahmood N, Khan F, Almawi WY. Differentially expressed circulating microRNAs associated with idiopathic recurrent pregnancy loss. Gene 2021; 768: 145334.
[http://dx.doi.org/10.1016/j.gene.2020.145334] [PMID: 33278550]
[48]
Amin-Beidokhti M, Mirfakhraie R, Zare-Karizi S, Karamoddin F. The role of parental microRNA alleles in recurrent pregnancy loss: An association study. Reprod Biomed Online 2017; 34(3): 325-30.
[http://dx.doi.org/10.1016/j.rbmo.2016.12.004] [PMID: 28012790]
[49]
Rotini A, Martínez-Sarrà E, Pozzo E, Sampaolesi M. Interactions between microRNAs and long non-coding RNAs in cardiac development and repair. Pharmacol Res 2018; 127: 58-66.
[http://dx.doi.org/10.1016/j.phrs.2017.05.029] [PMID: 28629929]
[50]
López-González MJ, Landry M, Favereaux A. MicroRNA and chronic pain: From mechanisms to therapeutic potential. Pharmacol Ther 2017; 180: 1-15.
[http://dx.doi.org/10.1016/j.pharmthera.2017.06.001] [PMID: 28579386]
[51]
Rezaei R, Baghaei K, Amani D, et al. Exosome-mediated delivery of functionally active miRNA-375-3p mimic regulate epithelial mesenchymal transition (EMT) of colon cancer cells. Life Sci 2021; 269: 119035.
[http://dx.doi.org/10.1016/j.lfs.2021.119035] [PMID: 33450254]
[52]
Jayachandran J, Srinivasan H, Mani KP. Molecular mechanism involved in epithelial to mesenchymal transition. Arch Biochem Biophys 2021; 710: 108984.
[http://dx.doi.org/10.1016/j.abb.2021.108984] [PMID: 34252392]
[53]
Gross N, Kropp J, Khatib H. MicroRNA signaling in embryo development. Biology 2017; 6(4): 34.
[http://dx.doi.org/10.3390/biology6030034] [PMID: 28906477]
[54]
Chen G, Yin S, Zeng H, Li H, Wan X. Regulation of embryonic stem cell self-renewal. Life 2022; 12(8): 1151.
[http://dx.doi.org/10.3390/life12081151] [PMID: 36013330]
[55]
Li X, Jin P. Roles of small regulatory RNAs in determining neuronal identity. Nat Rev Neurosci 2010; 11(5): 329-38.
[http://dx.doi.org/10.1038/nrn2739] [PMID: 20354535]
[56]
Koerner BR, Stappert L, Koch P, Brüstle O, Borghese L. Pluripotent stem cell-derived somatic stem cells as tool to study the role of microRNAs in early human neural development. Curr Mol Med 2013; 13(5): 707-22.
[http://dx.doi.org/10.2174/1566524011313050003] [PMID: 23642053]
[57]
Meza-Sosa KF, Pedraza-Alva G, Pérez-Martínez L. microRNAs: Key triggers of neuronal cell fate. Front Cell Neurosci 2014; 8: 175.
[http://dx.doi.org/10.3389/fncel.2014.00175] [PMID: 25009466]
[58]
Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129(7): 1401-14.
[http://dx.doi.org/10.1016/j.cell.2007.04.040] [PMID: 17604727]
[59]
Olsen L, Klausen M, Helboe L, Nielsen FC, Werge T. MicroRNAs show mutually exclusive expression patterns in the brain of adult male rats. PLoS One 2009; 4(10): e7225.
[http://dx.doi.org/10.1371/journal.pone.0007225] [PMID: 19806225]
[60]
Bernstein E, Kim SY, Carmell MA, et al. Dicer is essential for mouse development. Nat Genet 2003; 35(3): 215-7.
[http://dx.doi.org/10.1038/ng1253] [PMID: 14528307]
[61]
Cho KHT, Xu B, Blenkiron C, Fraser M. Emerging roles of miRNAs in brain development and perinatal brain injury. Front Physiol 2019; 10: 227.
[http://dx.doi.org/10.3389/fphys.2019.00227] [PMID: 30984006]
[62]
De Pietri Tonelli D, Pulvers JN, Haffner C, Murchison EP, Hannon GJ, Huttner WB. miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 2008; 135(23): 3911-21.
[63]
Ventura A, Young AG, Winslow MM, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 2008; 132(5): 875-86.
[http://dx.doi.org/10.1016/j.cell.2008.02.019] [PMID: 18329372]
[64]
Concepcion CP, Bonetti C, Ventura A. The microRNA-17-92 family of microRNA clusters in development and disease. Cancer J 2012; 18(3): 262-7.
[http://dx.doi.org/10.1097/PPO.0b013e318258b60a] [PMID: 22647363]
[65]
Zhang Y, Ueno Y, Liu XS, et al. The MicroRNA-17-92 cluster enhances axonal outgrowth in embryonic cortical neurons. J Neurosci 2013; 33(16): 6885-94.
[http://dx.doi.org/10.1523/JNEUROSCI.5180-12.2013] [PMID: 23595747]
[66]
Bian S, Hong J, Li Q, et al. MicroRNA cluster miR-17-92 regulates neural stem cell expansion and transition to intermediate progenitors in the developing mouse neocortex. Cell Rep 2013; 3(5): 1398-406.
[http://dx.doi.org/10.1016/j.celrep.2013.03.037] [PMID: 23623502]
[67]
Radhakrishnan B, Anand AA. Role of miRNA-9 in brain development. J Exp Neurosci 2016; 10: 101-20.
[http://dx.doi.org/10.4137/JEN.S32843]
[68]
Coolen M, Katz S, Bally-Cuif L. miR-9: A versatile regulator of neurogenesis. Front Cell Neurosci 2013; 7: 220.
[http://dx.doi.org/10.3389/fncel.2013.00220] [PMID: 24312010]
[69]
Zhao C, Sun G, Li S, Shi Y. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 2009; 16(4): 365-71.
[http://dx.doi.org/10.1038/nsmb.1576] [PMID: 19330006]
[70]
Dajas-Bailador F, Bonev B, Garcez P, Stanley P, Guillemot F, Papalopulu N. microRNA-9 regulates axon extension and branching by targeting Map1b in mouse cortical neurons. Nat Neurosci 2012; 15(5): 697-9.
[http://dx.doi.org/10.1038/nn.3082] [PMID: 22484572]
[71]
Clovis YM, Enard W, Marinaro F, Huttner WB, De Pietri Tonelli D. Convergent repression of Foxp2 3′UTR by miR-9 and miR-132 in embryonic mouse neocortex: Implications for radial migration of neurons. Development 2012; 139(18): 3332-42.
[http://dx.doi.org/10.1242/dev.078063] [PMID: 22874921]
[72]
Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N. Astroglial networks: A step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 2010; 11(2): 87-99.
[http://dx.doi.org/10.1038/nrn2757] [PMID: 20087359]
[73]
Shenoy A, Danial M, Blelloch RH. Let‐7 and miR‐125 cooperate to prime progenitors for astrogliogenesis. EMBO J 2015; 34(9): 1180-94.
[http://dx.doi.org/10.15252/embj.201489504] [PMID: 25715649]
[74]
Andersson T, Rahman S, Sansom SN, et al. Reversible block of mouse neural stem cell differentiation in the absence of dicer and microRNAs. PLoS One 2010; 5(10): e13453.
[http://dx.doi.org/10.1371/journal.pone.0013453] [PMID: 20976144]
[75]
Zheng K, Li H, Huang H, Qiu M. MicroRNAs and glial cell development. Neuroscientist 2012; 18(2): 114-8.
[http://dx.doi.org/10.1177/1073858411398322] [PMID: 21555783]
[76]
Rao VTS, Ludwin SK, Fuh SC, et al. MicroRNA expression patterns in human astrocytes in relation to anatomical location and age. J Neuropathol Exp Neurol 2016; 75(2): 156-66.
[http://dx.doi.org/10.1093/jnen/nlv016] [PMID: 26802178]
[77]
Li B, Concepcion K, Meng X, Zhang L. Brain-immune interactions in perinatal hypoxic-ischemic brain injury. Prog Neurobiol 2017; 159: 50-68.
[http://dx.doi.org/10.1016/j.pneurobio.2017.10.006] [PMID: 29111451]
[78]
Ponomarev ED, Veremeyko T, Weiner HL. MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia 2013; 61(1): 91-103.
[http://dx.doi.org/10.1002/glia.22363] [PMID: 22653784]
[79]
Zhao X, He X, Han X, et al. MicroRNA-mediated control of oligodendrocyte differentiation. Neuron 2010; 65(5): 612-26.
[http://dx.doi.org/10.1016/j.neuron.2010.02.018] [PMID: 20223198]
[80]
Dugas JC, Cuellar TL, Scholze A, et al. Dicer1 and miR-219 Are required for normal oligodendrocyte differentiation and myelination. Neuron 2010; 65(5): 597-611.
[http://dx.doi.org/10.1016/j.neuron.2010.01.027] [PMID: 20223197]
[81]
Lau P, Verrier JD, Nielsen JA, Johnson KR, Notterpek L, Hudson LD. Identification of dynamically regulated microRNA and mRNA networks in developing oligodendrocytes. J Neurosci 2008; 28(45): 11720-30.
[http://dx.doi.org/10.1523/JNEUROSCI.1932-08.2008] [PMID: 18987208]
[82]
Stolt CC, Schlierf A, Lommes P, et al. SoxD proteins influence multiple stages of oligodendrocyte development and modulate SoxE protein function. Dev Cell 2006; 11(5): 697-709.
[http://dx.doi.org/10.1016/j.devcel.2006.08.011] [PMID: 17084361]
[83]
Potzner MR, Griffel C, Lütjen-Drecoll E, Bösl MR, Wegner M, Sock E. Prolonged Sox4 expression in oligodendrocytes interferes with normal myelination in the central nervous system. Mol Cell Biol 2007; 27(15): 5316-26.
[http://dx.doi.org/10.1128/MCB.00339-07] [PMID: 17515609]
[84]
Yeh YM, Chuang CM, Chao KC, Wang LH. MicroRNA‐138 suppresses ovarian cancer cell invasion and metastasis by targeting SOX4 and HIF‐1α. Int J Cancer 2013; 133(4): 867-78.
[http://dx.doi.org/10.1002/ijc.28086] [PMID: 23389731]
[85]
Letzen BS, Liu C, Thakor NV, Gearhart JD, All AH, Kerr CL. MicroRNA expression profiling of oligodendrocyte differentiation from human embryonic stem cells. PLoS One 2010; 5(5): e10480.
[http://dx.doi.org/10.1371/journal.pone.0010480] [PMID: 20463920]
[86]
Mendell JT. miRiad roles for the miR-17-92 cluster in development and disease. Cell 2008; 133(2): 217-22.
[http://dx.doi.org/10.1016/j.cell.2008.04.001] [PMID: 18423194]
[87]
Xia X, Wang Y, Zheng JC. The microRNA-17 ~ 92 family as a key regulator of neurogenesis and potential regenerative therapeutics of neurological disorders. Stem Cell Rev Rep 2022; 18(2): 401-11.
[http://dx.doi.org/10.1007/s12015-020-10050-5] [PMID: 33030674]
[88]
Liu SP, Fu RH, Yu HH, et al. MicroRNAs regulation modulated self-renewal and lineage differentiation of stem cells. Cell Transplant 2009; 18(9): 1039-45.
[http://dx.doi.org/10.3727/096368909X471224] [PMID: 19523330]
[89]
Krichevsky AM, Sonntag KC, Isacson O, Kosik KS. Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 2006; 24(4): 857-64.
[http://dx.doi.org/10.1634/stemcells.2005-0441] [PMID: 16357340]
[90]
Mao S, Li H, Sun Q, Zen K, Zhang CY, Li L. miR‐17 regulates the proliferation and differentiation of the neural precursor cells during mouse corticogenesis. FEBS J 2014; 281(4): 1144-58.
[http://dx.doi.org/10.1111/febs.12680] [PMID: 24314167]
[91]
Leucht C, Stigloher C, Wizenmann A, Klafke R, Folchert A, Bally-Cuif L. MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nat Neurosci 2008; 11(6): 641-8.
[http://dx.doi.org/10.1038/nn.2115] [PMID: 18454145]
[92]
Smirnova L, Gräfe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG. Regulation of miRNA expression during neural cell specification. Eur J Neurosci 2005; 21(6): 1469-77.
[http://dx.doi.org/10.1111/j.1460-9568.2005.03978.x] [PMID: 15845075]
[93]
Åkerblom M, Sachdeva R, Barde I, et al. MicroRNA-124 is a subventricular zone neuronal fate determinant. J Neurosci 2012; 32(26): 8879-89.
[http://dx.doi.org/10.1523/JNEUROSCI.0558-12.2012] [PMID: 22745489]
[94]
Shin D, Shin JY, McManus MT, Ptáček LJ, Fu YH. Dicer ablation in oligodendrocytes provokes neuronal impairment in mice. Ann Neurol 2009; 66(6): 843-57.
[http://dx.doi.org/10.1002/ana.21927] [PMID: 20035504]
[95]
Ryu IS, Kim DH, Cho HJ, Ryu JH. The role of microRNA-485 in neurodegenerative diseases. Rev Neurosci 2023; 34(1): 49-62.
[http://dx.doi.org/10.1515/revneuro-2022-0039] [PMID: 35793556]
[96]
Goodall EF, Heath PR, Bandmann O, Kirby J, Shaw PJ. Neuronal dark matter: The emerging role of microRNAs in neurodegeneration. Front Cell Neurosci 2013; 7: 178.
[http://dx.doi.org/10.3389/fncel.2013.00178] [PMID: 24133413]
[97]
Mouradian MM. MicroRNAs in Parkinson’s disease. Neurobiol Dis 2012; 46(2): 279-84.
[http://dx.doi.org/10.1016/j.nbd.2011.12.046] [PMID: 22245218]
[98]
Parsi S, Smith PY, Goupil C, Dorval V, Hébert SS. Preclinical evaluation of miR-15/107 family members as multifactorial drug targets for Alzheimer’s disease. Mol Ther Nucleic Acids 2015; 4(10): e256.
[http://dx.doi.org/10.1038/mtna.2015.33] [PMID: 26440600]
[99]
Wang M, Qin L, Tang B. MicroRNAs in Alzheimer’s disease. Front Genet 2019; 10: 153.
[http://dx.doi.org/10.3389/fgene.2019.00153] [PMID: 30881384]
[100]
Petry S, Keraudren R, Nateghi B, et al. Widespread alterations in microRNA biogenesis in human Huntington’s disease putamen. Acta Neuropathol Commun 2022; 10(1): 106.
[http://dx.doi.org/10.1186/s40478-022-01407-7] [PMID: 35869509]
[101]
Cannataro R, Cione E. miRNA as Drug: Antagomir and beyond. Curr Pharm Des 2023; 29(6): 462-5.
[http://dx.doi.org/10.2174/1381612829666230220123150] [PMID: 36803763]
[102]
Rao P, Benito E, Fischer A. MicroRNAs as biomarkers for CNS disease. Front Mol Neurosci 2013; 6: 39.
[http://dx.doi.org/10.3389/fnmol.2013.00039] [PMID: 24324397]
[103]
Marangon D, Raffaele S, Fumagalli M, Lecca D. MicroRNAs change the games in central nervous system pharmacology. Biochem Pharmacol 2019; 168: 162-72.
[http://dx.doi.org/10.1016/j.bcp.2019.06.019] [PMID: 31251938]
[104]
Sun P, Liu DZ, Jickling GC, Sharp FR, Yin KJ. MicroRNA-based therapeutics in central nervous system injuries. J Cereb Blood Flow Metab 2018; 38(7): 1125-48.
[http://dx.doi.org/10.1177/0271678X18773871] [PMID: 29708005]
[105]
Bhalala OG, Srikanth M, Kessler JA. The emerging roles of microRNAs in CNS injuries. Nat Rev Neurol 2013; 9(6): 328-39.
[http://dx.doi.org/10.1038/nrneurol.2013.67] [PMID: 23588363]
[106]
Fernandes T, Magalhães FC, Roque FR, Phillips MI, Oliveira EM. Exercise training prevents the microvascular rarefaction in hypertension balancing angiogenic and apoptotic factors: Role of microRNAs-16, -21, and -126. Hypertension 2012; 59(2): 513-20.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.185801] [PMID: 22215713]
[107]
Liu G, Detloff MR, Miller KN, Santi L, Houlé JD. Exercise modulates microRNAs that affect the PTEN/mTOR pathway in rats after spinal cord injury. Exp Neurol 2012; 233(1): 447-56.
[http://dx.doi.org/10.1016/j.expneurol.2011.11.018] [PMID: 22123082]
[108]
Walsh NP, Gleeson M, Pyne DB, et al. Position statement part two: maintaining immune health. Exerc Immunol Rev 2011; 17: 64-103.
[109]
Radom-Aizik S, Zaldivar F Jr, Oliver S, Galassetti P, Cooper DM. Evidence for microRNA involvement in exercise-associated neutrophil gene expression changes. J Appl Physiol 2010; 109(1): 252-61.
[http://dx.doi.org/10.1152/japplphysiol.01291.2009] [PMID: 20110541]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy