Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

The Inhibitory Effects of Propofol on Colorectal Cancer Progression through the NF-κB/HIF-1α Signaling Pathway

Author(s): Liuxu Yao, Wen Zhai, Zongming Jiang, Rui He, Weiying Xie, Yuhong Li* and Yiyang Hu*

Volume 24, Issue 11, 2024

Published on: 02 April, 2024

Page: [878 - 888] Pages: 11

DOI: 10.2174/0118715206283884240326170501

Price: $65

conference banner
Abstract

Background and Objective: Colorectal cancer (CRC) is a neoplastic disease that gradually develops due to genetic variations and epigenetic changes. Surgical excision is the first-line treatment for CRC. Accumulating evidence has shown that total intravenous anesthesia has beneficial effects for CRC patients as it decreases the probability of tumor recurrence and metastasis. Propofol is one of the most frequently used intravenous anesthetics in clinical practice. However, it remains unknown whether it can reduce recurrence and metastasis after surgery in cancer patients.

Methods: CRC cell lines (HCT116 and SW480) were cultured in vitro, and different concentrations of propofol were added to the cell culture medium. The proliferation effect of propofol on CRC cell lines was evaluated by CCK-8 assay. The effect of propofol on the migration and invasion of CRC cells was evaluated by scratch healing and Transwell experiments. The inhibitory effects of propofol on NF-κB and HIF-1α expressions in CRC cell lines were determined by Western blotting and immunofluorescence assays to further clarify the regulatory effects of propofol on NF-κB and HIF-1α.

Results: Compared to the control, propofol significantly inhibited the proliferation, migration, and invasion abilities of CRC cells (HCT116 and SW480) (p < 0.0001). The expression levels of NF-κB and HIF-1α gradually decreased with increasing propofol concentration in both cell lines. After activation and inhibition of NF-κB, the expression of HIF-1α changed. Further studies showed that propofol inhibited LPS-activated NF-κB-induced expression of HIF-1α, similar to the NF-κB inhibitor Bay17083 (p < 0.0001).

Conclusion: In vitro, propofol inhibited the proliferation, migration, and invasion of CRC cells (HCT116 and SW480) in a dose-dependent manner, possibly by participating in the regulation of the NF-κB/HIF-1α signaling pathway.

Keywords: Colorectal cancer, propofol, nuclear factor-κB, hypoxia-inducible factor-1α, genetic variations, CCK-8 assay.

« Previous
Graphical Abstract
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Zygulska, A.L.; Pierzchalski, P. Novel diagnostic biomarkers in colorectal cancer. Int. J. Mol. Sci., 2022, 23(2), 852.
[http://dx.doi.org/10.3390/ijms23020852] [PMID: 35055034]
[3]
Shin, A.E.; Giancotti, F.G.; Rustgi, A.K. Metastatic colorectal cancer: Mechanisms and emerging therapeutics. Trends Pharmacol. Sci., 2023, 44(4), 222-236.
[http://dx.doi.org/10.1016/j.tips.2023.01.003] [PMID: 36828759]
[4]
Galema, H.A.; Meijer, R.P.J.; Lauwerends, L.J.; Verhoef, C.; Burggraaf, J.; Vahrmeijer, A.L.; Hutteman, M.; Keereweer, S.; Hilling, D.E. Fluorescence-guided surgery in colorectal cancer; A review on clinical results and future perspectives. Eur. J. Surg. Oncol., 2022, 48(4), 810-821.
[http://dx.doi.org/10.1016/j.ejso.2021.10.005] [PMID: 34657780]
[5]
Leowattana, W.; Leowattana, P.; Leowattana, T. Systemic treatment for metastatic colorectal cancer. World J. Gastroenterol., 2023, 29(10), 1569-1588.
[http://dx.doi.org/10.3748/wjg.v29.i10.1569] [PMID: 36970592]
[6]
Faroni, E.; Sabattini, S.; Lenzi, J.; Guerra, D.; Comazzi, S.; Aresu, L.; Mazzanti, A.; Zanardi, S.; Cola, V.; Lotito, E.; Marconato, L. Sleeping beauty: Anesthesia may promote relapse in dogs with diffuse large B-Cell lymphoma in complete remission after Chemo-Immunotherapy. Front. Vet. Sci., 2021, 8, 760603.
[http://dx.doi.org/10.3389/fvets.2021.760603] [PMID: 34881319]
[7]
Cascella, M.; Cuomo, A.; Bifulco, F.; Perri, F.; Carbone, F.; Aprea, M.; Forte, C.A.; Fiore, M. Could the perioperative use of opioids influence cancer outcomes after surgery? A scoping review protocol. BMJ Open, 2022, 12(3), e054520.
[http://dx.doi.org/10.1136/bmjopen-2021-054520] [PMID: 35292495]
[8]
Perry, N.J.S.; Buggy, D.; Ma, D. Can anesthesia influence cancer outcomes after surgery? JAMA Surg., 2019, 154(4), 279-280.
[http://dx.doi.org/10.1001/jamasurg.2018.4619] [PMID: 30649136]
[9]
Walsh, C.T. Propofol: Milk of amnesia. Cell, 2018, 175(1), 10-13.
[http://dx.doi.org/10.1016/j.cell.2018.08.031] [PMID: 30217361]
[10]
Xu, Y.; Pan, S.; Jiang, W.; Xue, F.; Zhu, X. Effects of propofol on the development of cancer in humans. Cell Prolif., 2020, 53(8), e12867.
[http://dx.doi.org/10.1111/cpr.12867] [PMID: 32596964]
[11]
Ramirez, M.F.; Gan, T.J. Total intravenous anesthesia versus inhalation anesthesia: How do outcomes compare? Curr. Opin. Anaesthesiol., 2023, 36(4), 399-406.
[http://dx.doi.org/10.1097/ACO.0000000000001274] [PMID: 37338939]
[12]
Chang, C.Y.; Wu, M.Y.; Chien, Y.J.; Su, I.M.; Wang, S.C.; Kao, M.C. Anesthesia and long-term oncological outcomes: A systematic review and meta-analysis. Anesth. Analg., 2021, 132(3), 623-634.
[http://dx.doi.org/10.1213/ANE.0000000000005237] [PMID: 33105278]
[13]
Fang, P.; Zhou, J.; Xia, Z.; Lu, Y.; Liu, X. Effects of propofol versus sevoflurane on postoperative breast cancer prognosis: A narrative review. Front. Oncol., 2022, 11, 793093.
[http://dx.doi.org/10.3389/fonc.2021.793093] [PMID: 35127500]
[14]
Zhao, R.; Xu, X.; Sun, L.; Zhang, G. Long-term effect of anesthesia choice on patients with hepatocellular carcinoma undergoing open liver resection. Front. Oncol., 2023, 12, 960299.
[http://dx.doi.org/10.3389/fonc.2022.960299] [PMID: 36713494]
[15]
Lu, X.; Yu, Y.; Wang, Y.; Lyu, Y. Effect of propofol or etomidate as general anaesthesia induction on gastric cancer: A retrospective cohort study with 10 years’ follow-up. Cancer Manag. Res., 2022, 14, 2399-2407.
[http://dx.doi.org/10.2147/CMAR.S361052] [PMID: 35967754]
[16]
Zhou, X.; Shao, Y.; Li, S.; Zhang, S.; Ding, C.; Zhuang, L.; Sun, J. An intravenous anesthetic drug-propofol, influences the biological characteristics of malignant tumors and reshapes the tumor microenvironment: A narrative literature review. Front. Pharmacol., 2022, 13, 1057571.
[http://dx.doi.org/10.3389/fphar.2022.1057571] [PMID: 36506511]
[17]
Wang, R.; Li, S.; Hou, Q.; Zhang, B.; Chu, H.; Hou, Y.; Ni, C.; Sun, L.; Ran, Y.; Zheng, H. Propofol inhibits colon cancer cell stemness and epithelial-mesenchymal transition by regulating SIRT1, Wnt/β-catenin and PI3K/AKT/mTOR signaling pathways. Discover Oncology, 2023, 14(1), 137.
[http://dx.doi.org/10.1007/s12672-023-00734-y] [PMID: 37490168]
[18]
Capece, D.; Verzella, D.; Flati, I.; Arboretto, P.; Cornice, J.; Franzoso, G. NF-κB: Blending metabolism, immunity, and inflammation. Trends Immunol., 2022, 43(9), 757-775.
[http://dx.doi.org/10.1016/j.it.2022.07.004] [PMID: 35965153]
[19]
O’Donnell, A.; Pepper, C.; Mitchell, S.; Pepper, A. NF-kB and the CLL microenvironment. Front. Oncol., 2023, 13, 1169397.
[http://dx.doi.org/10.3389/fonc.2023.1169397] [PMID: 37064123]
[20]
Kaltschmidt, B.; Witte, K.E.; Greiner, J.F.W.; Weissinger, F.; Kaltschmidt, C. Targeting NF-κB signaling in cancer stem cells: A narrative review. Biomedicines, 2022, 10(2), 261.
[http://dx.doi.org/10.3390/biomedicines10020261] [PMID: 35203471]
[21]
Rong, D.; Sun, G.; Zheng, Z.; Liu, L.; Chen, X.; Wu, F.; Gu, Y.; Dai, Y.; Zhong, W.; Hao, X.; Zhang, C.; Pan, X.; Tang, J.; Tang, W.; Wang, X. MGP promotes CD8 + T cell exhaustion by activating the NF-κB pathway leading to liver metastasis of colorectal cancer. Int. J. Biol. Sci., 2022, 18(6), 2345-2361.
[http://dx.doi.org/10.7150/ijbs.70137] [PMID: 35414780]
[22]
Wang, Z.; Sun, X.; Feng, Y.; Wang, Y.; Zhang, L.; Wang, Y.; Fang, Z.; Azami, N.L.B.; Sun, M.; Li, Q. Dihydromyricetin reverses MRP2-induced multidrug resistance by preventing NF-κB-Nrf2 signaling in colorectal cancer cell. Phytomedicine, 2021, 82, 153414.
[http://dx.doi.org/10.1016/j.phymed.2020.153414] [PMID: 33461143]
[23]
Xin, Y.; Zhao, L.; Peng, R. HIF-1 signaling: An emerging mechanism for mitochondrial dynamics. J. Physiol. Biochem., 2023, 79(3), 489-500.
[http://dx.doi.org/10.1007/s13105-023-00966-0] [PMID: 37178248]
[24]
Vatte, S.; Ugale, R. HIF-1, an important regulator in potential new therapeutic approaches to ischemic stroke. Neurochem. Int., 2023, 170, 105605.
[http://dx.doi.org/10.1016/j.neuint.2023.105605] [PMID: 37657765]
[25]
Negri, A.L. Role of prolyl hydroxylase/HIF-1 signaling in vascular calcification. Clin. Kidney J., 2023, 16(2), 205-209.
[http://dx.doi.org/10.1093/ckj/sfac224] [PMID: 36755843]
[26]
Sharma, D.; Khan, H.; Kumar, A.; Grewal, A.K.; Dua, K.; Singh, T.G. Pharmacological modulation of HIF-1 in the treatment of neuropsychiatric disorders. J. Neural Transm. , 2023, 130(12), 1523-1535.
[http://dx.doi.org/10.1007/s00702-023-02698-3] [PMID: 37740098]
[27]
Korbecki, J.; Simińska, D.; Dobrowolska, G.M.; Listos, J.; Gutowska, I.; Chlubek, D.; Bosiacka, B.I. Chronic and cycling hypoxia: Drivers of cancer chronic inflammation through HIF-1 and NF-κB activation: A review of the molecular mechanisms. Int. J. Mol. Sci., 2021, 22(19), 10701.
[http://dx.doi.org/10.3390/ijms221910701] [PMID: 34639040]
[28]
Gupta, S.; May, F.P.; Kupfer, S.S.; Murphy, C.C. Birth Cohort Colorectal Cancer (CRC): Implications for research and practice. Clin. Gastroenterol. Hepatol., 2024, 22(3), 455-469.e7.
[http://dx.doi.org/10.1016/j.cgh.2023.11.040] [PMID: 38081492]
[29]
Kasprzak, A. Prognostic biomarkers of cell proliferation in colorectal cancer (CRC): From immunohistochemistry to molecular biology techniques. Cancers , 2023, 15(18), 4570.
[http://dx.doi.org/10.3390/cancers15184570] [PMID: 37760539]
[30]
Yan, R.; Song, T.; Wang, W.; Tian, J.; Ma, X. Immunomodulatory roles of propofol and sevoflurane in murine models of breast cancer. Immunopharmacol. Immunotoxicol., 2023, 45(2), 153-159.
[http://dx.doi.org/10.1080/08923973.2022.2122501] [PMID: 36073191]
[31]
Wang, J.; Cheng, C.; Lu, Y.; Ding, X.; Zhu, M.; Miao, C.; Chen, J. Novel findings of anti-cancer property of propofol. Anticancer. Agents Med. Chem., 2018, 18(2), 156-165.
[http://dx.doi.org/10.2174/1871520617666170912120327] [PMID: 28901262]
[32]
Zhan, K.; Song, X.; Zhang, Q.; Yang, J.; Lu, S. Propofol-induced miR-493-3p inhibits growth and invasion of gastric cancer through suppression of DKK1-mediated Wnt/β-Catenin signaling activation. Dis. Markers, 2023, 2023, 1-8.
[http://dx.doi.org/10.1155/2023/7698706] [PMID: 36762306]
[33]
Wu, J.; Zhou, F.; Lai, S.; Wang, W.; Wu, T.; Liu, Y.; Yang, L. Propofol inhibits biological function of hepatocellular carcinoma cells through LINC00475-mediated sonic hedgehog pathway. Pharmacology, 2023, 108(2), 127-137.
[http://dx.doi.org/10.1159/000527200] [PMID: 36516819]
[34]
Gao, Y.; Zhou, Y.; Wang, C.; Sample, K.; Yu, X.; Ben-David, Y. Propofol mediates pancreatic cancer cell activity through the repression of ADAM8 via SP1. Oncol. Rep., 2021, 46(6), 249.
[http://dx.doi.org/10.3892/or.2021.8200] [PMID: 34617574]
[35]
Zhou, R.; Konishi, Y.; Zhang, A.; Nishiwaki, K. Propofol elicits apoptosis and attenuates cell growth in esophageal cancer cell lines. Nagoya J. Med. Sci., 2023, 85(3), 579-591.
[http://dx.doi.org/10.18999/nagjms.85.3.579] [PMID: 37829490]
[36]
Wang, Y.; Xu, B.; Zhou, J.; Wu, X. Propofol activates AMPK to inhibit the growth of HepG2 cells in vitro and hepatocarcinogenesis in xenograft mouse tumor models by inducing autophagy. J. Gastrointest. Oncol., 2020, 11(6), 1322-1332.
[http://dx.doi.org/10.21037/jgo-20-472] [PMID: 33457004]
[37]
Xu, W.; He, Y.; Wang, Y.; Li, X.; Young, J.; Ioannidis, J.P.A.; Dunlop, M.G.; Theodoratou, E. Risk factors and risk prediction models for colorectal cancer metastasis and recurrence: An umbrella review of systematic reviews and meta-analyses of observational studies. BMC Med., 2020, 18(1), 172.
[http://dx.doi.org/10.1186/s12916-020-01618-6] [PMID: 32586325]
[38]
Zhang, X.; He, C.; Xiang, G. Engineering nanomedicines to inhibit hypoxia-inducible Factor-1 for cancer therapy. Cancer Lett., 2022, 530, 110-127.
[http://dx.doi.org/10.1016/j.canlet.2022.01.012] [PMID: 35041892]
[39]
Li, Z.; Wei, R.; Yao, S.; Meng, F.; Kong, L. HIF-1A as a prognostic biomarker related to invasion, migration and immunosuppression of cervical cancer. Heliyon, 2024, 10(2), e24664.
[http://dx.doi.org/10.1016/j.heliyon.2024.e24664] [PMID: 38298716]
[40]
Xu, Y.; Kuai, R.; Chu, Y.M.; Zhou, L.; Zhang, H.Q.; Li, J. Hypoxia facilitates the proliferation of colorectal cancer cells by inducing cancer-associated fibroblast-derived IL6. Neoplasma, 2021, 68(5), 1015-1022.
[http://dx.doi.org/10.4149/neo_2021_210308N296] [PMID: 34374296]
[41]
Bian, Y.; Yin, G.; Wang, G.; Liu, T.; Liang, L.; Yang, X. Degradation of HIF-1α induced by curcumol blocks glutaminolysis and inhibits epithelial-mesenchymal transition and invasion in colorectal cancer cells. Cell Biol. Toxicol., 2023, 39(5), 1957-1978.
[http://dx.doi.org/10.1007/s10565-021-09681-2] [PMID: 35083610]
[42]
Zhang, Y.; Chai, N.; Wei, Z.; Li, Z.; Zhang, L.; Zhang, M.; Ren, J.; Xu, R.; Pang, X.; Zhang, B.; Tang, Q.; Sui, H. YYFZBJS inhibits colorectal tumorigenesis by enhancing Tregs-induced immunosuppression through HIF-1α mediated hypoxia in vivo and in vitro. Phytomedicine, 2022, 98, 153917.
[http://dx.doi.org/10.1016/j.phymed.2021.153917] [PMID: 35093671]
[43]
Aqdas, M.; Sung, M.H. NF-κB dynamics in the language of immune cells. Trends Immunol., 2023, 44(1), 32-43.
[http://dx.doi.org/10.1016/j.it.2022.11.005] [PMID: 36473794]
[44]
Kordahi, M.C.; Stanaway, I.B.; Avril, M.; Chac, D.; Blanc, M.P.; Ross, B.; Diener, C.; Jain, S.; McCleary, P.; Parker, A.; Friedman, V.; Huang, J.; Burke, W.; Gibbons, S.M.; Willis, A.D.; Darveau, R.P.; Grady, W.M.; Ko, C.W.; DePaolo, R.W. Genomic and functional characterization of a mucosal symbiont involved in early-stage colorectal cancer. Cell Host Microbe, 2021, 29(10), 1589-1598.e6.
[http://dx.doi.org/10.1016/j.chom.2021.08.013] [PMID: 34536346]
[45]
Deka, K.; Li, Y. Transcriptional regulation during aberrant activation of NF-κB signalling in cancer. Cells, 2023, 12(5), 788.
[http://dx.doi.org/10.3390/cells12050788] [PMID: 36899924]
[46]
Rastogi, S.; Aldosary, S.; Saeedan, A.S.; Ansari, M.N.; Singh, M.; Kaithwas, G. NF-κB mediated regulation of tumor cell proliferation in hypoxic microenvironment. Front. Pharmacol., 2023, 14, 1108915.
[http://dx.doi.org/10.3389/fphar.2023.1108915] [PMID: 36891273]
[47]
Li, Z.L.; Ji, J.L.; Wen, Y.; Cao, J.Y.; Kharbuja, N.; Ni, W.J.; Yin, D.; Feng, S.T.; Liu, H.; Lv, L.L.; Liu, B.C.; Wang, B. HIF-1α is transcriptionally regulated by NF-κB in acute kidney injury. Am. J. Physiol. Renal Physiol., 2021, 321(2), F225-F235.
[http://dx.doi.org/10.1152/ajprenal.00119.2021] [PMID: 34229478]
[48]
Liu, X.; Gao, Z.; Wang, X.; Shen, Y. Parthenolide targets NF-κB (P50) to inhibit HIF-1α-mediated metabolic reprogramming of HCC. Aging , 2022, 14(20), 8346-8356.
[http://dx.doi.org/10.18632/aging.204339] [PMID: 36260873]
[49]
Huang, X.; Teng, Y.; Yang, H.; Ma, J. Propofol inhibits invasion and growth of ovarian cancer cells via regulating miR-9/NF-κB signal. Braz. J. Med. Biol. Res., 2016, 49(12), e5717.
[http://dx.doi.org/10.1590/1414-431x20165717] [PMID: 27982283]
[50]
Ling, Q.; Wu, S.; Liao, X.; Liu, C.; Chen, Y. Anesthetic propofol enhances cisplatin-sensitivity of non-small cell lung cancer cells through N6-methyladenosine-dependently regulating the miR-486-5p/RAP1-NF-κB axis. BMC Cancer, 2022, 22(1), 765.
[http://dx.doi.org/10.1186/s12885-022-09848-y] [PMID: 35836137]
[51]
Reiner, G.N.; Perillo, M.A.; García, D.A. Effects of propofol and other GABAergic phenols on membrane molecular organization. Colloids Surf. B Biointerfaces, 2013, 101, 61-67.
[http://dx.doi.org/10.1016/j.colsurfb.2012.06.004] [PMID: 22796773]
[52]
Irifune, M.; Takarada, T.; Shimizu, Y.; Endo, C.; Katayama, S.; Dohi, T.; Kawahara, M. Propofol-induced anesthesia in mice is mediated by gamma-aminobutyric acid-A and excitatory amino acid receptors. Anesth. Analg., 2003, 97(2), 424-429.
[http://dx.doi.org/10.1213/01.ANE.0000059742.62646.40] [PMID: 12873929]
[53]
Ribeiro, M.P.C.; Custódio, J.B.A.; Santos, A.E. Ionotropic glutamate receptor antagonists and cancer therapy: Time to think out of the box? Cancer Chemother. Pharmacol., 2017, 79(2), 219-225.
[http://dx.doi.org/10.1007/s00280-016-3129-0] [PMID: 27586965]
[54]
Zhang, D.; Li, X.; Yao, Z.; Wei, C.; Ning, N.; Li, J. GABAergic signaling facilitates breast cancer metastasis by promoting ERK1/2-dependent phosphorylation. Cancer Lett., 2014, 348(1-2), 100-108.
[http://dx.doi.org/10.1016/j.canlet.2014.03.006] [PMID: 24657659]
[55]
Zhang, Q.; Wang, L.; Chen, B.; Zhuo, Q.; Bao, C.; Lin, L. Propofol inhibits NF-κB activation to ameliorate airway inflammation in ovalbumin (OVA)-induced allergic asthma mice. Int. Immunopharmacol., 2017, 51, 158-164.
[http://dx.doi.org/10.1016/j.intimp.2017.08.015] [PMID: 28843179]
[56]
Yang, N.; Liang, Y.; Yang, P.; Ji, F. Propofol suppresses LPS-induced nuclear accumulation of HIF-1α and tumor aggressiveness in non-small cell lung cancer. Oncol. Rep., 2017, 37(5), 2611-2619.
[http://dx.doi.org/10.3892/or.2017.5514] [PMID: 28426124]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy