Review Article

Skin Microbial Composition and Genetic Mutation Analysis in Precision Medicine for Epidermolysis Bullosa

Author(s): Inna Syafarina, Maulida Mazaya, Ariani Indrawati, Sharfina Zahra Akbar, Caecilia Sukowati* and Rifki Sadikin

Volume 25, Issue 6, 2024

Published on: 01 April, 2024

Page: [404 - 415] Pages: 12

DOI: 10.2174/0113894501290512240327091531

conference banner
Abstract

Epidermolysis bullosa (EB) is an inherited skin disease representing a spectrum of rare genetic disorders. These conditions share the common trait that causes fragile skin, resulting in the development of blisters and erosions. The inheritance follows an autosomal pattern, and the array of clinical presentations leads to significant physical suffering, considerable morbidity, and mortality. Despite EB having no cure, effectively managing EB remains an exceptional challenge due to its rarity and complexity, occasionally casting a profound impact on the lives of affected individuals. Considering that EB management requires a multidisciplinary approach, this sometimes worsens the condition of patients with EB due to inappropriate handling. Thus, more appropriate and precise treatment management of EB is essentially needed. Advanced technology in medicine and health comes into the bioinformatics era. Including treatment for skin diseases, omics-based approaches aim to evaluate and handle better disease management and treatment. In this work, we review several approaches regarding the implementation of omics-based technology, including genetics, pathogenic mutation, skin microbiomics, and metagenomics analysis for EB. In addition, we highlight recent updates on the potential of metagenomics analysis in precision medicine for EB.

Keywords: Epidermolysis bullosa, skin disorder, genetics, metagenomics, precision medicine, bioinformatics, microbiome.

Graphical Abstract
[1]
Reimer-Taschenbrecker A, Künstner A, Hirose M, et al. Predominance of staphylococcus correlates with wound burden and disease activity in dystrophic epidermolysis bullosa: A prospective case-control study. J Invest Dermatol 2022; 142(8): 2117-2127.e8.
[http://dx.doi.org/10.1016/j.jid.2022.01.020] [PMID: 35149000]
[2]
Bardhan A, Bruckner-Tuderman L, Chapple ILC, et al. Epidermolysis bullosa. Nat Rev Dis Primers 2020; 6(1): 78.
[http://dx.doi.org/10.1038/s41572-020-0210-0] [PMID: 32973163]
[3]
Fine JD, Mellerio JE. Extracutaneous manifestations and complications of inherited epidermolysis bullosa. J Am Acad Dermatol 2009; 61(3): 367-84.
[http://dx.doi.org/10.1016/j.jaad.2009.03.052] [PMID: 19700010]
[4]
Prodinger C, Reichelt J, Bauer JW, Laimer M. Epidermolysis bullosa: Advances in research and treatment. Exp Dermatol 2019; 28(10): 1176-89.
[http://dx.doi.org/10.1111/exd.13979] [PMID: 31140655]
[5]
Varki R, Sadowski S, Pfendner E, Uitto J. Epidermolysis bullosa. I. Molecular genetics of the junctional and hemidesmosomal variants. J Med Genet 2006; 43(8): 641-52.
[http://dx.doi.org/10.1136/jmg.2005.039685] [PMID: 16473856]
[6]
Yenamandra VK, Moss C, Sreenivas V, et al. Development of a clinical diagnostic matrix for characterizing inherited epidermolysis bullosa. Br J Dermatol 2017; 176(6): 1624-32.
[http://dx.doi.org/10.1111/bjd.15221] [PMID: 27925151]
[7]
Kiritsi D, Nyström A. Recent advances in understanding and managing epidermolysis bullosa. F1000 Res 2018; 7: 1097.
[http://dx.doi.org/10.12688/f1000research.14974.1] [PMID: 30057747]
[8]
Has C, El Hachem M, Bučková H, et al. Practical management of epidermolysis bullosa: Consensus clinical position statement from the European Reference Network for Rare Skin Diseases. J Eur Acad Dermatol Venereol 2021; 35(12): 2349-60.
[http://dx.doi.org/10.1111/jdv.17629] [PMID: 34545960]
[9]
Uitto J, Bruckner-Tuderman L, McGrath JA, Riedl R, Robinson C. EB2017—progress in epidermolysis bullosa research toward treatment and cure. J Invest Dermatol 2018; 138(5): 1010-6.
[http://dx.doi.org/10.1016/j.jid.2017.12.016] [PMID: 29391251]
[10]
Tabor A, Pergolizzi JV Jr, Marti G, Harmon J, Cohen B, Lequang JA. Raising awareness among healthcare providers about epidermolysis bullosa and advancing toward a cure. J Clin Aesthet Dermatol 2017; 10(5): 36-48.
[PMID: 28670357]
[11]
Fine JD. Inherited epidermolysis bullosa. Orphanet J Rare Dis 2010; 5(1): 12.
[http://dx.doi.org/10.1186/1750-1172-5-12] [PMID: 20507631]
[12]
Marson FAL, Bertuzzo CS, Ribeiro JD. Personalized or precision medicine? the example of cystic fibrosis. Front Pharmacol 2017; 8: 390.
[http://dx.doi.org/10.3389/fphar.2017.00390] [PMID: 28676762]
[13]
Yi JZ, Friedland MH, McGee JS. Epigenetics and precision medicine in skin diseases. Epigenetics in Precision Medicine. Elsevier 2022; pp. 193-221.
[http://dx.doi.org/10.1016/B978-0-12-823008-4.00003-2]
[14]
Litman T. Personalized medicine—concepts, technologies, and applications in inflammatory skin diseases. Acta Pathol Microbiol Scand Suppl 2019; 127(5): 386-424.
[http://dx.doi.org/10.1111/apm.12934] [PMID: 31124204]
[15]
Uitto J, Atanasova VS, Jiang Q, South AP. Precision medicine for heritable skin diseases—the paradigm of epidermolysis bullosa. J Investig Dermatol Symp Proc 2018; 19(2): S74-6.
[http://dx.doi.org/10.1016/j.jisp.2018.09.004] [PMID: 30471755]
[16]
Oliveira TM, Sakai VT, Candido LA, Silva SMB, Machado MAAM. Clinical management for epidermolysis bullosa dystrophica. J Appl Oral Sci 2008; 16(1): 81-5.
[http://dx.doi.org/10.1590/S1678-77572008000100016] [PMID: 19089295]
[17]
Pânzaru MC, Caba L, Florea L, Braha EE, Gorduza EV. Epidermolysis bullosa—a different genetic approach in correlation with genetic heterogeneity. Diagnostics 2022; 12(6): 1325.
[http://dx.doi.org/10.3390/diagnostics12061325] [PMID: 35741135]
[18]
Kotalevskaya YY, Stepanov VA. Molecular genetic basis of epidermolysis bullosa. Vavilovskii Zhurnal Genet Selektsii 2023; 27(1): 18-27.
[http://dx.doi.org/10.18699/VJGB-23-04] [PMID: 36923479]
[19]
Has C, Bauer JW, Bodemer C, et al. Consensus reclassification of inherited epidermolysis bullosa and other disorders with skin fragility. Br J Dermatol 2020; 183(4): 614-27.
[http://dx.doi.org/10.1111/bjd.18921] [PMID: 32017015]
[20]
So JY, Teng J. Epidermolysis bullosa simplex. In: Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJ, Gripp KW, Eds. GeneReviews® Seattle (WA). Seattle: University of Washington 1993.
[21]
Tireli GA, Unal M, Demirali O, Sander S. Urinary tract involvement in a child with epidermolysis bullosa simplex. Int J Urol 2005; 12(7): 690-2.
[http://dx.doi.org/10.1111/j.1442-2042.2005.01128.x] [PMID: 16045565]
[22]
Pfendner EG, Lucky AW. Dystrophic epidermolysis bullosa. In: Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJ, Gripp KW, Eds. GeneReviews® Seattle (WA). Seattle: University of Washington 1993.
[23]
Has C, Fischer J. Inherited epidermolysis bullosa: New diagnostics and new clinical phenotypes. Exp Dermatol 2019; 28(10): 1146-52.
[http://dx.doi.org/10.1111/exd.13668] [PMID: 29679399]
[24]
Almaani N, Mellerio JE. Genitourinary tract involvement in epidermolysis bullosa. Dermatol Clin 2010; 28(2): 343-346, xi.
[http://dx.doi.org/10.1016/j.det.2010.01.014] [PMID: 20447500]
[25]
Lai-Cheong JE, McGrath JA. Kindler syndrome. Dermatol Clin 2010; 28(1): 119-24.
[http://dx.doi.org/10.1016/j.det.2009.10.013] [PMID: 19945624]
[26]
Youssefian L, Vahidnezhad H, Uitto J. Kindler syndrome. In: Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJ, Gripp KW, Eds. GeneReviews® Seattle (WA). Seattle: University of Washington 1993.
[27]
Aydin B, Arga KY, Karadag AS. Omics-driven biomarkers of psoriasis: Recent insights, current challenges, and future prospects. Clin Cosmet Investig Dermatol 2020; 13: 611-25.
[http://dx.doi.org/10.2147/CCID.S227896] [PMID: 32922059]
[28]
Bruckner AL, Losow M, Wisk J, et al. The challenges of living with and managing epidermolysis bullosa: insights from patients and caregivers. Orphanet J Rare Dis 2020; 15(1): 1.
[http://dx.doi.org/10.1186/s13023-019-1279-y] [PMID: 31900176]
[29]
Fivenson DP, Scherschun L, Cohen LV. Apligraf in the treatment of severe mitten deformity associated with recessive dystrophic epidermolysis bullosa. Plast Reconstr Surg 2003; 112(2): 584-8.
[http://dx.doi.org/10.1097/01.PRS.0000070730.95956.01] [PMID: 12900618]
[30]
Pai S, Marinkovich MP. Epidermolysis bullosa. Am J Clin Dermatol 2002; 3(6): 371-80.
[http://dx.doi.org/10.2165/00128071-200203060-00001] [PMID: 12113646]
[31]
Bolling MC, Lemmink HH, Jansen GHL, Jonkman MF. Mutations in KRT5 and KRT14 cause epidermolysis bullosa simplex in 75% of the patients: KRT5 and KRT14 mutations in 75% of EBS patients. Br J Dermatol 2011; 164(3): 637-44.
[32]
Pulkkinen L, Uitto J. Mutation analysis and molecular genetics of epidermolysis bullosa. Matrix Biol 1999; 18(1): 29-42.
[http://dx.doi.org/10.1016/S0945-053X(98)00005-5] [PMID: 10367729]
[33]
Dang N, Murrell DF. Mutation analysis and characterization of COL7A1 mutations in dystrophic epidermolysis bullosa. Exp Dermatol 2008; 17(7): 553-68.
[http://dx.doi.org/10.1111/j.1600-0625.2008.00723.x] [PMID: 18558993]
[34]
Escámez MJ, García M, Cuadrado-Corrales N, et al. The first COL7A1 mutation survey in a large Spanish dystrophic epidermolysis bullosa cohort: c.6527insC disclosed as an unusually recurrent mutation. Br J Dermatol 2010; 163(1): 155-61.
[http://dx.doi.org/10.1111/j.1365-2133.2010.09713.x] [PMID: 20184583]
[35]
Has C, Castiglia D, del Rio M, et al. Kindler syndrome: Extension of FERMT1 mutational spectrum and natural history. Hum Mutat 2011; 32(11): 1204-12.
[http://dx.doi.org/10.1002/humu.21576] [PMID: 21936020]
[36]
Khan FF, Khan N, Rehman S, et al. Identification and computational analysis of novel pathogenic variants in pakistani families with diverse epidermolysis bullosa phenotypes. Biomolecules 2021; 11(5): 620.
[http://dx.doi.org/10.3390/biom11050620] [PMID: 33921969]
[37]
Sadler E, Klausegger A, Muss W, et al. Novel KIND1 gene mutation in Kindler syndrome with severe gastrointestinal tract involvement. Arch Dermatol 2006; 142(12): 1619-24.
[http://dx.doi.org/10.1001/archderm.142.12.1619] [PMID: 17178989]
[38]
Huitema L, Phillips T, Alexeev V, Igoucheva O. Immunological mechanisms underlying progression of chronic wounds in recessive dystrophic epidermolysis bullosa. Exp Dermatol 2021; 30(12): 1724-33.
[http://dx.doi.org/10.1111/exd.14411] [PMID: 34142388]
[39]
Castela E, Tulic MK, Rozières A, et al. Epidermolysis bullosa simplex generalized severe induces a T helper 17 response and is improved by apremilast treatment. Br J Dermatol 2019; 180(2): 357-64.
[http://dx.doi.org/10.1111/bjd.16897] [PMID: 29932457]
[40]
Wiebe CB, Penagos H, Luong N, et al. Clinical and microbiologic study of periodontitis associated with Kindler syndrome. J Periodontol 2003; 74(1): 25-31.
[http://dx.doi.org/10.1902/jop.2003.74.1.25] [PMID: 12593592]
[41]
Keith AR, Twaroski K, Ebens CL, Tolar J. Leading edge: Emerging drug, cell, and gene therapies for junctional epidermolysis bullosa. Expert Opin Biol Ther 2020; 20(8): 911-23.
[http://dx.doi.org/10.1080/14712598.2020.1740678] [PMID: 32178539]
[42]
Annicchiarico G, Morgese MG, Esposito S, et al. Proinflammatory cytokines and antiskin autoantibodies in patients with inherited epidermolysis bullosa. Medicine 2015; 94(42): e1528.
[http://dx.doi.org/10.1097/MD.0000000000001528] [PMID: 26496255]
[43]
Zhang L, Wang S, Chen Q, Xiang L. A case of junctional epidermolysis bullosa intermediate with collagen XVII deficiency treated with dupilumab. J Dermatolog Treat 2023; 34(1): 2253943.
[http://dx.doi.org/10.1080/09546634.2023.2253943] [PMID: 37968922]
[44]
Ruszczak Z, Abdelhadi S. Learning from itch: Epidermolysis bullosa is a genetically determined barrier disruption and a chronic inflammatory disease. J Eur Acad Dermatol Venereol 2022; 36(1): 13-6.
[http://dx.doi.org/10.1111/jdv.17821] [PMID: 34897832]
[45]
van der Kooi-Pol MM, Duipmans JC, Jonkman MF, van Dijl JM. Host–pathogen interactions in epidermolysis bullosa patients colonized with Staphylococcus aureus. Int J Med Microbiol 2014; 304(2): 195-203.
[http://dx.doi.org/10.1016/j.ijmm.2013.11.012] [PMID: 24444717]
[46]
Bar J, Sarig O, Lotan-Pompan M, et al. Evidence for cutaneous dysbiosis in dystrophic epidermolysis bullosa. Clin Exp Dermatol 2021; 46(7): 1223-9.
[http://dx.doi.org/10.1111/ced.14592] [PMID: 33682945]
[47]
Carrieri AP, Haiminen N, Maudsley-Barton S, et al. Explainable AI reveals changes in skin microbiome composition linked to phenotypic differences. Sci Rep 2021; 11(1): 4565.
[http://dx.doi.org/10.1038/s41598-021-83922-6] [PMID: 33633172]
[48]
Fuentes I, Guttmann-Gruber C, Tay ASL, et al. Reduced microbial diversity is a feature of recessive dystrophic epidermolysis bullosa-involved skin and wounds. J Invest Dermatol 2018; 138(11): 2492-5.
[http://dx.doi.org/10.1016/j.jid.2018.04.026] [PMID: 29753707]
[49]
Fuentes I, Yubero MJ, Morandé P, et al. Longitudinal study of wound healing status and bacterial colonisation of Staphylococcus aureus and Corynebacterium diphtheriae in epidermolysis bullosa patients. Int Wound J 2023; 20(3): 774-83.
[http://dx.doi.org/10.1111/iwj.13922] [PMID: 36787273]
[50]
Levin LE, Shayegan LH, Lucky AW, et al. Characterization of wound microbes in epidermolysis bullosa: Results from the epidermolysis bullosa clinical characterization and outcomes database. Pediatr Dermatol 2021; 38(1): 119-24.
[http://dx.doi.org/10.1111/pde.14444] [PMID: 33247481]
[51]
Brandling-Bennett HA, Morel KD. Common wound colonizers in patients with epidermolysis bullosa. Pediatr Dermatol 2010; 27(1): 25-8.
[http://dx.doi.org/10.1111/j.1525-1470.2009.01070.x] [PMID: 20199405]
[52]
Korolenkova MV, Poberezhnaya AA, Dmitrieva NA. Oral microbiome in children with dystrophic recessive epidermolysis bullosa. Stomatologia 2022; 101(1): 46-52. [Oral microbiome in children with dystrophic recessive epidermolysis bullosa].
[http://dx.doi.org/10.17116/stomat202210101146]
[53]
Bhargava P, Mowry EM. Gut microbiome and multiple sclerosis. Curr Neurol Neurosci Rep 2014; 14(10): 492.
[http://dx.doi.org/10.1007/s11910-014-0492-2] [PMID: 25204849]
[54]
Kondo M, Takashima S, Goto H, Habe K, Natsuga K, Yamanaka K. Dominance of methicillin-resistant Staphylococcus aureus in a Japanese infant with recessive dystrophic epidermolysis bullosa. Case Rep Dermatol 2021; 13(2): 278-81.
[http://dx.doi.org/10.1159/000516354] [PMID: 34177518]
[55]
van der Kooi-Pol MM, de Vogel CP, Westerhout-Pluister GN, et al. High anti-staphylococcal antibody titers in patients with epidermolysis bullosa relate to long-term colonization with alternating types of Staphylococcus aureus. J Invest Dermatol 2013; 133(3): 847-50.
[http://dx.doi.org/10.1038/jid.2012.347] [PMID: 23014336]
[56]
Guttmann-Gruber C, Tockner B, Scharler C, et al. Low-dose calcipotriol can elicit wound closure, anti-microbial, and anti-neoplastic effects in epidermolysis bullosa keratinocytes. Sci Rep 2018; 8(1): 13430.
[http://dx.doi.org/10.1038/s41598-018-31823-6] [PMID: 30194425]
[57]
Gómez-López G, Dopazo J, Cigudosa JC, Valencia A, Al-Shahrour F. Precision medicine needs pioneering clinical bioinformaticians. Brief Bioinform 2019; 20(3): 752-66.
[http://dx.doi.org/10.1093/bib/bbx144] [PMID: 29077790]
[58]
Pinu FR, Beale DJ, Paten AM, et al. Systems biology and multi-omics integration: Viewpoints from the metabolomics research community. Metabolites 2019; 9(4): 76.
[http://dx.doi.org/10.3390/metabo9040076] [PMID: 31003499]
[59]
Dumbreck S, Flynn A, Nairn M, et al. Drug-disease and drug-drug interactions: systematic examination of recommendations in 12 UK national clinical guidelines. BMJ 2015; 350(mar11 2): h949.
[http://dx.doi.org/10.1136/bmj.h949] [PMID: 25762567]
[60]
Cohen PR, Kurzrock R. Dermatologic disease-directed targeted therapy (D3T2): The application of biomarker-based precision medicine for the personalized treatment of skin conditions—precision dermatology. Dermatol Ther 2022; 12(10): 2249-71.
[http://dx.doi.org/10.1007/s13555-022-00801-2] [PMID: 36121579]
[61]
Tampa M, Neagu M, Caruntu C, Georgescu SR. Personalized medicine in the field of inflammatory skin disorders. J Pers Med 2022; 12(3): 426.
[http://dx.doi.org/10.3390/jpm12030426] [PMID: 35330426]
[62]
Lucky AW, Dagaonkar N, Lammers K, Husami A, Kissell D, Zhang K. A comprehensive next-generation sequencing assay for the diagnosis of epidermolysis bullosa. Pediatr Dermatol 2018; 35(2): 188-97.
[http://dx.doi.org/10.1111/pde.13392] [PMID: 29334134]
[63]
Tu WT, Hou PC, Chen PC, et al. Mutational analysis of epidermolysis bullosa in Taiwan by whole-exome sequencing complemented by RNA sequencing: A series of 77 patients. Orphanet J Rare Dis 2022; 17(1): 451.
[http://dx.doi.org/10.1186/s13023-022-02605-1] [PMID: 36578049]
[64]
Vahidnezhad H, Youssefian L, Saeidian AH, et al. Multigene next-generation sequencing panel identifies pathogenic variants in patients with unknown subtype of epidermolysis bullosa: Subclassification with prognostic implications. J Invest Dermatol 2017; 137(12): 2649-52.
[http://dx.doi.org/10.1016/j.jid.2017.07.830] [PMID: 28830826]
[65]
Widhiati S, Danarti R, Trisnowati N, Purnomosari D, Wibawa T, Soebono H. Novel mutations of epidermolysis bullosa identified using whole-exome sequencing in Indonesian Javanese patients. Intractable Rare Dis Res 2021; 10(2): 88-94.
[http://dx.doi.org/10.5582/irdr.2020.03150] [PMID: 33996353]
[66]
Chen F, Wei R, Deng D, et al. Genotype and phenotype correlations in 441 patients with epidermolysis bullosa from China. J Eur Acad Dermatol Venereol 2023; 37(2): 411-9.
[http://dx.doi.org/10.1111/jdv.18692] [PMID: 36287101]
[67]
Nanda A, Liu L, Al-Ajmi H, et al. Clinical subtypes and molecular basis of epidermolysis bullosa in Kuwait. Int J Dermatol 2018; 57(9): 1058-67.
[http://dx.doi.org/10.1111/ijd.14099] [PMID: 30011071]
[68]
Nilay M, Saxena D, Mandal K, Moirangthem A, Phadke SR. Novel pathogenic variants in an Indian cohort with epidermolysis bullosa: Expanding the genotypic spectrum. Eur J Med Genet 2021; 64(12): 104345.
[http://dx.doi.org/10.1016/j.ejmg.2021.104345] [PMID: 34597860]
[69]
Mariath LM, Santin JT, Frantz JA, Doriqui MJR, Kiszewski AE, Schuler-Faccini L. An overview of the genetic basis of epidermolysis bullosa in Brazil: discovery of novel and recurrent disease- causing variants. Clin Genet 2019; 96(3): 189-98.
[http://dx.doi.org/10.1111/cge.13555] [PMID: 31001817]
[70]
Chen F, Huang L, Li C, et al. Next-generation sequencing through multigene panel testing for the diagnosis of hereditary epidermolysis bullosa in Chinese population. Clin Genet 2020; 98(2): 179-84.
[http://dx.doi.org/10.1111/cge.13791] [PMID: 32484238]
[71]
Agyirifo DS, Wamalwa M, Otwe EP, et al. Metagenomics analysis of cocoa bean fermentation microbiome identifying species diversity and putative functional capabilities. Heliyon 2019; 5(7): e02170.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02170] [PMID: 31388591]
[72]
Thomas T, Gilbert J, Meyer F. Metagenomics: A guide from sampling to data analysis. Microb Inform Exp 2012; 2(1): 3.
[http://dx.doi.org/10.1186/2042-5783-2-3] [PMID: 22587947]
[73]
Riesenfeld CS, Schloss PD, Handelsman J. Metagenomics: Genomic analysis of microbial communities. Annu Rev Genet 2004; 38(1): 525-52.
[http://dx.doi.org/10.1146/annurev.genet.38.072902.091216] [PMID: 15568985]
[74]
Padmanabhan R, Mishra AK, Raoult D, Fournier PE. Genomics and metagenomics in medical microbiology. J Microbiol Methods 2013; 95(3): 415-24.
[http://dx.doi.org/10.1016/j.mimet.2013.10.006] [PMID: 24200711]
[75]
Prescott SL, Larcombe DL, Logan AC, et al. The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ J 2017; 10(1): 29.
[http://dx.doi.org/10.1186/s40413-017-0160-5] [PMID: 28855974]
[76]
Saheb Kashaf S, Proctor DM, Deming C, et al. Integrating cultivation and metagenomics for a multi-kingdom view of skin microbiome diversity and functions. Nat Microbiol 2021; 7(1): 169-79.
[http://dx.doi.org/10.1038/s41564-021-01011-w] [PMID: 34952941]
[77]
Cui S, Pan M, Tang X, et al. Metagenomic insights into the effects of cosmetics containing complex polysaccharides on the composition of skin microbiota in females. Front Cell Infect Microbiol 2023; 13: 1210724.
[http://dx.doi.org/10.3389/fcimb.2023.1210724] [PMID: 37593763]
[78]
Garcia-Garcerà M, Garcia-Etxebarria K, Coscollà M, Latorre A, Calafell F. A new method for extracting skin microbes allows metagenomic analysis of whole-deep skin. PLoS One 2013; 8(9): e74914.
[http://dx.doi.org/10.1371/journal.pone.0074914] [PMID: 24073227]
[79]
Yadav BS, Yadav AK, Singh S, Singh NK, Mani A. Methods in metagenomics and environmental biotechnology. In: Gothandam KM, Ranjan S, Dasgupta N, Lichtfouse E, Eds. Nanoscience and Biotechnology for Environmental Applications. Cham: Springer International Publishing 2019; pp. 85-113.
[http://dx.doi.org/10.1007/978-3-319-97922-9_4]
[80]
Nagar P, Hasija Y. Metagenomic approach in study and treatment of various skin diseases: A brief review. Biomed Dermatol 2018; 2(1): 19.
[http://dx.doi.org/10.1186/s41702-018-0029-4]
[81]
Ederveen THA, Smits JPH, Boekhorst J, Schalkwijk J, van den Bogaard EH, Zeeuwen PLJM. Skin microbiota in health and disease: From sequencing to biology. J Dermatol 2020; 47(10): 1110-8.
[http://dx.doi.org/10.1111/1346-8138.15536] [PMID: 32804417]
[82]
Li H. Metagenomic study of the human skin microbiome associated with acne. Nat Preced 2010; 1-1.
[http://dx.doi.org/10.1038/npre.2010.5305.1]
[83]
Wang Y, Sun M, Duan Y. Metagenomic sequencing analysis for acne using machine learning methods adapted to single or multiple data. Comput Math Methods Med 2021; 2021: 1-11.
[http://dx.doi.org/10.1155/2021/8008731] [PMID: 34812271]
[84]
Chen YE, Tsao H. The skin microbiome: Current perspectives and future challenges. J Am Acad Dermatol 2013; 69(1): 143-155.e3.
[http://dx.doi.org/10.1016/j.jaad.2013.01.016] [PMID: 23489584]
[85]
Chen Y, Knight R, Gallo RL. Evolving approaches to profiling the microbiome in skin disease. Front Immunol 2023; 14: 1151527.
[http://dx.doi.org/10.3389/fimmu.2023.1151527] [PMID: 37081873]
[86]
Zhu Y, Yu X, Cheng G. Human skin bacterial microbiota homeostasis: A delicate balance between health and disease. mLife 2023; 2(2): 107-20.
[http://dx.doi.org/10.1002/mlf2.12064]
[87]
Serghiou IR, Baker D, Evans R, et al. An efficient method for high molecular weight bacterial DNA extraction suitable for shotgun metagenomics from skin swabs. preprint. Genomics 2023.
[88]
Li Z, Xia J, Jiang L, et al. Characterization of the human skin resistome and identification of two microbiota cutotypes. Microbiome 2021; 9(1): 47.
[http://dx.doi.org/10.1186/s40168-020-00995-7] [PMID: 33597039]
[89]
Alam MJ, Xie L, Yap YA, Marques FZ, Robert R. Manipulating microbiota to treat atopic dermatitis: Functions and therapies. Pathogens 2022; 11(6): 642.
[http://dx.doi.org/10.3390/pathogens11060642] [PMID: 35745496]
[90]
Fozia F, Nazli R, Bibi N, et al. Whole exome sequencing confirms molecular diagnostics of three pakhtun families with autosomal recessive epidermolysis bullosa. Front Pediatr 2021; 9: 727288.
[http://dx.doi.org/10.3389/fped.2021.727288] [PMID: 34414147]
[91]
Lu J, Rincon N, Wood DE, et al. Metagenome analysis using the Kraken software suite. Nat Protoc 2022; 17(12): 2815-39.
[http://dx.doi.org/10.1038/s41596-022-00738-y] [PMID: 36171387]
[92]
Navgire GS, Goel N, Sawhney G, et al. Analysis and interpretation of metagenomics data: An approach. Biol Proced Online 2022; 24(1): 18.
[http://dx.doi.org/10.1186/s12575-022-00179-7] [PMID: 36402995]
[93]
Guttmann-Gruber C, Piñón Hofbauer J, Tockner B, et al. Impact of low-dose calcipotriol ointment on wound healing, pruritus and pain in patients with dystrophic epidermolysis bullosa: A randomized, double-blind, placebo-controlled trial. Orphanet J Rare Dis 2021; 16(1): 473.
[http://dx.doi.org/10.1186/s13023-021-02062-2] [PMID: 34749770]
[94]
van der Kooi-Pol MM, Veenstra-Kyuchukova YK, Duipmans JC, et al. High genetic diversity ofS taphylococcus aureus strains colonizing patients with epidermolysis bullosa. Exp Dermatol 2012; 21(6): 463-6.
[http://dx.doi.org/10.1111/j.1600-0625.2012.01502.x] [PMID: 22621190]
[95]
Horev A, Brandwein M, Vaknin A, Motro Y, Moran-Gilad J. Temporal changes in the skin microbiome of epidermolysis bullosa patients following the application of wound dressings. J Clin Med 2023; 12(20): 6435.
[http://dx.doi.org/10.3390/jcm12206435] [PMID: 37892571]
[96]
Wei Q, Li Z, Gu Z, et al. Shotgun metagenomic sequencing reveals skin microbial variability from different facial sites. Front Microbiol 2022; 13: 933189.
[http://dx.doi.org/10.3389/fmicb.2022.933189] [PMID: 35966676]
[97]
Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res 2020; 30(6): 492-506.
[http://dx.doi.org/10.1038/s41422-020-0332-7] [PMID: 32433595]
[98]
Godlewska U, Brzoza P, Kwiecień K, Kwitniewski M, Cichy J. Metagenomic studies in inflammatory skin diseases. Curr Microbiol 2020; 77(11): 3201-12.
[http://dx.doi.org/10.1007/s00284-020-02163-4] [PMID: 32813091]
[99]
Fine JD, Johnson LB, Weiner M, Suchindran C. Cause-specific risks of childhood death in inherited epidermolysis bullosa. J Pediatr 2008; 152(2): 276-280.e2.
[http://dx.doi.org/10.1016/j.jpeds.2007.06.039] [PMID: 18206702]
[100]
Mellerio JE, Kiritsi D, Marinkovich MP, et al. Mapping the burden of severe forms of epidermolysis bullosa: Implications for patient management. JAAD Int 2023; 11: 224-32.
[http://dx.doi.org/10.1016/j.jdin.2023.02.016] [PMID: 37179539]
[101]
Santin JT, Mariath LM, Rossato AM, Schuler-Faccini L, Kiszewski AE. Prevalence and antimicrobial resistance profile of Staphylococcus aureus in inherited epidermolysis bullosa: A cross-sectional multicenter study in Brazil. Int J Dermatol 2021; 60(9): 1126-30.
[http://dx.doi.org/10.1111/ijd.15634] [PMID: 34047367]
[102]
Singer HM, Levin LE, Garzon MC, et al. Wound culture isolated antibiograms and caregiver-reported skin care practices in children with epidermolysis bullosa. Pediatr Dermatol 2018; 35(1): 92-6.
[http://dx.doi.org/10.1111/pde.13331] [PMID: 29105824]
[103]
Alexeev V, Huitema L, Phillips T, et al. T-cell activation and bacterial infection in skin wounds of recessive dystrophic epidermolysis bullosa patients. Exp Dermatol 2022; 31(9): 1431-42.
[http://dx.doi.org/10.1111/exd.14615] [PMID: 35620886]

© 2024 Bentham Science Publishers | Privacy Policy