Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Polymer Conjugate as the New Promising Drug Delivery System for Combination Therapy against Cancer

Author(s): Qiang Hu, Yuannian Zhang, Jean Felix Mukerabigwi, Haili Wang and Yu Cao*

Volume 24, Issue 13, 2024

Published on: 28 March, 2024

Page: [1101 - 1119] Pages: 19

DOI: 10.2174/0115680266280603240321064308

Price: $65

Abstract

This review highlights the advantages of combination therapy using polymer conjugates as drug delivery systems for cancer treatment. In this review, the specific structures and materials of polymer conjugates, as well as the different types of combination chemotherapy strategies, are discussed. Specific targeting strategies, such as monoclonal antibody therapy and small molecule ligands, are also explored. Additionally, self-assembled polymer micelles and overcoming multidrug resistance are described as potential strategies for combination therapy. The assessment of combinational therapeutic efficacy and the challenges associated with polymer conjugates are also addressed. The future outlook aims to overcome these challenges and improve the effectiveness of drug delivery systems for combination therapy. The conclusion emphasizes the potential of polymer conjugates in combination therapy while acknowledging the need for further research and development in this field.

Keywords: Polymer conjugate, Combination therapy, Drug delivery system (DDS), Cancer, Targeting, Multi-drug resistance (MDR).

Next »
Graphical Abstract
[1]
Paskeh, M.D.A.; Entezari, M.; Mirzaei, S.; Zabolian, A.; Saleki, H.; Naghdi, M.J.; Sabet, S.; Khoshbakht, M.A.; Hashemi, M.; Hushmandi, K.; Sethi, G.; Zarrabi, A.; Kumar, A.P.; Tan, S.C.; Papadakis, M.; Alexiou, A.; Islam, M.A.; Mostafavi, E.; Ashrafizadeh, M. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J. Hematol. Oncol., 2022, 15(1), 83.
[http://dx.doi.org/10.1186/s13045-022-01305-4] [PMID: 35765040]
[2]
Crosby, D.; Bhatia, S.; Brindle, K.M.; Coussens, L.M.; Dive, C.; Emberton, M.; Esener, S.; Fitzgerald, R.C.; Gambhir, S.S.; Kuhn, P.; Rebbeck, T.R.; Balasubramanian, S. Early detection of cancer. Science, 2022, 375(6586), eaay9040.
[http://dx.doi.org/10.1126/science.aay9040] [PMID: 35298272]
[3]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[4]
Zajda, J.; Wróblewska, A.; Ruzik, L.; Matczuk, M. Methodology for characterization of platinum-based drug’s targeted delivery nanosystems. J. Control. Release, 2021, 335, 178-190.
[http://dx.doi.org/10.1016/j.jconrel.2021.05.022] [PMID: 34022322]
[5]
Catalano, A.; Iacopetta, D.; Ceramella, J.; Scumaci, D.; Giuzio, F.; Saturnino, C.; Aquaro, S.; Rosano, C.; Sinicropi, M.S. Multidrug resistance (MDR): A widespread phenomenon in pharmacological therapies. Molecules, 2022, 27(3), 616.
[http://dx.doi.org/10.3390/molecules27030616] [PMID: 35163878]
[6]
Emran, T.B.; Shahriar, A.; Mahmud, A.R.; Rahman, T.; Abir, M.H.; Siddiquee, M.F.R.; Ahmed, H.; Rahman, N.; Nainu, F.; Wahyudin, E.; Mitra, S.; Dhama, K.; Habiballah, M.M.; Haque, S.; Islam, A.; Hassan, M.M. Multidrug resistance in cancer: Understanding molecular mechanisms, immunoprevention and therapeutic approaches. Front. Oncol., 2022, 12, 891652.
[http://dx.doi.org/10.3389/fonc.2022.891652] [PMID: 35814435]
[7]
Bagaev, A.; Kotlov, N.; Nomie, K.; Svekolkin, V.; Gafurov, A.; Isaeva, O.; Osokin, N.; Kozlov, I.; Frenkel, F.; Gancharova, O.; Almog, N.; Tsiper, M.; Ataullakhanov, R.; Fowler, N. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell, 2021, 39(6), 845-865.e7.
[http://dx.doi.org/10.1016/j.ccell.2021.04.014] [PMID: 34019806]
[8]
Ciardiello, F.; Ciardiello, D.; Martini, G.; Napolitano, S.; Tabernero, J.; Cervantes, A. Clinical management of metastatic colorectal cancer in the era of precision medicine. CA Cancer J. Clin., 2022, 72(4), 372-401.
[http://dx.doi.org/10.3322/caac.21728] [PMID: 35472088]
[9]
Plana, D.; Palmer, A.C.; Sorger, P.K. Independent drug action in combination therapy: implications for precision oncology. Cancer Discov., 2022, 12(3), 606-624.
[http://dx.doi.org/10.1158/2159-8290.CD-21-0212] [PMID: 34983746]
[10]
Huang, P.; Lian, D.; Ma, H.; Gao, N.; Zhao, L.; Luan, P.; Zeng, X. New advances in gated materials of mesoporous silica for drug controlled release. Chin. Chem. Lett., 2021, 32(12), 3696-3704.
[http://dx.doi.org/10.1016/j.cclet.2021.06.034]
[11]
Alamzadeh, Z.; Beik, J.; Pirhajati Mahabadi, V.; Abbasian Ardekani, A.; Ghader, A.; Kamrava, S.K.; Shiralizadeh Dezfuli, A.; Ghaznavi, H.; Shakeri-Zadeh, A. Ultrastructural and optical characteristics of cancer cells treated by a nanotechnology based chemo-photothermal therapy method. J. Photochem. Photobiol. B, 2019, 192, 19-25.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.01.005] [PMID: 30665146]
[12]
Taguchi, K.; Okamoto, Y.; Matsumoto, K.; Otagiri, M.; Chuang, V. When albumin meets liposomes: A feasible drug carrier for biomedical applications. Pharmaceuticals, 2021, 14(4), 296.
[http://dx.doi.org/10.3390/ph14040296] [PMID: 33810483]
[13]
Mehta, S.; He, T.; Bajpayee, A.G. Recent advances in targeted drug delivery for treatment of osteoarthritis. Curr. Opin. Rheumatol., 2021, 33(1), 94-109.
[http://dx.doi.org/10.1097/BOR.0000000000000761] [PMID: 33229973]
[14]
Lombardo, R.; Musumeci, T.; Carbone, C.; Pignatello, R. Nanotechnologies for intranasal drug delivery: An update of literature. Pharm. Dev. Technol., 2021, 26(8), 824-845.
[http://dx.doi.org/10.1080/10837450.2021.1950186] [PMID: 34218736]
[15]
van der Koog, L.; Gandek, T.B.; Nagelkerke, A. Liposomes and extracellular vesicles as drug delivery systems: A comparison of composition, pharmacokinetics, and functionalization. Adv. Healthc. Mater., 2022, 11(5), 2100639.
[http://dx.doi.org/10.1002/adhm.202100639] [PMID: 34165909]
[16]
Iranpour, S.; Bahrami, A.R.; Nekooei, S.; Sh Saljooghi, A.; Matin, M.M. Improving anti-cancer drug delivery performance of magnetic mesoporous silica nanocarriers for more efficient colorectal cancer therapy. J. Nanobiotechnology, 2021, 19(1), 314.
[http://dx.doi.org/10.1186/s12951-021-01056-3] [PMID: 34641857]
[17]
Ringsdorf, H. Structure and properties of pharmacologically active polymers. J. Polym. Sci. Polym. Symp., 1975, 51(1), 135-153.
[http://dx.doi.org/10.1002/polc.5070510111]
[18]
Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov., 2003, 2(5), 347-360.
[http://dx.doi.org/10.1038/nrd1088] [PMID: 12750738]
[19]
Vasey, P.A.; Kaye, S.B.; Morrison, R.; Twelves, C.; Wilson, P.; Duncan, R.; Thomson, A.H.; Murray, L.S.; Hilditch, T.E.; Murray, T.; Burtles, S.; Fraier, D.; Frigerio, E.; Cassidy, J. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: First member of a new class of chemotherapeutic agents-drug-polymer conjugates. Clin. Cancer Res., 1999, 5(1), 83-94.
[PMID: 9918206]
[20]
Duncan, R.; Coatsworth, J.K.; Burtles, S. Preclinical toxicology of a novel polymeric antitumour agent: HPMA copolymer-doxorubicin (PK1). Hum. Exp. Toxicol., 1998, 17(2), 93-104.
[http://dx.doi.org/10.1191/096032798678908378] [PMID: 9506260]
[21]
Duncan, R. Polymer-drug conjugates, PDEPT and PELT: basic principles for design and transfer from the laboratory to clinic. J Control Release, 2001, 75(1-3), 135-146.
[http://dx.doi.org/10.1016/S0168-3659(01)00328-5]
[22]
Singer, J.W.; Baker, B.; de Vries, P.; Kumar, A.; Shaffer, S.; Vawter, E.; Bolton, M.; Garzone, P. Poly-(L)-glutamic acid-paclitaxel (CT-2103) [XYOTAX], a biodegradable polymeric drug conjugate: Characterization, preclinical pharmacology, and preliminary clinical data. Adv. Exp. Med. Biol., 2004, 519, 81-99.
[http://dx.doi.org/10.1007/0-306-47932-X_6] [PMID: 12675210]
[23]
Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Muchtaridi, M. Drug release study of the chitosan-based nanoparticles. Heliyon, 2022, 8(1), e08674.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08674] [PMID: 35028457]
[24]
Mansour, A.; Romani, M.; Acharya, A.B.; Rahman, B.; Verron, E.; Badran, Z. Drug delivery systems in regenerative medicine: An updated review. Pharmaceutics, 2023, 15(2), 695.
[http://dx.doi.org/10.3390/pharmaceutics15020695] [PMID: 36840018]
[25]
Mazidi, Z.; Javanmardi, S.; Naghib, S.M.; Mohammadpour, Z. Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: An overview on the emerging materials. Chem. Eng. J., 2022, 433, 134569.
[http://dx.doi.org/10.1016/j.cej.2022.134569]
[26]
Functional Polymers for Nanomedicine. In: Royal Society of Chemistry; Shen, Y., Ed.; , 2013; pp. 1-332.
[27]
Zhang, M.; Gao, S.; Yang, D.; Fang, Y.; Lin, X.; Jin, X.; Liu, Y.; Liu, X.; Su, K.; Shi, K. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharm. Sin. B, 2021, 11(8), 2265-2285.
[http://dx.doi.org/10.1016/j.apsb.2021.03.033] [PMID: 34522587]
[28]
Cheng, L.; Zhang, X.; Tang, J.; Lv, Q.; Liu, J. Gene-engineered exosomes-thermosensitive liposomes hybrid nanovesicles by the blockade of CD47 signal for combined photothermal therapy and cancer immunotherapy. Biomaterials, 2021, 275, 120964.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120964] [PMID: 34147721]
[29]
Di, J.; Gao, X.; Du, Y.; Zhang, H.; Gao, J.; Zheng, A. Size, shape, charge and “stealthy” surface: Carrier properties affect the drug circulation time in vivo. Asian J. Pharma. Sci., 2021, 16(4), 444-458.
[http://dx.doi.org/10.1016/j.ajps.2020.07.005] [PMID: 34703494]
[30]
Izci, M.; Maksoudian, C.; Manshian, B.B.; Soenen, S.J. The use of alternative strategies for enhanced nanoparticle delivery to solid tumors. Chem. Rev., 2021, 121(3), 1746-1803.
[http://dx.doi.org/10.1021/acs.chemrev.0c00779] [PMID: 33445874]
[31]
Wu, J. The enhanced permeability and retention (EPR) effect: The significance of the concept and methods to enhance its application. J. Pers. Med., 2021, 11(8), 771.
[http://dx.doi.org/10.3390/jpm11080771] [PMID: 34442415]
[32]
Zi, Y.; Yang, K.; He, J.; Wu, Z.; Liu, J.; Zhang, W. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Adv. Drug Deliv. Rev., 2022, 188, 114449.
[http://dx.doi.org/10.1016/j.addr.2022.114449] [PMID: 35835353]
[33]
Ikeda-Imafuku, M.; Wang, L.L.W.; Rodrigues, D.; Shaha, S.; Zhao, Z.; Mitragotri, S. Strategies to improve the EPR effect: A mechanistic perspective and clinical translation. J. Control. Release, 2022, 345, 512-536.
[http://dx.doi.org/10.1016/j.jconrel.2022.03.043] [PMID: 35337939]
[34]
Gawali, P.; Saraswat, A.; Bhide, S.; Gupta, S.; Patel, K. Human solid tumors and clinical relevance of the enhanced permeation and retention effect: A ‘golden gate’ for nanomedicine in preclinical studies? Nanomedicine, 2023, 18(2), 169-190.
[http://dx.doi.org/10.2217/nnm-2022-0257] [PMID: 37042320]
[35]
Liu, J.Y.W.; Thom, M.; Catarino, C.B.; Martinian, L.; Figarella-Branger, D.; Bartolomei, F.; Koepp, M.; Sisodiya, S.M. Neuropathology of the blood–brain barrier and pharmaco-resistance in human epilepsy. Brain, 2012, 135(10), 3115-3133.
[http://dx.doi.org/10.1093/brain/aws147] [PMID: 22750659]
[36]
Ekladious, I.; Colson, Y.L.; Grinstaff, M.W. Polymer–drug conjugate therapeutics: Advances, insights and prospects. Nat. Rev. Drug Discov., 2019, 18(4), 273-294.
[http://dx.doi.org/10.1038/s41573-018-0005-0] [PMID: 30542076]
[37]
Duan, C.; Yu, M.; Xu, J.; Li, B.Y.; Zhao, Y.; Kankala, R.K. Overcoming cancer multi-drug resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed. Pharmacother., 2023, 162, 114643.
[http://dx.doi.org/10.1016/j.biopha.2023.114643] [PMID: 37031496]
[38]
Larson, N.; Ghandehari, H. Polymeric conjugates for drug delivery. Chem. Mater., 2012, 24(5), 840-853.
[http://dx.doi.org/10.1021/cm2031569] [PMID: 22707853]
[39]
Junaid, K. Exploring the role of polymeric conjugates toward anti- cancer drug delivery: Current trends and future projections. Int. J. Pharm., 2018, 548(1), 500-514.
[40]
Lin, W.; Ma, G.; Yuan, Z.; Qian, H.; Xu, L.; Sidransky, E.; Chen, S. Development of zwitterionic polypeptide nanoformulation with high doxorubicin loading content for targeted drug delivery. Langmuir, 2019, 35(5), 1273-1283.
[http://dx.doi.org/10.1021/acs.langmuir.8b00851] [PMID: 29933695]
[41]
Chytil, P.; Kostka, L.; Etrych, T. HPMA copolymer-based nanomedicines in controlled drug delivery. J. Pers. Med., 2021, 11(2), 115.
[http://dx.doi.org/10.3390/jpm11020115] [PMID: 33578756]
[42]
Sanchez Armengol, E.; Unterweger, A.; Laffleur, F. PEGylated drug delivery systems in the pharmaceutical field: Past, present and future perspective. Drug Dev. Ind. Pharm., 2022, 48(4), 129-139.
[http://dx.doi.org/10.1080/03639045.2022.2101062] [PMID: 35822253]
[43]
Zhang, Y.; Song, W.; Lu, Y.; Xu, Y.; Wang, C.; Yu, D.G.; Kim, I. Recent advances in poly(α-L-glutamic acid)-based nanomaterials for drug delivery. Biomolecules, 2022, 12(5), 636.
[http://dx.doi.org/10.3390/biom12050636] [PMID: 35625562]
[44]
Stirland, D.L.; Nichols, J.W.; Miura, S.; Bae, Y.H. Mind the gap: A survey of how cancer drug carriers are susceptible to the gap between research and practice. J. Control. Release, 2013, 172(3), 1045-1064.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.026] [PMID: 24096014]
[45]
Alexis, F.; Pridgen, E.; Molnar, L.K.; Farokhzad, O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm., 2008, 5(4), 505-515.
[http://dx.doi.org/10.1021/mp800051m] [PMID: 18672949]
[46]
Atanase, L.I. Micellar drug delivery systems based on natural biopolymers. Polymers, 2021, 13(3), 477.
[http://dx.doi.org/10.3390/polym13030477] [PMID: 33540922]
[47]
Farasati Far, B.; Naimi-Jamal, M.R.; Safaei, M.; Zarei, K.; Moradi, M.; Yazdani Nezhad, H. A review on biomedical application of polysaccharide-based hydrogels with a focus on drug delivery systems. Polymers, 2022, 14(24), 5432.
[http://dx.doi.org/10.3390/polym14245432] [PMID: 36559799]
[48]
Pushpamalar, J.; Meganathan, P.; Tan, H.L.; Dahlan, N.A.; Ooi, L.T.; Neerooa, B.N.H.M.; Essa, R.Z.; Shameli, K.; Teow, S.Y. Development of a polysaccharide-based hydrogel drug delivery system (DDS): An update. Gels, 2021, 7(4), 153.
[http://dx.doi.org/10.3390/gels7040153] [PMID: 34698125]
[49]
Chiu, K.; Agoubi, L.L.; Lee, I.; Limpar, M.T.; Lowe, J.W., Jr; Goh, S.L. Effects of polymer molecular weight on the size, activity, and stability of PEG-functionalized trypsin. Biomacromolecules, 2010, 11(12), 3688-3692.
[http://dx.doi.org/10.1021/bm1006954] [PMID: 20979350]
[50]
Souza, J.G.; Dias, K.; Pereira, T.A.; Bernardi, D.S.; Lopez, R.F.V. Topical delivery of ocular therapeutics: Carrier systems and physical methods. J. Pharm. Pharmacol., 2014, 66(4), 507-530.
[http://dx.doi.org/10.1111/jphp.12132] [PMID: 24635555]
[51]
Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release, 2021, 332, 312-336.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.031] [PMID: 33652113]
[52]
Ghosh, B.; Biswas, S. Polymeric micelles in cancer therapy: State of the art. J. Control. Release, 2021, 332, 127-147.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.016] [PMID: 33609621]
[53]
Kedar, U.; Phutane, P.; Shidhaye, S.; Kadam, V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine, 2010, 6(6), 714-729.
[http://dx.doi.org/10.1016/j.nano.2010.05.005] [PMID: 20542144]
[54]
Koizumi, F.; Kitagawa, M.; Negishi, T.; Onda, T.; Matsumoto, S.; Hamaguchi, T.; Matsumura, Y. Novel SN-38-incorporating polymeric micelles, NK012, eradicate vascular endothelial growth factor-secreting bulky tumors. Cancer Res., 2006, 66(20), 10048-10056.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1605] [PMID: 17047068]
[55]
Hamaguchi, T.; Matsumura, Y.; Suzuki, M.; Shimizu, K.; Goda, R.; Nakamura, I.; Nakatomi, I.; Yokoyama, M.; Kataoka, K.; Kakizoe, T. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br. J. Cancer, 2005, 92(7), 1240-1246.
[http://dx.doi.org/10.1038/sj.bjc.6602479] [PMID: 15785749]
[56]
Armstrong, A.; Brewer, J.; Newman, C.; Alakhov, V.; Pietrzynski, G.; Campbell, S.; Corrie, P.; Ranson, M.; Valle, J.W. SP1049C as first-line therapy in advanced (inoperable or metastatic) adenocarcinoma of the oesophagus: A phase II window study. J. Clin. Oncol., 2006, 24(18), 4080.
[http://dx.doi.org/10.1200/jco.2006.24.18_suppl.4080]
[57]
Plummer, R.; Wilson, R.H.; Calvert, H.; Boddy, A.V.; Griffin, M.; Sludden, J.; Tilby, M.J.; Eatock, M.; Pearson, D.G.; Ottley, C.J.; Matsumura, Y.; Kataoka, K.; Nishiya, T. A Phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br. J. Cancer, 2011, 104(4), 593-598.
[http://dx.doi.org/10.1038/bjc.2011.6] [PMID: 21285987]
[58]
Uchino, H.; Matsumura, Y.; Negishi, T.; Koizumi, F.; Hayashi, T.; Honda, T.; Nishiyama, N.; Kataoka, K.; Naito, S.; Kakizoe, T. Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br. J. Cancer, 2005, 93(6), 678-687.
[http://dx.doi.org/10.1038/sj.bjc.6602772] [PMID: 16222314]
[59]
Jones, S.F.; Burris, H.A.; Infante, J.R.; Greco, F.A.; Spigel, D.R.; Kawamura, S.; Ishioka, T.; Yamazaki, H.; Bendell, J.C. A phase I study of NK012 in combination with 5-fluorouracil with or without leucovorin in patients (pts) with advanced solid tumors. J. Clin. Oncol., 2012, 30(15), e13076.
[http://dx.doi.org/10.1200/jco.2012.30.15_suppl.e13076]
[60]
Rinaldi, A.; Caraffi, R.; Grazioli, M.V.; Oddone, N.; Giardino, L.; Tosi, G.; Vandelli, M.A.; Calzà, L.; Ruozi, B.; Duskey, J.T. Applications of the ROS-responsive thioketal linker for the production of smart nanomedicines. Polymers, 2022, 14(4), 687.
[http://dx.doi.org/10.3390/polym14040687] [PMID: 35215600]
[61]
Ghauri, Z.H.; Islam, A.; Qadir, M.A.; Ghaffar, A.; Gull, N.; Azam, M.; Mehmood, A.; Ghauri, A.A.; Khan, R.U. Novel pH-responsive chitosan/sodium alginate/PEG based hydrogels for release of sodium ceftriaxone. Mater. Chem. Phys., 2022, 277, 125456.
[http://dx.doi.org/10.1016/j.matchemphys.2021.125456]
[62]
Huang, X.; Sheng, B.; Tian, H.; Chen, Q.; Yang, Y.; Bui, B.; Pi, J.; Cai, H.; Chen, S.; Zhang, J.; Chen, W.; Zhou, H.; Sun, P. Real-time SERS monitoring anticancer drug release along with SERS/MR imaging for pH-sensitive chemo-phototherapy. Acta Pharm. Sin. B, 2023, 13(3), 1303-1317.
[http://dx.doi.org/10.1016/j.apsb.2022.08.024] [PMID: 36970207]
[63]
Zhu, W.; Bai, Y.; Zhang, N.; Yan, J.; Chen, J.; He, Z.; Sun, Q.; Pu, Y.; He, B.; Ye, X. A tumor extracellular pH-sensitive PD-L1 binding peptide nanoparticle for chemo-immunotherapy of cancer. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(20), 4201-4210.
[http://dx.doi.org/10.1039/D1TB00537E] [PMID: 33997867]
[64]
Su, D.; Zhang, D. Linker design impacts antibody-drug conjugate pharmacokinetics and efficacy via modulating the stability and payload release efficiency. Front. Pharmacol., 2021, 12, 687926.
[http://dx.doi.org/10.3389/fphar.2021.687926] [PMID: 34248637]
[65]
Wang, Q.; Wang, C.; Li, S.; Xiong, Y.; Wang, H.; Li, Z.; Wan, J.; Yang, X.; Li, Z. Influence of linkers within stimuli-responsive prodrugs on cancer therapy: A case of five doxorubicin dimer-based nanoparticles. Chem. Mater., 2022, 34(5), 2085-2097.
[http://dx.doi.org/10.1021/acs.chemmater.1c03346]
[66]
Apostolovic, B.; Deacon, S.P.E.; Duncan, R.; Klok, H.A. Hybrid polymer therapeutics incorporating bioresponsive, coiled coil peptide linkers. Biomacromolecules, 2010, 11(5), 1187-1195.
[http://dx.doi.org/10.1021/bm901313c] [PMID: 20359192]
[67]
Zang, C.; Wang, H.; Li, T.; Zhang, Y.; Li, J.; Shang, M.; Du, J.; Xi, Z.; Zhou, C. A light-responsive, self-immolative linker for controlled drug delivery via peptide- and protein-drug conjugates. Chem. Sci., 2019, 10(39), 8973-8980.
[http://dx.doi.org/10.1039/C9SC03016F] [PMID: 31762977]
[68]
Martins-Teixeira, M.B.; Carvalho, I. Antitumour anthracyclines: Progress and perspectives. Chem. Med. Chem., 2020, 15(11), 933-948.
[http://dx.doi.org/10.1002/cmdc.202000131] [PMID: 32314528]
[69]
van der Zanden, S.Y.; Qiao, X.; Neefjes, J. New insights into the activities and toxicities of the old anticancer drug doxorubicin. FEBS J., 2021, 288(21), 6095-6111.
[http://dx.doi.org/10.1111/febs.15583] [PMID: 33022843]
[70]
Dieci, M.V.; Guarneri, V.; Tosi, A.; Bisagni, G.; Musolino, A.; Spazzapan, S.; Moretti, G.; Vernaci, G.M.; Griguolo, G.; Giarratano, T.; Urso, L.; Schiavi, F.; Pinato, C.; Magni, G.; Lo Mele, M.; De Salvo, G.L.; Rosato, A.; Conte, P. Neoadjuvant chemotherapy and immunotherapy in luminal B-like breast cancer: Results of the phase II GIADA trial. Clin. Cancer Res., 2022, 28(2), 308-317.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-2260] [PMID: 34667023]
[71]
González-Santiago, S.; Saura, C.; Ciruelos, E.; Alonso, J.L.; de la Morena, P.; Santisteban Eslava, M.; Gallegos Sancho, M.I.; de Luna, A.; Dalmau, E.; Servitja, S.; Ruiz Borrego, M.; Chacón, J.I. Real-world effectiveness of dual HER2 blockade with pertuzumab and trastuzumab for neoadjuvant treatment of HER2-positive early breast cancer (The NEOPETRA Study). Breast Cancer Res. Treat., 2020, 184(2), 469-479.
[http://dx.doi.org/10.1007/s10549-020-05866-1] [PMID: 32876911]
[72]
Stryker, Z.I.; Rajabi, M.; Davis, P.J.; Mousa, S.A. Evaluation of angiogenesis assays. Biomedicines, 2019, 7(2), 37.
[http://dx.doi.org/10.3390/biomedicines7020037] [PMID: 31100863]
[73]
Zhang, C.; Xu, C.; Gao, X.; Yao, Q. Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics, 2022, 12(5), 2115-2132.
[http://dx.doi.org/10.7150/thno.69424] [PMID: 35265202]
[74]
Patel, S.A.; Nilsson, M.B.; Le, X.; Cascone, T.; Jain, R.K.; Heymach, J.V. Molecular mechanisms and future implications of VEGF/VEGFR in cancer therapy. Clin. Cancer Res., 2023, 29(1), 30-39.
[http://dx.doi.org/10.1158/1078-0432.CCR-22-1366] [PMID: 35969170]
[75]
Pointer, K.B.; Pitroda, S.P.; Weichselbaum, R.R. Radiotherapy and immunotherapy: Open questions and future strategies. Trends Cancer, 2022, 8(1), 9-20.
[http://dx.doi.org/10.1016/j.trecan.2021.10.003] [PMID: 34740553]
[76]
Zhang, Z.; Liu, X.; Chen, D.; Yu, J. Radiotherapy combined with immunotherapy: The dawn of cancer treatment. Signal Transduct. Target. Ther., 2022, 7(1), 258.
[http://dx.doi.org/10.1038/s41392-022-01102-y] [PMID: 35906199]
[77]
Yang, Z.; Gao, D.; Zhao, J.; Yang, G.; Guo, M.; Wang, Y.; Ren, X.; Kim, J.S.; Jin, L.; Tian, Z.; Zhang, X. Thermal immuno-nanomedicine in cancer. Nat. Rev. Clin. Oncol., 2023, 20(2), 116-134.
[http://dx.doi.org/10.1038/s41571-022-00717-y] [PMID: 36604531]
[78]
Nemunaitis, J.; Cunningham, C.; Senzer, N.; Gray, M.; Oldham, F.; Pippen, J.; Mennel, R.; Eisenfeld, A. Phase I study of CT-2103, a polymer-conjugated paclitaxel, and carboplatin in patients with advanced solid tumors. Cancer Invest., 2005, 23(8), 671-676.
[http://dx.doi.org/10.1080/07357900500359935] [PMID: 16377585]
[79]
Greco, F.; Vicent, M.J. Combination therapy: Opportunities and challenges for polymer–drug conjugates as anticancer nanomedicines. Adv. Drug Deliv. Rev., 2009, 61(13), 1203-1213.
[http://dx.doi.org/10.1016/j.addr.2009.05.006] [PMID: 19699247]
[80]
Rocha, C.R.R.; Silva, M.M.; Quinet, A.; Cabral-Neto, J.B.; Menck, C.F.M. DNA repair pathways and cisplatin resistance: An intimate relationship. Clinics, 2018, 73(Suppl. 1), e478s.
[http://dx.doi.org/10.6061/clinics/2018/e478s] [PMID: 30208165]
[81]
Romani, A.M.P. Cisplatin in cancer treatment. Biochem. Pharmacol., 2022, 206, 115323.
[http://dx.doi.org/10.1016/j.bcp.2022.115323] [PMID: 36368406]
[82]
Clapp, C.; Thebault, S.; Martínez de la Escalera, G. Role of prolactin and vasoinhibins in the regulation of vascular function in mammary gland. J. Mammary Gland Biol. Neoplasia, 2008, 13(1), 55-67.
[http://dx.doi.org/10.1007/s10911-008-9067-7] [PMID: 18204888]
[83]
Bonner, J.A.; Harari, P.M.; Giralt, J.; Cohen, R.B.; Jones, C.U.; Sur, R.K.; Raben, D.; Baselga, J.; Spencer, S.A.; Zhu, J.; Youssoufian, H.; Rowinsky, E.K.; Ang, K.K. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol., 2010, 11(1), 21-28.
[http://dx.doi.org/10.1016/S1470-2045(09)70311-0] [PMID: 19897418]
[84]
Lammers, T.; Subr, V.; Ulbrich, K.; Peschke, P.; Huber, P.E.; Hennink, W.E.; Storm, G.; Kiessling, F. HPMA-based polymer therapeutics improve the efficacy of surgery, of radiotherapy and of chemotherapy combinations. Nanomedicine, 2010, 5(10), 1501-1523.
[http://dx.doi.org/10.2217/nnm.10.130] [PMID: 21143030]
[85]
Le Deley, M.C.; Suzan, F.; Cutuli, B.; Delaloge, S.; Shamsaldin, A.; Linassier, C.; Clisant, S.; de Vathaire, F.; Fenaux, P.; Hill, C. Anthracyclines, mitoxantrone, radiotherapy, and granulocyte colony-stimulating factor: Risk factors for leukemia and myelodysplastic syndrome after breast cancer. J. Clin. Oncol., 2007, 25(3), 292-300.
[http://dx.doi.org/10.1200/JCO.2006.05.9048] [PMID: 17159192]
[86]
Huang, D.; Sun, L.; Huang, L.; Chen, Y. Nanodrug delivery systems modulate tumor vessels to increase the enhanced permeability and retention effect. J. Pers. Med., 2021, 11(2), 124.
[http://dx.doi.org/10.3390/jpm11020124] [PMID: 33672813]
[87]
Melancon, M.P.; Li, C. Multifunctional synthetic poly(L-glutamic acid)-based cancer therapeutic and imaging agents. Mol. Imaging, 2011, 10(1), 7290.2011.00007.
[http://dx.doi.org/10.2310/7290.2011.00007] [PMID: 21303613]
[88]
Liu, Q.; Duo, Y.; Fu, J.; Qiu, M.; Sun, Z.; Adah, D.; Kang, J.; Xie, Z.; Fan, T.; Bao, S.; Zhang, H.; Liu, L-P.; Cao, Y. Nano-immunotherapy: Unique mechanisms of nanomaterials in synergizing cancer immunotherapy. Nano Today, 2021, 36, 101023.
[http://dx.doi.org/10.1016/j.nantod.2020.101023]
[89]
Chen, F.; Xie, H.; Bao, H.; Violetta, L.; Zheng, S. Combination of HSP90 and autophagy inhibitors promotes hepatocellular carcinoma apoptosis following incomplete thermal ablation. Mol. Med. Rep., 2020, 22(1), 337-343.
[http://dx.doi.org/10.3892/mmr.2020.11080] [PMID: 32319654]
[90]
Fang, J.; Sawa, T.; Akaike, T.; Greish, K.; Maeda, H. Enhancement of chemotherapeutic response of tumor cells by a heme oxygenase inhibitor, pegylated zinc protoporphyrin. Int. J. Cancer, 2004, 109(1), 1-8.
[http://dx.doi.org/10.1002/ijc.11644] [PMID: 14735461]
[91]
Zhou, Y.; Yang, J.; Rhim, J.S.; Kopeček, J. HPMA copolymer-based combination therapy toxic to both prostate cancer stem/progenitor cells and differentiated cells induces durable anti-tumor effects. J. Control. Release, 2013, 172(3), 946-953.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.005] [PMID: 24041709]
[92]
Duangjai, A.; Luo, K.; Zhou, Y.; Yang, J.; Kopeček, J. Combination cytotoxicity of backbone degradable HPMA copolymer gemcitabine and platinum conjugates toward human ovarian carcinoma cells. Eur. J. Pharm. Biopharm., 2014, 87(1), 187-196.
[http://dx.doi.org/10.1016/j.ejpb.2013.11.008] [PMID: 24316339]
[93]
Lee, G.Y.; Qian, W.P.; Wang, L.; Wang, Y.A.; Staley, C.A.; Satpathy, M.; Nie, S.; Mao, H.; Yang, L. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano, 2013, 7(3), 2078-2089.
[http://dx.doi.org/10.1021/nn3043463] [PMID: 23402593]
[94]
Zhang, R.; Yang, J.; Sima, M.; Zhou, Y.; Kopeček, J. Sequential combination therapy of ovarian cancer with degradable N -(2-hydroxypropyl)methacrylamide copolymer paclitaxel and gemcitabine conjugates. Proc. Natl. Acad. Sci., 2014, 111(33), 12181-12186.
[http://dx.doi.org/10.1073/pnas.1406233111] [PMID: 25092316]
[95]
Greco, F.; Vicent, M.J.; Penning, N.A.; Nicholson, R.I.; Duncan, R. HPMA copolymer–aminoglutethimide conjugates inhibit aromatase in MCF-7 cell lines. J. Drug Target., 2005, 13(8-9), 459-470.
[http://dx.doi.org/10.1080/10611860500383788] [PMID: 16332571]
[96]
Lammers, T.; Subr, V.; Ulbrich, K.; Peschke, P.; Huber, P.E.; Hennink, W.E.; Storm, G. Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. Biomaterials, 2009, 30(20), 3466-3475.
[http://dx.doi.org/10.1016/j.biomaterials.2009.02.040] [PMID: 19304320]
[97]
Qiu, Y.; Bai, J.; Feng, Y.; Shi, X.; Zhao, X. Use of pH-active catechol-bearing polymeric nanogels with glutathione-responsive dissociation to codeliver bortezomib and doxorubicin for the synergistic therapy of cancer. ACS Appl. Mater. Interfaces, 2021, 13(31), 36926-36937.
[http://dx.doi.org/10.1021/acsami.1c10328] [PMID: 34319074]
[98]
Kostková, H.; Etrych, T.; Říhová, B.; Ulbrich, K. Synergistic effect of HPMA copolymer-bound doxorubicin and dexamethasone in vivo on mouse lymphomas. J. Bioact. Compat. Polym., 2011, 26(3), 270-286.
[http://dx.doi.org/10.1177/0883911511406326]
[99]
Miller, K.; Eldar-Boock, A.; Polyak, D.; Segal, E.; Benayoun, L.; Shaked, Y.; Satchi-Fainaro, R. Antiangiogenic antitumor activity of HPMA copolymer-paclitaxel-alendronate conjugate on breast cancer bone metastasis mouse model. Mol. Pharm., 2011, 8(4), 1052-1062.
[http://dx.doi.org/10.1021/mp200083n] [PMID: 21545170]
[100]
Clementi, C.; Miller, K.; Mero, A.; Satchi-Fainaro, R.; Pasut, G. Dendritic poly(ethylene glycol) bearing paclitaxel and alendronate for targeting bone neoplasms. Mol. Pharm., 2011, 8(4), 1063-1072.
[http://dx.doi.org/10.1021/mp2001445] [PMID: 21608527]
[101]
Segal, E.; Pan, H.; Benayoun, L.; Kopečková, P.; Shaked, Y.; Kopeček, J.; Satchi-Fainaro, R. Enhanced anti-tumor activity and safety profile of targeted nano-scaled HPMA copolymer-alendronate-TNP-470 conjugate in the treatment of bone malignances. Biomaterials, 2011, 32(19), 4450-4463.
[http://dx.doi.org/10.1016/j.biomaterials.2011.02.059] [PMID: 21429572]
[102]
Sebak, A.A.; El-Shenawy, B.M.; El-Safy, S.; El-Shazly, M. From passive targeting to personalized nanomedicine: multidimensional insights on nanoparticles’ interaction with the tumor microenvironment. Curr. Pharm. Biotechnol., 2021, 22(11), 1444-1465.
[http://dx.doi.org/10.2174/1389201021666201211103856] [PMID: 33308126]
[103]
Tian, H.; Zhang, T.; Qin, S.; Huang, Z.; Zhou, L.; Shi, J.; Nice, E.C.; Xie, N.; Huang, C.; Shen, Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J. Hematol. Oncol., 2022, 15(1), 132.
[http://dx.doi.org/10.1186/s13045-022-01320-5] [PMID: 36096856]
[104]
Alamdari, S.G.; Amini, M.; Jalilzadeh, N.; Baradaran, B.; Mohammadzadeh, R.; Mokhtarzadeh, A.; Oroojalian, F. Recent advances in nanoparticle-based photothermal therapy for breast cancer. J. Control. Release, 2022, 349, 269-303.
[http://dx.doi.org/10.1016/j.jconrel.2022.06.050] [PMID: 35787915]
[105]
Jin, S.; Sun, Y.; Liang, X.; Gu, X.; Ning, J.; Xu, Y.; Chen, S.; Pan, L. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct. Target. Ther., 2022, 7(1), 39.
[http://dx.doi.org/10.1038/s41392-021-00868-x] [PMID: 35132063]
[106]
Zinn, S.; Vazquez-Lombardi, R.; Zimmermann, C.; Sapra, P.; Jermutus, L.; Christ, D. Advances in antibody-based therapy in oncology. Nat. Can., 2023, 4(2), 165-180.
[http://dx.doi.org/10.1038/s43018-023-00516-z] [PMID: 36806801]
[107]
Lanier, L.L.; Kipps, T.J.; Phillips, J.H. Functional properties of a unique subset of cytotoxic CD3+ T lymphocytes that express Fc receptors for IgG (CD16/Leu-11 antigen). J. Exp. Med., 1985, 162(6), 2089-2106.
[http://dx.doi.org/10.1084/jem.162.6.2089] [PMID: 2415663]
[108]
Hooks, M.A.; Wade, C.S.; Millikan, W.J., Jr Muromonab CD-3: A review of its pharmacology, pharmacokinetics, and clinical use in transplantation. Pharmacotherapy, 1991, 11(1), 26-37.
[http://dx.doi.org/10.1002/j.1875-9114.1991.tb03595.x] [PMID: 1902291]
[109]
Dumontet, C.; Reichert, J.M.; Senter, P.D.; Lambert, J.M.; Beck, A. Antibody–drug conjugates come of age in oncology. Nat. Rev. Drug Discov., 2023, 22(8), 641-661.
[http://dx.doi.org/10.1038/s41573-023-00709-2] [PMID: 37308581]
[110]
Danial, M.; Root, M.J.; Klok, H.A. Polyvalent side chain peptide-synthetic polymer conjugates as HIV-1 entry inhibitors. Biomacromolecules, 2012, 13(5), 1438-1447.
[http://dx.doi.org/10.1021/bm300150q] [PMID: 22455441]
[111]
Fowers, K.D.; Kopeček, J. Targeting of multidrug-resistant human ovarian carcinoma cells with anti-P-glycoprotein antibody conjugates. Macromol. Biosci., 2012, 12(4), 502-514.
[http://dx.doi.org/10.1002/mabi.201100350] [PMID: 22278817]
[112]
Maeda, H.; Bharate, G.Y.; Daruwalla, J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm., 2009, 71(3), 409-419.
[http://dx.doi.org/10.1016/j.ejpb.2008.11.010] [PMID: 19070661]
[113]
Miller, K.; Wang, M.; Gralow, J.; Dickler, M.; Cobleigh, M.; Perez, E.A.; Shenkier, T.; Cella, D.; Davidson, N.E. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med., 2007, 357(26), 2666-2676.
[http://dx.doi.org/10.1056/NEJMoa072113] [PMID: 18160686]
[114]
Hongrapipat, J.; Kopečková, P.; Liu, J.; Prakongpan, S.; Kopeček, J. Combination chemotherapy and photodynamic therapy with fab’ fragment targeted HPMA copolymer conjugates in human ovarian carcinoma cells. Mol. Pharm., 2008, 5(5), 696-709.
[http://dx.doi.org/10.1021/mp800006e] [PMID: 18729468]
[115]
Kovar, M. Overcoming immunoescape mechanisms and induction of CD8(+) T cell-mediated resistance to tumor by polymer-bound doxorubicin conjugate targeted to tumor-specific antigen. Immunology, 2012, 137, 719-719.
[116]
Eldar-Boock, A.; Miller, K.; Sanchis, J.; Lupu, R.; Vicent, M.J.; Satchi-Fainaro, R. Integrin-assisted drug delivery of nano-scaled polymer therapeutics bearing paclitaxel. Biomaterials, 2011, 32(15), 3862-3874.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.073] [PMID: 21376390]
[117]
Davis, P.J.; Mousa, S.A.; Cody, V.; Tang, H.Y.; Lin, H.Y. Small molecule hormone or hormone-like ligands of integrin αVβ3: Implications for cancer cell behavior. Horm. Cancer, 2013, 4(6), 335-342.
[http://dx.doi.org/10.1007/s12672-013-0156-8] [PMID: 23943159]
[118]
Panagi, M.; Mpekris, F.; Chen, P.; Voutouri, C.; Nakagawa, Y.; Martin, J.D.; Hiroi, T.; Hashimoto, H.; Demetriou, P.; Pierides, C.; Samuel, R.; Stylianou, A.; Michael, C.; Fukushima, S.; Georgiou, P.; Papageorgis, P.; Papaphilippou, P.C.; Koumas, L.; Costeas, P.; Ishii, G.; Kojima, M.; Kataoka, K.; Cabral, H.; Stylianopoulos, T. Polymeric micelles effectively reprogram the tumor microenvironment to potentiate nano-immunotherapy in mouse breast cancer models. Nat. Commun., 2022, 13(1), 7165.
[http://dx.doi.org/10.1038/s41467-022-34744-1] [PMID: 36418896]
[119]
Saiyin, W.; Wang, D.; Li, L.; Zhu, L.; Liu, B.; Sheng, L.; Li, Y.; Zhu, B.; Mao, L.; Li, G.; Zhu, X. Sequential release of autophagy inhibitor and chemotherapeutic drug with polymeric delivery system for oral squamous cell carcinoma therapy. Mol. Pharm., 2014, 11(5), 1662-1675.
[http://dx.doi.org/10.1021/mp5000423] [PMID: 24666011]
[120]
Jia, F.; Li, Y.; Deng, X.; Wang, X.; Cui, X.; Lu, J.; Pan, Z.; Wu, Y. Self-assembled fluorescent hybrid nanoparticles-mediated collaborative lncRNA CCAT1 silencing and curcumin delivery for synchronous colorectal cancer theranostics. J. Nanobiotechnology, 2021, 19(1), 238.
[http://dx.doi.org/10.1186/s12951-021-00981-7] [PMID: 34380471]
[121]
Shahriari, M.; Taghdisi, S.M.; Abnous, K.; Ramezani, M.; Alibolandi, M. Self-targeted polymersomal co-formulation of doxorubicin, camptothecin and FOXM1 aptamer for efficient treatment of non-small cell lung cancer. J. Control. Release, 2021, 335, 369-388.
[http://dx.doi.org/10.1016/j.jconrel.2021.05.039] [PMID: 34058270]
[122]
Wu, J.; Wang, Q.; Dong, X.; Xu, M.; Yang, J.; Yi, X.; Chen, B.; Dong, X.; Wang, Y.; Lou, X.; Xia, F.; Wang, S.; Dai, J. Biocompatible AIEgen/p-glycoprotein siRNA@reduction-sensitive paclitaxel polymeric prodrug nanoparticles for overcoming chemotherapy resistance in ovarian cancer. Theranostics, 2021, 11(8), 3710-3724.
[http://dx.doi.org/10.7150/thno.53828] [PMID: 33664857]
[123]
Xiao, H.; Song, H.; Yang, Q.; Cai, H.; Qi, R.; Yan, L.; Liu, S.; Zheng, Y.; Huang, Y.; Liu, T.; Jing, X. A prodrug strategy to deliver cisplatin(IV) and paclitaxel in nanomicelles to improve efficacy and tolerance. Biomaterials, 2012, 33(27), 6507-6519.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.049] [PMID: 22727463]
[124]
Xiao, H.; Li, W.; Qi, R.; Yan, L.; Wang, R.; Liu, S.; Zheng, Y.; Xie, Z.; Huang, Y.; Jing, X. Co-delivery of daunomycin and oxaliplatin by biodegradable polymers for safer and more efficacious combination therapy. J. Control. Release, 2012, 163(3), 304-314.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.004] [PMID: 22698937]
[125]
Ganoth, A.; Merimi, K.C.; Peer, D. Overcoming multidrug resistance with nanomedicines. Expert Opin. Drug Deliv., 2015, 12(2), 223-238.
[http://dx.doi.org/10.1517/17425247.2015.960920] [PMID: 25224685]
[126]
Yang, X.; Yi, C.; Luo, N.; Gong, C. Nanomedicine to overcome cancer multidrug resistance. Curr. Drug Metab., 2014, 15(6), 632-649.
[http://dx.doi.org/10.2174/1389200215666140926154443] [PMID: 25255871]
[127]
Guo, P.; Wang, Q.; Chen, D.; Cao, Y.; He, H. Drug ratio dependent macromolecular combination therapeutics against multidrug resistance. J. Control. Release, 2013, 172(1), e59-e60.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.123]
[128]
Duan, X.; Xiao, J.; Yin, Q.; Zhang, Z.; Yu, H.; Mao, S.; Li, Y. Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram. ACS Nano, 2013, 7(7), 5858-5869.
[http://dx.doi.org/10.1021/nn4010796] [PMID: 23734880]
[129]
Duncan, R.; Vicent, M.J. Do HPMA copolymer conjugates have a future as clinically useful nanomedicines? A critical overview of current status and future opportunities. Adv. Drug Deliv. Rev., 2010, 62(2), 272-282.
[http://dx.doi.org/10.1016/j.addr.2009.12.005] [PMID: 20005271]
[130]
Gao, Q.; Feng, J.; Liu, W.; Wen, C.; Wu, Y.; Liao, Q.; Zou, L.; Sui, X.; Xie, T.; Zhang, J.; Hu, Y. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Adv. Drug Deliv. Rev., 2022, 188, 114445.
[http://dx.doi.org/10.1016/j.addr.2022.114445] [PMID: 35820601]
[131]
Chandra, J.; Hasan, N.; Nasir, N.; Wahab, S.; Thanikachalam, P.V.; Sahebkar, A.; Ahmad, F.J.; Kesharwani, P. Nanotechnology-empowered strategies in treatment of skin cancer. Environ. Res., 2023, 235, 116649.
[http://dx.doi.org/10.1016/j.envres.2023.116649] [PMID: 37451568]
[132]
Liu, Y.; Tamam, H.; Yeo, Y. Mixed liposome approach for ratiometric and sequential delivery of paclitaxel and gemcitabine. AAPS Pharm. Sci. Tech., 2018, 19(2), 693-699.
[http://dx.doi.org/10.1208/s12249-017-0877-z] [PMID: 28971370]
[133]
Tardi, P.G.; Dos Santos, N.; Harasym, T.O.; Johnstone, S.A.; Zisman, N.; Tsang, A.W.; Bermudes, D.G.; Mayer, L.D. Drug ratio–dependent antitumor activity of irinotecan and cisplatin combinations in vitro and in vivo. Mol. Cancer Ther., 2009, 8(8), 2266-2275.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0243] [PMID: 19671743]
[134]
Koizumi, Y.; Iwami, S. Mathematical modeling of multi-drugs therapy: A challenge for determining the optimal combinations of antiviral drugs. Theor. Biol. Med. Model., 2014, 11(1), 41-41.
[http://dx.doi.org/10.1186/1742-4682-11-41] [PMID: 25252828]
[135]
Zeng, L.; Gowda, B.H.J.; Ahmed, M.G.; Abourehab, M.A.S.; Chen, Z.S.; Zhang, C.; Li, J.; Kesharwani, P. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol. Cancer, 2023, 22(1), 10.
[http://dx.doi.org/10.1186/s12943-022-01708-4] [PMID: 36635761]
[136]
Kang, H.; Rho, S.; Stiles, W.R.; Hu, S.; Baek, Y.; Hwang, D.W.; Kashiwagi, S.; Kim, M.S.; Choi, H.S. Size-dependent EPR effect of polymeric nanoparticles on tumor targeting. Adv. Healthc. Mater., 2020, 9(1), 1901223.
[http://dx.doi.org/10.1002/adhm.201901223] [PMID: 31794153]
[137]
Lammers, T.; Kühnlein, R.; Kissel, M.; Subr, V.; Etrych, T.; Pola, R.; Pechar, M.; Ulbrich, K.; Storm, G.; Huber, P.; Peschke, P. Effect of physicochemical modification on the biodistribution and tumor accumulation of HPMA copolymers. J. Control. Release, 2005, 110(1), 103-118.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.010] [PMID: 16274831]
[138]
Srinivasan, M.; Rajabi, M.; Mousa, S.A. Nanobiomaterials in cancer therapy. nanobiomaterials in cancer therapy: Applications of nanobiomaterials; Grumezescu, A.M., Ed.; , 2016, pp. 57-89.
[http://dx.doi.org/10.1016/B978-0-323-42863-7.00003-7]
[139]
Benchaala, I.; Mishra, M.K.; Wykes, S.M.; Hali, M.; Kannan, R.M.; Whittum-Hudson, J.A. Folate-functionalized dendrimers for targeting Chlamydia-infected tissues in a mouse model of reactive arthritis. Int. J. Pharm., 2014, 466(1-2), 258-265.
[http://dx.doi.org/10.1016/j.ijpharm.2014.03.018] [PMID: 24607214]
[140]
Ward, R.A.; Fawell, S.; Floc’h, N.; Flemington, V.; McKerrecher, D.; Smith, P.D. Challenges and opportunities in cancer drug resistance. Chem. Rev., 2021, 121(6), 3297-3351.
[http://dx.doi.org/10.1021/acs.chemrev.0c00383] [PMID: 32692162]
[141]
Dasari, S.; Njiki, S.; Mbemi, A.; Yedjou, C.G.; Tchounwou, P.B. Pharmacological effects of cisplatin combination with natural products in cancer chemotherapy. Int. J. Mol. Sci., 2022, 23(3), 1532.
[http://dx.doi.org/10.3390/ijms23031532] [PMID: 35163459]
[142]
Li, Z.N.; Luo, Y. HSP90 inhibitors and cancer: Prospects for use in targeted therapies (Review). Oncol. Rep., 2022, 49(1), 6.
[http://dx.doi.org/10.3892/or.2022.8443] [PMID: 36367182]
[143]
Hong, Y.; Nam, S.M.; Moon, A. Antibody–drug conjugates and bispecific antibodies targeting cancers: Applications of click chemistry. Arch. Pharm. Res., 2023, 46(3), 131-148.
[http://dx.doi.org/10.1007/s12272-023-01433-6] [PMID: 36877356]
[144]
Gnanaraj, C. Recent advances in drug formulation development for targeting lung cancer. In: Advanced drug delivery systems in the management of cancer; Dua, K., Ed.; Academic Press, 2021; pp. 75-100.
[http://dx.doi.org/10.1016/B978-0-323-85503-7.00007-9]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy