Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Research Article

Repurposing Phytochemicals against Breast Cancer (MCF-7) using Classical Structure-Based Drug Design

Author(s): Faten Essam Hussain Aldoghachi, Amjad Oraibi*, Noor Hamid Mohsen and Sara Salah Hassan

Volume 22, Issue 1, 2025

Published on: 28 March, 2024

Article ID: e280324228430 Pages: 17

DOI: 10.2174/0115701638295736240315105737

Price: $65

Open Access Journals Promotions 2
Abstract

Background: The significant public health effect of breast cancer is demonstrated by its high global prevalence and the potential for severe health consequences. The suppression of the proliferative effects facilitated by the estrogen receptor alpha (ERα) in the MCF-7 cell line is significant for breast cancer therapy.

Objective: The current work involves in-silico techniques for identifying potential inhibitors of ERα.

Methods: The method combines QSAR models based on machine learning with molecular docking to identify potential binders for the ERα. Further, molecular dynamics simulation studied the stability of the complexes, and ADMET analysis validated the compound’s properties.

Results: Two compounds (162412 and 443440) showed significant binding affinities with ERα, with binding energies comparable to the established binder RL4. The ADMET qualities showed advantageous characteristics resembling pharmaceutical drugs. The stable binding of these ligands in the active region of ERα during dynamic conditions was confirmed by molecular dynamics simulations. RMSD plots and conformational stability supported the ligands' persistent occupancy in the protein's binding site. After simulation, two hydrogen bonds were found within the protein-ligand complexes of 162412 and 443440, with binding free energy values of -27.32 kcal/mol and -25.00 kcal/mol.

Conclusion: The study suggests that compounds 162412 and 443440 could be useful for developing innovative anti-ERα medicines. However, more research is needed to prove the compounds' breast cancer treatment efficacy. This will help develop new treatments for ERα-associated breast cancer.

Keywords: Estrogen receptor alpha (ERα), MCF-7 cell line, breast cancer, quantitative structure-activity relationship (QSAR) model, molecular dynamics simulations, hydrogen bond.

Graphical Abstract
[1]
Tirelli U, Chirumbolo S. COVID -19 and cancer: A deadly pairing. Int J Cancer 2021; 149(5): 1199-200.
[http://dx.doi.org/10.1002/ijc.33600] [PMID: 33861864]
[2]
Malviya VJ. Introduction to cancer. Medicinal Plants and Cancer Chemoprevention. CRC Press 2023.
[http://dx.doi.org/10.1201/9781003251712]
[3]
Arnold M, Morgan E, Rumgay H, et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022; 66: 15-23.
[http://dx.doi.org/10.1016/j.breast.2022.08.010] [PMID: 36084384]
[4]
Peng SM, Yang KC, Chan WP, et al. Impact of the COVID-19 pandemic on a population-based breast cancer screening program. Cancer 2020; 126(24): 5202-5.
[http://dx.doi.org/10.1002/cncr.33180] [PMID: 32914864]
[5]
Yager JD, Davidson NE. Estrogen carcinogenesis in breast cancer. N Engl J Med 2006; 354(3): 270-82.
[http://dx.doi.org/10.1056/NEJMra050776] [PMID: 16421368]
[6]
Brisken C, O’Malley B. Hormone action in the mammary gland. Cold Spring Harb Perspect Biol 2010; 2(12): a003178.
[http://dx.doi.org/10.1101/cshperspect.a003178] [PMID: 20739412]
[7]
Bai Z, Gust R. Breast cancer, estrogen receptor and ligands. Arch Pharm 2009; 342(3): 133-49.
[http://dx.doi.org/10.1002/ardp.200800174] [PMID: 19274700]
[8]
Lewoniewska S, Oscilowska I, Forlino A, Palka J. Understanding the role of estrogen receptor status in PRODH/POX-dependent apoptosis/survival in breast cancer cells. Biology 2021; 10(12): 1314.
[http://dx.doi.org/10.3390/biology10121314] [PMID: 34943229]
[9]
Clarke RB. Steroid receptors and proliferation in the human breast. Steroids 2003; 68(10-13): 789-94.
[http://dx.doi.org/10.1016/S0039-128X(03)00122-3] [PMID: 14667969]
[10]
Human breast cell proliferation and its relationship to steroid receptor expression. Available from:https://pubmed.ncbi.nlm.nih.gov/15497901/ (Accessed Oct 4, 2023).
[11]
Wang LH, Yang XY, Zhang X, et al. Suppression of breast cancer by chemical modulation of vulnerable zinc fingers in estrogen receptor. Nat Med 2004; 10(1): 40-7.
[http://dx.doi.org/10.1038/nm969] [PMID: 14702633]
[12]
Wang LH, Yang XY, Zhang X, et al. Disruption of estrogen receptor DNA-binding domain and related intramolecular communication restores tamoxifen sensitivity in resistant breast cancer. Cancer Cell 2006; 10(6): 487-99.
[http://dx.doi.org/10.1016/j.ccr.2006.09.015] [PMID: 17157789]
[13]
Leung E, Kannan N, Krissansen GW, Findlay MP, Baguley BC. MCF-7 breast cancer cells selected for tamoxifen resistance acquire new phenotypes differing in DNA content, phospho-HER2 and PAX2 expression, and rapamycin sensitivity. Cancer Biol Ther 2010; 9(9): 717-24.
[http://dx.doi.org/10.4161/cbt.9.9.11432] [PMID: 20234184]
[14]
Petri BJ, Piell KM, South Whitt GC, et al. HNRNPA2B1 regulates tamoxifen- and fulvestrant-sensitivity and hallmarks of endocrine resistance in breast cancer cells. Cancer Lett 2021; 518: 152-68.
[http://dx.doi.org/10.1016/j.canlet.2021.07.015] [PMID: 34273466]
[15]
Vo GV, Nguyen THT, Nguyen TP, et al. In silico and in vitro studies on the anti-cancer activity of artemetin, vitexicarpin and penduletin compounds from Vitex negundo. Saudi Pharm J 2022; 30(9): 1301-14.
[http://dx.doi.org/10.1016/j.jsps.2022.06.018] [PMID: 36249935]
[16]
Cao H, Sun Y, Wang L, Pan Y, Li Z, Liang Y. In silico identification of novel inhibitors targeting the DNA-binding domain of the human estrogen receptor alpha. J Steroid Biochem Mol Biol 2021; 213: 105966.
[http://dx.doi.org/10.1016/j.jsbmb.2021.105966] [PMID: 34416373]
[17]
Singh K, Munuganti RSN, Leblanc E, et al. In silico discovery and validation of potent small-molecule inhibitors targeting the activation function 2 site of human oestrogen receptor α. Breast Cancer Res 2015; 17(1): 27.
[http://dx.doi.org/10.1186/s13058-015-0529-8] [PMID: 25848700]
[18]
Pang X, Fu W, Wang J, et al. Identification of estrogen receptor α antagonists from natural products viain vitro and in silico approaches. Oxid Med Cell Longev 2018; 2018: 1-11.
[http://dx.doi.org/10.1155/2018/6040149] [PMID: 29861831]
[19]
Tang J, Luo Y, Long G, Zhou L. MINDY1 promotes breast cancer cell proliferation by stabilizing estrogen receptor α. Cell Death Dis 2021; 12(10): 937.
[http://dx.doi.org/10.1038/s41419-021-04244-z] [PMID: 34645792]
[20]
Li Z, Wei H, Li S, Wu P, Mao X. The role of progesterone receptors in breast cancer. Drug Des Devel Ther 2022; 16: 305-14.
[http://dx.doi.org/10.2147/DDDT.S336643] [PMID: 35115765]
[21]
Bouricha EM, Hakmi M, Akachar J, Zouaidia F, Ibrahimi A. In-silico identification of potential inhibitors targeting the DNA binding domain of estrogen receptor α for the treatment of hormone therapy-resistant breast cancer. J Biomol Struct Dyn 2022; 40(11): 5203-10.
[http://dx.doi.org/10.1080/07391102.2020.1869094] [PMID: 33402049]
[22]
Liu Y, Ma H, Yao J. ERα, A key target for cancer therapy: A review. OncoTargets Ther 2020; 13: 2183-91.
[http://dx.doi.org/10.2147/OTT.S236532] [PMID: 32210584]
[23]
Jiang X, Orr BA, Kranz DM, Shapiro DJ. Estrogen induction of the granzyme B inhibitor, proteinase inhibitor 9, protects cells against apoptosis mediated by cytotoxic T lymphocytes and natural killer cells. Endocrinology 2006; 147(3): 1419-26.
[http://dx.doi.org/10.1210/en.2005-0996] [PMID: 16306080]
[24]
Garcia-Oliveira P, Otero P, Pereira AG, et al. Status and challenges of plant-anticancer compounds in cancer treatment. Pharmaceuticals 2021; 14(2): 157.
[http://dx.doi.org/10.3390/ph14020157] [PMID: 33673021]
[25]
Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front Pharmacol 2020; 10: 1614.
[http://dx.doi.org/10.3389/fphar.2019.01614] [PMID: 32116665]
[26]
Leitzmann C. Characteristics and health benefits of phytochemicals. Res Compl Med 2016; 23(2): 69-74.
[http://dx.doi.org/10.1159/000444063]
[27]
Liu RH. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 2003; 78(3): 517S-20S.
[http://dx.doi.org/10.1093/ajcn/78.3.517S] [PMID: 12936943]
[28]
Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res 2000; 28(1): 235-42.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[29]
Hosfield DJ, Weber S, Li NS, et al. Stereospecific lasofoxifene derivatives reveal the interplay between estrogen receptor alpha stability and antagonistic activity in ESR1 mutant breast cancer cells. eLife 2022; 11: e72512.
[http://dx.doi.org/10.7554/eLife.72512] [PMID: 35575456]
[30]
Schrodinger L. The PyMOL molecular graphics system. Version 13r1 2010.
[31]
Bento da Silva A, Giacomoni F, Pavot B, et al. PhytoHub V1.4: A new release for the online database dedicated to food phytochemicals and their human metabolites. Food Bioactives and Health Conference 2016.
[32]
Kim S, Chen J, Cheng T, et al. PubChem 2023 update. Nucleic Acids Res 2023; 51(D1): D1373-80.
[http://dx.doi.org/10.1093/nar/gkac956] [PMID: 36305812]
[33]
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform 2011; 3(1): 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[34]
Halgren TA. MMFF VI. MMFF94s option for energy minimization studies. J Comput Chem 1999; 20(7): 720-9.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X] [PMID: 34376030]
[35]
Neves BJ, Braga RC, Melo-Filho CC, Moreira-Filho JT, Muratov EN, Andrade CH. QSAR-based virtual screening: Advances and applications in drug discovery. Front Pharmacol 2018; 9: 1275.
[http://dx.doi.org/10.3389/fphar.2018.01275] [PMID: 30524275]
[36]
Muhammad U, Uzairu A, Ebuka Arthur D. Review on: Quantitative structure activity relationship (QSAR) modeling. J Anal Pharm Res 2018; 7(2)
[http://dx.doi.org/10.15406/japlr.2018.07.00232]
[37]
Davies M, Nowotka M, Papadatos G, et al. ChEMBL web services: Streamlining access to drug discovery data and utilities. Nucleic Acids Res 2015; 43(W1): W612-20.
[http://dx.doi.org/10.1093/nar/gkv352] [PMID: 25883136]
[38]
Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res 2012; 40(D1): D1100-7.
[http://dx.doi.org/10.1093/nar/gkr777] [PMID: 21948594]
[39]
Landrum G. Rdkit: Open-source cheminformatics. Release 2014.03.1 2014. Available from : https://zenodo.org/records/10398
[http://dx.doi.org/10.5281/ZENODO.10398]
[40]
Bento AP, Hersey A, Félix E, et al. An open source chemical structure curation pipeline using RDKit. J Cheminform 2020; 12(1): 51.
[http://dx.doi.org/10.1186/s13321-020-00456-1] [PMID: 33431044]
[41]
Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and autodockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009; 30(16): 2785-91.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[42]
Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. J Chem Inf Model 2021; 61(8): 3891-8.
[http://dx.doi.org/10.1021/acs.jcim.1c00203] [PMID: 34278794]
[43]
Shukla R, Tripathi T. Molecular dynamics simulation of protein and protein–ligand complexes. In: Singh DB, Ed. Computer-Aided Drug Design. Singapore: Springer Singapore 2020; pp. 133-61.
[http://dx.doi.org/10.1007/978-981-15-6815-2_7]
[44]
Izadi S, Anandakrishnan R, Onufriev AV. Building water models: A different approach. J Phys Chem Lett 2014; 5(21): 3863-71.
[http://dx.doi.org/10.1021/jz501780a] [PMID: 25400877]
[45]
Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 2008; 4(3): 435-47.
[http://dx.doi.org/10.1021/ct700301q] [PMID: 26620784]
[46]
Berendsen HJC, van der Spoel D, van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput Phys Commun 1995; 91(1-3): 43-56.
[http://dx.doi.org/10.1016/0010-4655(95)00042-E]
[47]
Abraham MJ, Murtola T, Schulz R, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015; 1-2: 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[49]
Vanommeslaeghe K, Hatcher E, Acharya C, et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 2010; 31(4): 671-90.
[http://dx.doi.org/10.1002/jcc.21367] [PMID: 19575467]
[50]
Huang J, MacKerell AD Jr. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J Comput Chem 2013; 34(25): 2135-45.
[http://dx.doi.org/10.1002/jcc.23354] [PMID: 23832629]
[51]
Zoete V, Cuendet MA, Grosdidier A, Michielin O. SwissParam: A fast force field generation tool for small organic molecules. J Comput Chem 2011; 32(11): 2359-68.
[http://dx.doi.org/10.1002/jcc.21816] [PMID: 21541964]
[52]
Darden T, York D, Pedersen L. Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J Chem Phys 1993; 98(12): 10089-92.
[http://dx.doi.org/10.1063/1.464397]
[53]
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: A linear constraint solver for molecular simulations. J Comput Chem 1997; 18(12): 1463-72.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H]
[54]
Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys 1981; 52(12): 7182-90.
[http://dx.doi.org/10.1063/1.328693]
[55]
Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys 2007; 126(1): 014101.
[http://dx.doi.org/10.1063/1.2408420] [PMID: 17212484]
[56]
Braun E, Moosavi SM, Smit B. Anomalous effects of velocity rescaling algorithms: The flying ice cube effect revisited. J Chem Theory Comput 2018; 14(10): 5262-72.
[http://dx.doi.org/10.1021/acs.jctc.8b00446] [PMID: 30075070]
[57]
Tavernelli I, Cotesta S, Di Iorio EE. Protein dynamics, thermal stability, and free-energy landscapes: A molecular dynamics investigation. Biophys J 2003; 85(4): 2641-9.
[http://dx.doi.org/10.1016/S0006-3495(03)74687-6] [PMID: 14507727]
[58]
Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput 2021; 17(10): 6281-91.
[http://dx.doi.org/10.1021/acs.jctc.1c00645] [PMID: 34586825]
[59]
Miller BR III, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE. MMPBSA.py : An efficient program for end-state free energy calculations. J Chem Theory Comput 2012; 8(9): 3314-21.
[http://dx.doi.org/10.1021/ct300418h] [PMID: 26605738]
[60]
Jawarkar RD, Bakal RL, Zaki MEA, et al. QSAR based virtual screening derived identification of a novel hit as a SARS-CoV-229E 3CLpro Inhibitor: GA-MLR QSAR modeling supported by molecular Docking, molecular dynamics simulation and MMGBSA calculation approaches. Arab J Chem 2022; 15(1): 103499.
[http://dx.doi.org/10.1016/j.arabjc.2021.103499] [PMID: 34909066]
[61]
Cotuá J, LLinás H, Cotes S. Virtual screening based on QSAR and molecular docking of possible inhibitors targeting chagas CYP51. J Chem 2021; 2021: 1-15.
[http://dx.doi.org/10.1155/2021/6640624]
[62]
Guerra CJ, López JM, Figueredo SF, Muñoz AE, Robles JR. 2D-qsar analysis of derivatives of quinoxaline 1,4-DI- N -oxides with activity against chagas’ disease. Quim Nova 2016; 39(6)
[http://dx.doi.org/10.5935/0100-4042.20160078]
[63]
Raju B, Vadivelan R. In silico studies of isoflavones as estrogen receptor α (ERα) activators targeting cardiovascular diseases. pnr 2022; 13(4)
[http://dx.doi.org/10.47750/pnr.2022.13.S04.118]
[64]
Kim S, Wu JY, Birzin ET, et al. Estrogen receptor ligands. II. Discovery of benzoxathiins as potent, selective estrogen receptor α modulators. J Med Chem 2004; 47(9): 2171-5.
[http://dx.doi.org/10.1021/jm034243o] [PMID: 15084115]
[65]
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017; 7(1): 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[66]
Banerjee P, Eckert A O, Schrey A K, Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res, 2018; 46: 257-63.
[http://dx.doi.org/10.1093/nar/gky318]
[67]
Baidya ATK, Kumar A, Kumar R, Darreh-Shori T. Allosteric binding sites of Aβ peptides on the acetylcholine synthesizing enzyme chat as deduced by in silico molecular modeling. Int J Mol Sci 2022; 23(11): 6073.
[http://dx.doi.org/10.3390/ijms23116073] [PMID: 35682752]
[68]
Kannan S, Kolandaivel P. The inhibitory performance of flavonoid cyanidin-3-sambubiocide against H274Y mutation in H1N1 influenza virus. J Biomol Struct Dyn 2018; 36(16): 4255-69.
[http://dx.doi.org/10.1080/07391102.2017.1413422] [PMID: 29199545]
[69]
Shah U, Patel A, Patel S, et al. Role of natural and synthetic flavonoids as potential aromatase inhibitors in breast cancer: Structure-activity relationship perspective. Anticancer Agents Med Chem 2022; 22(11): 2063-79.
[http://dx.doi.org/10.2174/1871520621666211026101252] [PMID: 34702156]
[70]
Awasthi M, Singh S, Pandey VP, Dwivedi UN. Molecular docking and 3D-QSAR-based virtual screening of flavonoids as potential aromatase inhibitors against estrogen-dependent breast cancer. J Biomol Struct Dyn 2015; 33(4): 804-19.
[http://dx.doi.org/10.1080/07391102.2014.912152] [PMID: 24702656]
[71]
Banjare L, Verma SK, Jain AK, Thareja S. Design and pharmacophoric identification of flavonoid scaffold-based aromatase inhibitors. J Heterocycl Chem 2020; 57(9): 3483-92.
[http://dx.doi.org/10.1002/jhet.4068]
[72]
Shah U, Patel S, Patel M, et al. In vitro cytotoxicity and aromatase inhibitory activity of flavonoids: synthesis, molecular docking and in silico adme prediction. Anticancer Agents Med Chem 2022; 22(7): 1370-85.
[http://dx.doi.org/10.2174/1871520621666210827104406] [PMID: 34455966]
[73]
Tecalco-Cruz AC, Ramírez-Jarquín JO, Macías-Silva M, Sosa-Garrocho M, López-Camarillo C. Novel breast cancer treatment by targeting estrogen receptor-alpha stability using proteolysis-targeting chimeras (PROTACs) technology. In Breast Cancer. Mayrovitz HN. Exon Publications: Brisbane 2022.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy