Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

肠道微生物群的破坏与临床前阿尔茨海默病的认知缺陷有关:一项横断面研究

卷 20, 期 12, 2023

发表于: 25 March, 2024

页: [875 - 889] 页: 15

弟呕挨: 10.2174/0115672050303878240319054149

价格: $65

Open Access Journals Promotions 2
摘要

背景:阿尔茨海默病(AD)是最常见的痴呆类型。肠道菌群的早期变化是临床前AD患者的潜在生物标志物。 目的:本研究旨在探讨临床前AD患者(包括主观认知衰退(SCD)和轻度认知障碍(MCI)患者)肠道菌群特征的变化,并检测肠道菌群特征与认知表现的相关性。 方法:本研究纳入117名参与者[33名MCI, 54名SCD和30名健康对照(HC)]。我们收集了所有参与者的新鲜粪便样本和血液样本,并评估了他们的认知表现。我们通过qPCR分析了所有参与者肠道微生物群的多样性和结构,通过机器学习模型筛选了特征微生物物种,并探讨了这些物种与认知表现和血清指标的相关性。 结果:与健康对照组相比,MCI和SCD患者的肠道菌群结构存在显著差异。根据组间差异的最佳分类模型(HC和MCI)筛选卵形拟杆菌(Bacteroides ovatus)、青春期双歧杆菌(Bifidobacterium青春期双歧杆菌)和红玫瑰菌(Roseburia inulinivorans) 3种特征微生物。青少年双歧杆菌与多项认知评分和几种血清指标的更好表现有关。玫瑰花与功能活动问卷(FAQ)得分呈负相关。 结论:临床前AD患者的肠道菌群在组成和丰富度方面发生了显著变化。已经发现了特征物种的变化与认知表现之间的相关性。肠道菌群的改变已经显示出影响阿尔茨海默病病理和认知缺陷的希望。

关键词: 肠道菌群,阿尔茨海默病,认知缺陷,机器学习,指标,生物标志物。

[1]
Kaur, D.; Sharma, V.; Deshmukh, R. Activation of microglia and astrocytes: A roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology, 2019, 27(4), 663-677.
[http://dx.doi.org/10.1007/s10787-019-00580-x] [PMID: 30874945]
[2]
Mancuso, C.; Santangelo, R. Alzheimer’s disease and gut microbiota modifications: The long way between preclinical studies and clinical evidence. Pharmacol. Res., 2018, 129, 329-336.
[http://dx.doi.org/10.1016/j.phrs.2017.12.009] [PMID: 29233677]
[3]
Fisher, R.A.; Miners, J.S.; Love, S. Pathological changes within the cerebral vasculature in Alzheimer’s disease: New perspectives. Brain Pathol., 2022, 32(6), e13061.
[http://dx.doi.org/10.1111/bpa.13061] [PMID: 35289012]
[4]
Lin, Y.; Shan, P.Y.; Jiang, W.J.; Sheng, C.; Ma, L. Subjective cognitive decline: Preclinical manifestation of Alzheimer’s disease. Neurol. Sci., 2019, 40(1), 41-49.
[http://dx.doi.org/10.1007/s10072-018-3620-y] [PMID: 30397816]
[5]
Hönig, M.; Altomare, D.; Caprioglio, C.; Collij, L.; Barkhof, F.; Van Berckel, B.; Scheltens, P.; Farrar, G.; Battle, M.R.; Theis, H.; Giehl, K.; Bischof, G.N.; Garibotto, V.; Molinuevo, J.L.L.; Rivera, G.O.; Delrieu, J.; Payoux, P.; Demonet, J.F.; Nordberg, A.K.; Savitcheva, I.; Walker, Z.; Edison, P.; Stephens, A.W.; Gismondi, R.; Jessen, F.; Buckley, C.J.; Gispert, J.D.; Frisoni, G.B.; Drzezga, A. Association between years of education and amyloid burden in patients with subjective cognitive decline, MCI, and Alzheimer disease. Neurology, 2024, 102(6), e208053.
[http://dx.doi.org/10.1212/WNL.0000000000208053] [PMID: 38377442]
[6]
Jessen, F.; Amariglio, R.E.; van Boxtel, M.; Breteler, M.; Ceccaldi, M.; Chételat, G.; Dubois, B.; Dufouil, C.; Ellis, K.A.; van der Flier, W.M.; Glodzik, L.; van Harten, A.C.; de Leon, M.J.; McHugh, P.; Mielke, M.M.; Molinuevo, J.L.; Mosconi, L.; Osorio, R.S.; Perrotin, A.; Petersen, R.C.; Rabin, L.A.; Rami, L.; Reisberg, B.; Rentz, D.M.; Sachdev, P.S.; de la Sayette, V.; Saykin, A.J.; Scheltens, P.; Shulman, M.B.; Slavin, M.J.; Sperling, R.A.; Stewart, R.; Uspenskaya, O.; Vellas, B.; Visser, P.J.; Wagner, M. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement., 2014, 10(6), 844-852.
[http://dx.doi.org/10.1016/j.jalz.2014.01.001] [PMID: 24798886]
[7]
van Harten, A.C.; Mielke, M.M.; Dravis, S.D.M.; Hagen, C.E.; Edwards, K.K.; Roberts, R.O.; Geda, Y.E.; Knopman, D.S.; Petersen, R.C. Subjective cognitive decline and risk of MCI. Neurology, 2018, 91(4), e300-e312.
[http://dx.doi.org/10.1212/WNL.0000000000005863] [PMID: 29959257]
[8]
Zhang, Y.; Li, X.; Hu, Y.; Yuan, H.; Wu, X.; Yang, Y.; Zhao, T.; Hu, K.; Wang, Z.; Wang, G.; Zhang, K.; Liu, H. Evaluation of mild cognitive impairment genetic susceptibility risks in a Chinese population. BMC Psychiatry, 2022, 22(1), 93.
[http://dx.doi.org/10.1186/s12888-022-03756-y] [PMID: 35135506]
[9]
Peng, Y.; Jin, H.; Xue, Y.; Chen, Q.; Yao, S.; Du, M.; Liu, S. Current and future therapeutic strategies for Alzheimer’s disease: An overview of drug development bottlenecks. Front. Aging Neurosci., 2023, 15, 1206572.
[http://dx.doi.org/10.3389/fnagi.2023.1206572] [PMID: 37600514]
[10]
Integrative, H.M.P. The integrative human microbiome project. Nature, 2019, 569(7758), 641-648.
[http://dx.doi.org/10.1038/s41586-019-1238-8] [PMID: 31142853]
[11]
Ma, Q.; Xing, C.; Long, W.; Wang, H.Y.; Liu, Q.; Wang, R.F. Impact of microbiota on central nervous system and neurological diseases: The gut-brain axis. J. Neuroinflammation, 2019, 16(1), 53.
[http://dx.doi.org/10.1186/s12974-019-1434-3] [PMID: 30823925]
[12]
Loh, J.S.; Mak, W.Q.; Tan, L.K.S.; Ng, C.X.; Chan, H.H.; Yeow, S.H.; Foo, J.B.; Ong, Y.S.; How, C.W.; Khaw, K.Y. Microbiota–gut–brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct. Target. Ther., 2024, 9(1), 37.
[http://dx.doi.org/10.1038/s41392-024-01743-1] [PMID: 38360862]
[13]
Bou Zerdan, M.; Hebbo, E.; Hijazi, A.; El Gemayel, M.; Nasr, J.; Nasr, D.; Yaghi, M.; Bouferraa, Y.; Nagarajan, A. The gut microbiome and Alzheimer’s Disease: A growing relationship. Curr. Alzheimer Res., 2022, 19(12), 808-818.
[http://dx.doi.org/10.2174/1567205020666221227090125] [PMID: 36578263]
[14]
Grabrucker, S.; Marizzoni, M.; Silajdžić, E.; Lopizzo, N.; Mombelli, E.; Nicolas, S.; Dohm-Hansen, S.; Scassellati, C.; Moretti, D.V.; Rosa, M.; Hoffmann, K.; Cryan, J.F.; O’Leary, O.F.; English, J.A.; Lavelle, A.; O’Neill, C.; Thuret, S.; Cattaneo, A.; Nolan, Y.M. Microbiota from Alzheimer’s patients induce deficits in cognition and hippocampal neurogenesis. Brain, 2023, 146(12), 4916-4934.
[http://dx.doi.org/10.1093/brain/awad303] [PMID: 37849234]
[15]
Manderino, L.; Carroll, I.; Peril, A.M.A.; Rochette, A.; Heinberg, L.; Peat, C.; Steffen, K.; Mitchell, J.; Gunstad, J. Preliminary evidence for an association between the composition of the gut microbiome and cognitive function in neurologically healthy older adults. J. Int. Neuropsychol. Soc., 2017, 23(8), 700-705.
[http://dx.doi.org/10.1017/S1355617717000492] [PMID: 28641593]
[16]
Kesika, P.; Suganthy, N.; Sivamaruthi, B.S.; Chaiyasut, C. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer’s disease. Life Sci., 2021, 264, 118627.
[http://dx.doi.org/10.1016/j.lfs.2020.118627] [PMID: 33169684]
[17]
Vogt, N.M.; Kerby, R.L.; McFarland, D.K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; Bendlin, B.B.; Rey, F.E. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep., 2017, 7(1), 13537.
[http://dx.doi.org/10.1038/s41598-017-13601-y] [PMID: 29051531]
[18]
Verhaar, B.J.H.; Hendriksen, H.M.A.; de Leeuw, F.A.; Doorduijn, A.S.; van Leeuwenstijn, M.; Teunissen, C.E.; Barkhof, F.; Scheltens, P.; Kraaij, R.; van Duijn, C.M.; Nieuwdorp, M.; Muller, M.; van der Flier, W.M. Gut microbiota composition is related to AD pathology. Front. Immunol., 2022, 12, 794519.
[http://dx.doi.org/10.3389/fimmu.2021.794519] [PMID: 35173707]
[19]
Erny, D.; Dokalis, N.; Mezö, C.; Castoldi, A.; Mossad, O.; Staszewski, O.; Frosch, M.; Villa, M.; Fuchs, V.; Mayer, A.; Neuber, J.; Sosat, J.; Tholen, S.; Schilling, O.; Vlachos, A.; Blank, T.; Gomez de Agüero, M.; Macpherson, A.J.; Pearce, E.J.; Prinz, M. Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metab., 2021, 33(11), 2260-2276.e7.
[http://dx.doi.org/10.1016/j.cmet.2021.10.010] [PMID: 34731656]
[20]
Tcw, J.; Qian, L.; Pipalia, N.H.; Chao, M.J.; Liang, S.A.; Shi, Y.; Jain, B.R.; Bertelsen, S.E.; Kapoor, M.; Marcora, E.; Sikora, E.; Andrews, E.J.; Martini, A.C.; Karch, C.M.; Head, E.; Holtzman, D.M.; Zhang, B.; Wang, M.; Maxfield, F.R.; Poon, W.W.; Goate, A.M. Cholesterol and matrisome pathways dysregulated in astrocytes and microglia. Cell, 2022, 185(13), 2213-2233.e25.
[http://dx.doi.org/10.1016/j.cell.2022.05.017] [PMID: 35750033]
[21]
Erny, D.; Hrabě de Angelis, A.L.; Jaitin, D.; Wieghofer, P.; Staszewski, O.; David, E.; Shaul, K.H.; Mahlakoiv, T.; Jakobshagen, K.; Buch, T.; Schwierzeck, V.; Utermöhlen, O.; Chun, E.; Garrett, W.S.; McCoy, K.D.; Diefenbach, A.; Staeheli, P.; Stecher, B.; Amit, I.; Prinz, M. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci., 2015, 18(7), 965-977.
[http://dx.doi.org/10.1038/nn.4030] [PMID: 26030851]
[22]
Ferreiro, A.L.; Choi, J.; Ryou, J.; Newcomer, E.P.; Thompson, R.; Bollinger, R.M.; Hall-Moore, C.; Ndao, I.M.; Sax, L.; Benzinger, T.L.S.; Stark, S.L.; Holtzman, D.M.; Fagan, A.M.; Schindler, S.E.; Cruchaga, C.; Butt, O.H.; Morris, J.C.; Tarr, P.I.; Ances, B.M.; Dantas, G. Gut microbiome composition may be an indicator of preclinical Alzheimer’s disease. Sci. Transl. Med., 2023, 15(700), eabo2984.
[http://dx.doi.org/10.1126/scitranslmed.abo2984] [PMID: 37315112]
[23]
Abdukhakimova, D.; Dossybayeva, K.; Poddighe, D. Fecal and duodenal microbiota in pediatric celiac disease. Front Pediatr., 2021, 9, 652208.
[http://dx.doi.org/10.3389/fped.2021.652208] [PMID: 33968854]
[24]
Belei, O.; Jugănaru, I.; Basaca, D.G.; Munteanu, A.I.; Mărginean, O. The role of intestinal microbiota in celiac disease and further therapeutic perspectives. Life, 2023, 13(10), 2039.
[http://dx.doi.org/10.3390/life13102039] [PMID: 37895421]
[25]
Saeed, N.K.; Al-Beltagi, M.; Bediwy, A.S.; El-Sawaf, Y.; Toema, O. Gut microbiota in various childhood disorders: Implication and indications. World J. Gastroenterol., 2022, 28(18), 1875-1901.
[http://dx.doi.org/10.3748/wjg.v28.i18.1875] [PMID: 35664966]
[26]
Zhao, Q.; Lv, Y.; Zhou, Y.; Hong, Z.; Guo, Q. Short-term delayed recall of auditory verbal learning test is equivalent to long-term delayed recall for identifying amnestic mild cognitive impairment. PLoS One, 2012, 7(12), e51157.
[http://dx.doi.org/10.1371/journal.pone.0051157] [PMID: 23236445]
[27]
Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C. The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the national institute on aging-alzheimer's association workgroups on diagnostic guidelines for alzheimer's disease. Alzheimers Dement., 2011, 7(3), 270-279.
[http://dx.doi.org/10.1016/j.jalz.2011.03.008]
[28]
Sperling, RA; Aisen, PS; Beckett, LA; Bennett, DA; Craft, S; Fagan, AM Toward defining the preclinical stages of Alzheimer's disease: Recommendations from the national institute on aging-alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement., 2011, 7(3), 280-292.
[http://dx.doi.org/10.1016/j.jalz.2011.03.003]
[29]
van der Flier, W.M.; Pijnenburg, Y.A.L.; Prins, N.; Lemstra, A.W.; Bouwman, F.H.; Teunissen, C.E.; van Berckel, B.N.M.; Stam, C.J.; Barkhof, F.; Visser, P.J.; van Egmond, E.; Scheltens, P. Optimizing patient care and research: The Amsterdam dementia cohort. J. Alzheimers Dis., 2014, 41(1), 313-327.
[http://dx.doi.org/10.3233/JAD-132306] [PMID: 24614907]
[30]
Tombaugh, T.N.; McIntyre, N.J. The mini-mental state examination: A comprehensive review. J. Am. Geriatr. Soc., 1992, 40(9), 922-935.
[http://dx.doi.org/10.1111/j.1532-5415.1992.tb01992.x] [PMID: 1512391]
[31]
Morris, J.C. The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology, 1993, 43(11), 2412-2414.
[32]
Pantoni, L.; Inzitari, D. Hachinski’s ischemic score and the diagnosis of vascular dementia: A review. Ital. J. Neurol. Sci., 1993, 14(7), 539-546.
[http://dx.doi.org/10.1007/BF02339212] [PMID: 8282525]
[33]
Li, D.; Zhang, D.; Shao, J.; Qi, X.; Tian, L. A meta-analysis of the prevalence of depressive symptoms in Chinese older adults. Arch. Gerontol. Geriatr., 2014, 58(1), 1-9.
[http://dx.doi.org/10.1016/j.archger.2013.07.016] [PMID: 24001674]
[34]
Jian, C; Luukkonen, P; Järvinen, Y.H; Salonen, A; Korpela, K. Quantitative PCR provides a simple and accessible method for quantitative microbiota profiling. PLoS One., 2020, 15(1), e0227285.
[35]
Molina-López, J.; Ricalde, M.A.Q.; Hernández, B.V.; Planells, A.; Otero, R.; Planells, E. Effect of 8-week of dietary micronutrient supplementation on gene expression in elite handball athletes. PLoS One, 2020, 15(5), e0232237.
[http://dx.doi.org/10.1371/journal.pone.0232237] [PMID: 32357196]
[36]
Arance, E.; Ramírez, V.; Roldan, R.A.; Peinado, O.F.M.; Cachinero, R.C.; Reyes, J.A.B.; Alonso, V.F.; Gonzalez, M.L.J.; Cubero, A.M.J. Determination of exosome mitochondrial DNA as a biomarker of renal cancer aggressiveness. Cancers, 2021, 14(1), 199.
[http://dx.doi.org/10.3390/cancers14010199] [PMID: 35008363]
[37]
Wu, S.; Zheng, J.; Li, Y.; Wu, Z.; Shi, S.; Huang, M.; Yu, H.; Dong, W.; Huang, J.; Lin, T. Development and validation of an MRI-based radiomics signature for the preoperative prediction of lymph node metastasis in bladder cancer. EBioMedicine, 2018, 34, 76-84.
[http://dx.doi.org/10.1016/j.ebiom.2018.07.029] [PMID: 30078735]
[38]
Zheng, Y.; Fang, Z.; Xue, Y.; Zhang, J.; Zhu, J.; Gao, R.; Yao, S.; Ye, Y.; Wang, S.; Lin, C.; Chen, S.; Huang, H.; Hu, L.; Jiang, G.N.; Qin, H.; Zhang, P.; Chen, J.; Ji, H. Specific gut microbiome signature predicts the early-stage lung cancer. Gut Microbes, 2020, 11(4), 1030-1042.
[http://dx.doi.org/10.1080/19490976.2020.1737487] [PMID: 32240032]
[39]
Ribeiro, L.F.; Lopes, E.M.; Kishi, L.T.; Ribeiro, L.F.C.; Menegueti, M.G.; Gaspar, G.G.; Silva-Rocha, R.; Guazzaroni, M.E. Microbial community profiling in intensive care units expose limitations in current sanitary standards. Front. Public Health, 2019, 7, 240.
[http://dx.doi.org/10.3389/fpubh.2019.00240] [PMID: 31555629]
[40]
Guo, M.; Peng, J.; Huang, X.; Xiao, L.; Huang, F.; Zuo, Z. Gut microbiome features of chinese patients newly diagnosed with Alzheimer’s disease or mild cognitive impairment. J. Alzheimers Dis., 2021, 80(1), 299-310.
[http://dx.doi.org/10.3233/JAD-201040] [PMID: 33523001]
[41]
Zhang, Q.; Zhang, Y.; Zeng, L.; Chen, G.; Zhang, L.; Liu, M.; Sheng, H.; Hu, X.; Su, J.; Zhang, D.; Lu, F.; Liu, X.; Zhang, L. The role of gut microbiota and microbiota-related serum metabolites in the progression of diabetic kidney disease. Front. Pharmacol., 2021, 12, 757508.
[http://dx.doi.org/10.3389/fphar.2021.757508] [PMID: 34899312]
[42]
Liu, P; Wu, L; Peng, G; Han, Y; Tang, R; Ge, J Altered microbiomes distinguish Alzheimer's disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav Immun., 2019, 80, 633-643.
[http://dx.doi.org/10.1016/j.bbi.2019.05.008]
[43]
Yang, X; Yu, D; Xue, L; Li, H; Du, J. Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged SAMP8 mice. Acta Pharm Sin B., 2020, 10(3), 475-487.
[http://dx.doi.org/10.1016/j.apsb.2019.07.001]
[44]
Kim, H.; Kim, S.; Park, S.; Park, G.; Shin, H.; Park, M.S.; Kim, J. Administration of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI improves cognitive and memory function in the mouse model of Alzheimer’s Disease. Front. Aging Neurosci., 2021, 13, 709091.
[http://dx.doi.org/10.3389/fnagi.2021.709091] [PMID: 34421576]
[45]
Asaoka, D.; Xiao, J.; Takeda, T.; Yanagisawa, N.; Yamazaki, T.; Matsubara, Y.; Sugiyama, H.; Endo, N.; Higa, M.; Kasanuki, K.; Ichimiya, Y.; Koido, S.; Ohno, K.; Bernier, F.; Katsumata, N.; Nagahara, A.; Arai, H.; Ohkusa, T.; Sato, N. Effect of probiotic bifidobacterium breve in improving cognitive function and preventing brain atrophy in older patients with suspected mild cognitive impairment: Results of a 24-week randomized, double-blind, placebo-controlled trial. J. Alzheimers Dis., 2022, 88(1), 75-95.
[http://dx.doi.org/10.3233/JAD-220148] [PMID: 35570493]
[46]
Shukla, P.K.; Delotterie, D.F.; Xiao, J.; Pierre, J.F.; Rao, R.; Mc-Donald, M.P.; Khan, M.M. Alterations in the gut-microbial-inflammasome-brain axis in a mouse model of Alzheimer’s Disease. Cells, 2021, 10(4), 779.
[http://dx.doi.org/10.3390/cells10040779] [PMID: 33916001]
[47]
Harach, T.; Marungruang, N.; Duthilleul, N.; Cheatham, V.; Mc Coy, K.D.; Frisoni, G.; Neher, J.J.; Fåk, F.; Jucker, M.; Lasser, T.; Bolmont, T. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci. Rep., 2017, 7(1), 41802.
[http://dx.doi.org/10.1038/srep41802] [PMID: 28176819]
[48]
Kameno, K.; Hasegawa, Y.; Hayashi, K.; Takemoto, Y.; Uchikawa, H.; Mukasa, A.; Mitsuyama, K.S. Loss of body weight in old 5xFAD mice and the alteration of gut microbiota composition. Exp. Gerontol., 2022, 166, 111885.
[http://dx.doi.org/10.1016/j.exger.2022.111885] [PMID: 35792287]
[49]
Kim, N.; Jeon, S.H.; Ju, I.G.; Gee, M.S.; Do, J.; Oh, M.S.; Lee, J.K. Transplantation of gut microbiota derived from Alzheimer’s disease mouse model impairs memory function and neurogenesis in C57BL/6 mice. Brain Behav. Immun., 2021, 98, 357-365.
[http://dx.doi.org/10.1016/j.bbi.2021.09.002] [PMID: 34500036]
[50]
Elangovan, S.; Borody, T.J.; Holsinger, R.M.D. Fecal microbiota transplantation reduces pathology and improves cognition in a mouse model of Alzheimer’s Disease. Cells, 2022, 12(1), 119.
[http://dx.doi.org/10.3390/cells12010119] [PMID: 36611911]
[51]
Chen, Y.; Li, Y.; Fan, Y.; Chen, S.; Chen, L.; Chen, Y.; Chen, Y. Gut microbiota-driven metabolic alterations reveal gut–brain communication in Alzheimer’s disease model mice. Gut Microbes, 2024, 16(1), 2302310.
[http://dx.doi.org/10.1080/19490976.2024.2302310] [PMID: 38261437]
[52]
Nagpal, R.; Neth, B.J.; Wang, S.; Mishra, S.P.; Craft, S.; Yadav, H. Gut mycobiome and its interaction with diet, gut bacteria and alzheimer’s disease markers in subjects with mild cognitive impairment: A pilot study. EBioMedicine, 2020, 59, 102950.
[http://dx.doi.org/10.1016/j.ebiom.2020.102950] [PMID: 32861197]
[53]
Xi, J.; Ding, D.; Zhu, H.; Wang, R.; Su, F.; Wu, W.; Xiao, Z.; Liang, X.; Zhao, Q.; Hong, Z.; Fu, H.; Xiao, Q. Disturbed microbial ecology in Alzheimer’s disease: Evidence from the gut microbiota and fecal metabolome. BMC Microbiol., 2021, 21(1), 226.
[http://dx.doi.org/10.1186/s12866-021-02286-z] [PMID: 34384375]
[54]
Khedr, E.M.; Omeran, N.; Ramadan, K.A.H.; Ahmed, G.K.; Abdelwarith, A.M. Alteration of gut microbiota in Alzheimer’s disease and their relation to the cognitive impairment. J. Alzheimers Dis., 2022, 88(3), 1103-1114.
[http://dx.doi.org/10.3233/JAD-220176] [PMID: 35754271]
[55]
Aljumaah, M.R.; Bhatia, U.; Roach, J.; Gunstad, J.; Peril, A.M.A. The gut microbiome, mild cognitive impairment, and probiotics: A randomized clinical trial in middle-aged and older adults. Clin. Nutr., 2022, 41(11), 2565-2576.
[http://dx.doi.org/10.1016/j.clnu.2022.09.012] [PMID: 36228569]
[56]
Zhang, X.; Wang, Y.; Liu, W.; Wang, T.; Wang, L.; Hao, L.; Ju, M.; Xiao, R. Diet quality, gut microbiota, and microRNAs associated with mild cognitive impairment in middle-aged and elderly Chinese population. Am. J. Clin. Nutr., 2021, 114(2), 429-440.
[http://dx.doi.org/10.1093/ajcn/nqab078] [PMID: 33871591]
[57]
Li, B.; He, Y.; Ma, J.; Huang, P.; Du, J.; Cao, L.; Wang, Y.; Xiao, Q.; Tang, H.; Chen, S. Mild cognitive impairment has similar alterations as Alzheimer’s disease in gut microbiota. Alzheimers Dement., 2019, 15(10), 1357-1366.
[http://dx.doi.org/10.1016/j.jalz.2019.07.002] [PMID: 31434623]
[58]
Wanapaisan, P.; Chuansangeam, M.; Nopnipa, S.; Mathuranyanon, R.; Nonthabenjawan, N.; Ngamsombat, C.; Thientunyakit, T.; Muangpaisan, W. Association between gut microbiota with mild cognitive impairment and Alzheimer’s disease in a Thai population. Neurodegener. Dis., 2022, 22(2), 43-54.
[http://dx.doi.org/10.1159/000526947] [PMID: 36070704]
[59]
Chen, G.; Zhou, X.; Zhu, Y.; Shi, W.; Kong, L. Gut microbiome characteristics in subjective cognitive decline, mild cognitive impairment and Alzheimer’s disease: a systematic review and meta‐analysis. Eur. J. Neurol., 2023, 30(11), 3568-3580.
[http://dx.doi.org/10.1111/ene.15961] [PMID: 37399128]
[60]
Jung, J.H.; Kim, G.; Byun, M.S.; Lee, J.H.; Yi, D.; Park, H.; Lee, D.Y. Gut microbiome alterations in preclinical Alzheimer’s disease. PLoS One, 2022, 17(11), e0278276.
[http://dx.doi.org/10.1371/journal.pone.0278276] [PMID: 36445883]
[61]
Sheng, C.; Lin, L.; Lin, H.; Wang, X.; Han, Y.; Liu, S.L. Altered gut microbiota in adults with subjective cognitive decline: The SILCODE study. J. Alzheimers Dis., 2021, 82(2), 513-526.
[http://dx.doi.org/10.3233/JAD-210259] [PMID: 34024839]
[62]
Linares, D.M.; Ross, P.; Stanton, C. Beneficial microbes: The pharmacy in the gut. Bioengineered, 2016, 7(1), 11-20.
[http://dx.doi.org/10.1080/21655979.2015.1126015] [PMID: 26709457]
[63]
Holscher, HD Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes., 2017, 8(2), 172-184.
[http://dx.doi.org/10.1080/19490976.2017.1290756]
[64]
Tamanai-Shacoori, Z.; Smida, I.; Bousarghin, L.; Loreal, O.; Meuric, V.; Fong, S.B.; Mallet, B.M.; Gougeon, J.A. Roseburia spp.: A marker of health? Future Microbiol., 2017, 12(2), 157-170.
[http://dx.doi.org/10.2217/fmb-2016-0130] [PMID: 28139139]
[65]
Tan, H.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. Novel strains of Bacteroides fragilis and Bacteroides ovatus alleviate the LPS-induced inflammation in mice. Appl. Microbiol. Biotechnol., 2019, 103(5), 2353-2365.
[http://dx.doi.org/10.1007/s00253-019-09617-1] [PMID: 30666361]
[66]
Fernando, W.M.A.D.B.; Martins, I.J.; Morici, M.; Bharadwaj, P.; Rainey-Smith, S.R.; Lim, W.L.F.; Martins, R.N. Sodium butyrate reduces brain amyloid-β levels and improves cognitive memory performance in an Alzheimer’s disease transgenic mouse model at an early disease stage. J. Alzheimers Dis., 2020, 74(1), 91-99.
[http://dx.doi.org/10.3233/JAD-190120] [PMID: 31958090]
[67]
Scaldaferri, F.; Pizzoferrato, M.; Gerardi, V.; Lopetuso, L.; Gasbarrini, A. The gut barrier: New acquisitions and therapeutic approaches. J. Clin. Gastroenterol., 2012, 46, S12-S17.
[http://dx.doi.org/10.1097/MCG.0b013e31826ae849] [PMID: 22955350]
[68]
Jiang, S.; Xie, S.; Lv, D.; Zhang, Y.; Deng, J.; Zeng, L.; Chen, Y. A reduction in the butyrate producing species Roseburia spp. and Faecalibacterium prausnitzii is associated with chronic kidney disease progression. Antonie Van Leeuwenhoek, 2016, 109(10), 1389-1396.
[http://dx.doi.org/10.1007/s10482-016-0737-y] [PMID: 27431681]
[69]
Keshavarzian, A.; Green, S.J.; Engen, P.A.; Voigt, R.M.; Naqib, A.; Forsyth, C.B.; Mutlu, E.; Shannon, K.M. Colonic bacterial composition in Parkinson’s disease. Mov. Disord., 2015, 30(10), 1351-1360.
[http://dx.doi.org/10.1002/mds.26307] [PMID: 26179554]
[70]
Xin, X.; Wang, Q.; Qing, J.; Song, W.; Gui, Y.; Li, X.; Li, Y. Th17 cells in primary Sjögren’s syndrome negatively correlate with increased Roseburia and Coprococcus. Front. Immunol., 2022, 13, 974648.
[http://dx.doi.org/10.3389/fimmu.2022.974648] [PMID: 36275752]
[71]
Sampson, T.R.; Debelius, J.W.; Thron, T.; Janssen, S.; Shastri, G.G.; Ilhan, Z.E.; Challis, C.; Schretter, C.E.; Rocha, S.; Gradinaru, V.; Chesselet, M.F.; Keshavarzian, A.; Shannon, K.M.; Brown, K.R.; Stafshede, W.P.; Knight, R.; Mazmanian, S.K. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 2016, 167(6), 1469-1480.e12.
[http://dx.doi.org/10.1016/j.cell.2016.11.018] [PMID: 27912057]
[72]
Chew, H.; Solomon, V.A.; Fonteh, A.N. Involvement of lipids in Alzheimer’s disease pathology and potential therapies. Front. Physiol., 2020, 11, 598.
[http://dx.doi.org/10.3389/fphys.2020.00598] [PMID: 32581851]
[73]
Rostagno, A.A. Pathogenesis of Alzheimer’s disease. Int. J. Mol. Sci., 2022, 24(1), 107.
[http://dx.doi.org/10.3390/ijms24010107] [PMID: 36613544]
[74]
Leeuw, F.A.; Tijms, B.M.; Doorduijn, A.S.; Hendriksen, H.M.A.; Rest, O.; van der Schueren, M.A.E.; Visser, M.; den Heuvel, E.G.H.M.; Wijk, N.; Bierau, J.; Berckel, B.N.; Scheltens, P.; Kester, M.I.; Flier, W.M.; Teunissen, C.E. LDL cholesterol and uridine levels in blood are potential nutritional biomarkers for clinical progression in Alzheimer’s disease: The NUDAD project. Alzheimers Dement., 2020, 12(1), e12120.
[http://dx.doi.org/10.1002/dad2.12120] [PMID: 33392381]
[75]
Ishii, M. Apolipoprotein B as a new link between cholesterol and Alzheimer disease. JAMA Neurol., 2019, 76(7), 751-753.
[76]
Hosseini, M.; Poljak, A.; Braidy, N.; Crawford, J.; Sachdev, P. Blood fatty acids in Alzheimer’s disease and mild cognitive impairment: A meta-analysis and systematic review. Ageing Res. Rev., 2020, 60, 101043.
[http://dx.doi.org/10.1016/j.arr.2020.101043] [PMID: 32194194]
[77]
Xu, Q.; Zhang, Y.; Zhang, X.; Liu, L.; Zhou, B.; Mo, R.; Li, Y.; Li, H.; Li, F.; Tao, Y.; Liu, Y.; Xue, C. Medium-chain triglycerides improved cognition and lipid metabolomics in mild to moderate Alzheimer’s disease patients with APOE4−/−: A double-blind, randomized, placebo-controlled crossover trial. Clin. Nutr., 2020, 39(7), 2092-2105.
[http://dx.doi.org/10.1016/j.clnu.2019.10.017] [PMID: 31694759]
[78]
Lin, P.Y.; Cheng, C.; Satyanarayanan, S.K.; Chiu, L.T.; Chien, Y.C.; Chuu, C.P.; Lan, T.H.; Su, K.P. Omega-3 fatty acids and blood-based biomarkers in Alzheimer’s disease and mild cognitive impairment: A randomized placebo-controlled trial. Brain Behav. Immun., 2022, 99, 289-298.
[http://dx.doi.org/10.1016/j.bbi.2021.10.014] [PMID: 34755655]
[79]
Wang, X.; Cheng, Z. Cross-sectional studies. Chest, 2020, 158(1), S65-S71.
[http://dx.doi.org/10.1016/j.chest.2020.03.012] [PMID: 32658654]
[80]
Lombardi, V.C.; De Meirleir, K.L.; Subramanian, K.; Nourani, S.M.; Dagda, R.K.; Delaney, S.L.; Palotás, A. Nutritional modulation of the intestinal microbiota; future opportunities for the prevention and treatment of neuroimmune and neuroinflammatory disease. J. Nutr. Biochem., 2018, 61, 1-16.
[http://dx.doi.org/10.1016/j.jnutbio.2018.04.004] [PMID: 29886183]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy