Generic placeholder image

Current Gene Therapy

Editor-in-Chief

ISSN (Print): 1566-5232
ISSN (Online): 1875-5631

Mini-Review Article

Gene Therapy for Skin Aging

Author(s): Fawzy A. Saad*

Volume 25, Issue 1, 2025

Published on: 25 March, 2024

Page: [2 - 9] Pages: 8

DOI: 10.2174/0115665232286489240320051925

Price: $65

Open Access Journals Promotions 2
Abstract

Extrinsic and intrinsic factors contribute to skin aging; nonetheless, they are intertwined. Moreover, intrinsic skin aging mirrors age-related declines in the entire human body's internal organs. There is evidence that skin appearance is an indicator of the general health of somebody or a visual certificate of health. Earlier, it was apparent that the intrinsic factors are unalterable, but the sparkling of skin aging gene therapy on the horizon is changing this narrative. Skin aging gene therapy offers tools for skin rejuvenation, natural beauty restoration, and therapy for diseases affecting the entire skin. However, skin aging gene therapy is an arduous and sophisticated task relying on precise interim stimulation of telomerase to extend telomeres and wend back the biological clock in the hopes to find the fountain of youth, while preserving cells innate biological features. Finding the hidden fountain of youth will be a remarkable discovery for promoting aesthetics medicine, genecosmetics, and healthy aging. Caloric restriction offers ultimate health benefits and a reproducible way to promote longevity in mammals, while delaying age-related diseases. Moreover, exercise further enhances these health benefits. This article highlights the potential of skin aging gene therapy and foretells the emerging dawn of the genecosmetics era.

Keywords: Gene, aging, therapy, extrinsic, intrinsic, genecosmetics, mitochondrial dysfunction.

« Previous
Graphical Abstract
[1]
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell 2023; 186(2): 243-78.
[http://dx.doi.org/10.1016/j.cell.2022.11.001] [PMID: 36599349]
[2]
Mayoral FA, Kenner JR, Draelos ZD. The skin health and beauty pyramid: A clinically based guide to selecting topical skincare products. J Drugs Dermatol 2014; 13(4): 414-21.
[PMID: 24719060]
[3]
Jacczak B, Rubiś B, Totoń E. Potential of naturally derived compounds in telomerase and telomere modulation in skin senescence and aging. Int J Mol Sci 2021; 22(12): 6381.
[http://dx.doi.org/10.3390/ijms22126381] [PMID: 34203694]
[4]
Klass MR. A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev 1983; 22(3-4): 279-86.
[http://dx.doi.org/10.1016/0047-6374(83)90082-9] [PMID: 6632998]
[5]
Bernardes de Jesus B, Vera E, Schneeberger K, et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med 2012; 4(8): 691-704.
[http://dx.doi.org/10.1002/emmm.201200245] [PMID: 22585399]
[6]
Jenkins G. Molecular mechanisms of skin ageing. Mech Ageing Dev 2002; 123(7): 801-10.
[http://dx.doi.org/10.1016/S0047-6374(01)00425-0] [PMID: 11869737]
[7]
Verschoore M, Nielson M. The rationale of anti-aging cosmetic ingredients. J Drugs Dermatol 2017; 16(6): s94-7.
[PMID: 29028861]
[8]
Ghersetich I, Troiano M, De Giorgi V, Lotti T. Receptors in skin ageing and antiageing agents. Dermatol Clin 2007; 25(4): 655-662, xi.
[http://dx.doi.org/10.1016/j.det.2007.06.018] [PMID: 17903624]
[9]
Farage MA, Miller KW, Elsner P, Maibach HI. Intrinsic and extrinsic factors in skin ageing: A review. Int J Cosmet Sci 2008; 30(2): 87-95.
[http://dx.doi.org/10.1111/j.1468-2494.2007.00415.x] [PMID: 18377617]
[10]
Bruce S. Cosmeceuticals for the attenuation of extrinsic and intrinsic dermal aging. J Drugs Dermatol 2008; 7(2): 17-22.
[11]
Tran D, Townley JP, Barnes TM, Greive KA. An antiaging skin care system containing alpha hydroxy acids and vitamins improves the biomechanical parameters of facial skin. Clin Cosmet Investig Dermatol 2014; 8: 9-17.
[PMID: 25552908]
[12]
Hartmann A. Back to the roots dermatology in ancient Egyptian medicine. J Dtsch Dermatol Ges 2016; 14(4): 389-96.
[http://dx.doi.org/10.1111/ddg.12947] [PMID: 27027749]
[13]
Du B, Ohmichi M, Takahashi K, et al. Both estrogen and raloxifene protect against β-amyloid-induced neurotoxicity in estrogen receptor α-transfected PC12 cells by activation of telomerase activity via Akt cascade. J Endocrinol 2004; 183(3): 605-15.
[http://dx.doi.org/10.1677/joe.1.05775] [PMID: 15590986]
[14]
Sarkar P, Shiizaki K, Yonemoto J, Sone H. Activation of telomerase in BeWo cells by estrogen and 2,3,7,8-tetrachlorodibenzo-p-dioxin in co-operation with c-Myc. Int J Oncol 2006; 28(1): 43-51.
[http://dx.doi.org/10.3892/ijo.28.1.43] [PMID: 16327978]
[15]
Calleja-Agius J, Muscat-Baron Y, Brincat MP. Skin ageing. Menopause Int 2007; 13(2): 60-4.
[http://dx.doi.org/10.1258/175404507780796325] [PMID: 17540135]
[16]
Cen J, Zhang H, Liu Y, et al. Anti-aging effect of estrogen on telomerase activity in ovariectomised rats--animal model for menopause. Gynecol Endocrinol 2015; 31(7): 582-5.
[PMID: 26340354]
[17]
Kafantari H, Kounadi E, Fatouros M, Milonakis M, Tzaphlidou M. Structural alterations in rat skin and bone collagen fibrils induced by ovariectomy. Bone 2000; 26(4): 349-53.
[http://dx.doi.org/10.1016/S8756-3282(99)00279-3] [PMID: 10719277]
[18]
Tsukahara K, Nakagawa H, Moriwaki S, et al. Ovariectomy is sufficient to accelerate spontaneous skin ageing and to stimulate ultraviolet irradiation-induced photoageing of murine skin. Br J Dermatol 2004; 151(5): 984-94.
[http://dx.doi.org/10.1111/j.1365-2133.2004.06203.x] [PMID: 15541076]
[19]
Rothbard JB, Garlington S, Lin Q, et al. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat Med 2000; 6(11): 1253-7.
[http://dx.doi.org/10.1038/81359] [PMID: 11062537]
[20]
Kaya G, Saurat JH. Dermatoporosis: A chronic cutaneous insufficiency/fragility syndrome. Clinicopathological features, mechanisms, prevention and potential treatments. Dermatology 2007; 215(4): 284-94.
[http://dx.doi.org/10.1159/000107621] [PMID: 17911985]
[21]
McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 1989; 5(3): 155-71.
[PMID: 2520283]
[22]
Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 2002; 277(47): 45099-107.
[http://dx.doi.org/10.1074/jbc.M205670200] [PMID: 12297502]
[23]
Ingram DK, Anson RM, De Cabo R, et al. Development of calorie restriction mimetics as a prolongevity strategy. Ann N Y Acad Sci 2004; 1019(1): 412-23.
[http://dx.doi.org/10.1196/annals.1297.074] [PMID: 15247056]
[24]
Guarente L, Picard F. Calorie restriction--the SIR2 connection. Cell 2005; 120(4): 473-82.
[http://dx.doi.org/10.1016/j.cell.2005.01.029] [PMID: 15734680]
[25]
Sinclair DA. Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 2005; 126(9): 987-1002.
[http://dx.doi.org/10.1016/j.mad.2005.03.019] [PMID: 15893363]
[26]
Picca A, Pesce V, Lezza AMS. Does eating less make you live longer and better? An update on calorie restriction. Clin Interv Aging 2017; 12: 1887-902.
[http://dx.doi.org/10.2147/CIA.S126458] [PMID: 29184395]
[27]
Stranahan AM, Lee K, Martin B, et al. Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus 2009; 19(10): 951-61.
[http://dx.doi.org/10.1002/hipo.20577] [PMID: 19280661]
[28]
Mercken EM, Carboneau BA, Krzysik-Walker SM, de Cabo R. Of mice and men: The benefits of caloric restriction, exercise, and mimetics. Ageing Res Rev 2012; 11(3): 390-8.
[http://dx.doi.org/10.1016/j.arr.2011.11.005] [PMID: 22210414]
[29]
Piñeiro-Hermida S, Autilio C, Martínez P, Bosch F, Pérez-Gil J, Blasco MA. Telomerase treatment prevents lung profibrotic pathologies associated with physiological aging. J Cell Biol 2020; 219(10): e202002120.
[http://dx.doi.org/10.1083/jcb.202002120] [PMID: 32777016]
[30]
Moyzis RK, Buckingham JM, Cram LS, et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci 1988; 85(18): 6622-6.
[http://dx.doi.org/10.1073/pnas.85.18.6622] [PMID: 3413114]
[31]
Blackburn EH. Switching and signaling at the telomere. Cell 2001; 106(6): 661-73.
[http://dx.doi.org/10.1016/S0092-8674(01)00492-5] [PMID: 11572773]
[32]
de Lange T. Shelterin: The protein complex that shapes and safeguards human telomeres. Genes Dev 2005; 19(18): 2100-10.
[http://dx.doi.org/10.1101/gad.1346005] [PMID: 16166375]
[33]
Blasco MA. Mice with bad ends: Mouse models for the study of telomeres and telomerase in cancer and aging. EMBO J 2005; 24(6): 1095-103.
[http://dx.doi.org/10.1038/sj.emboj.7600598] [PMID: 15775986]
[34]
Blackburn EH, Greider CW, Szostak JW. Telomeres and telomerase: The path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 2006; 12(10): 1133-8.
[http://dx.doi.org/10.1038/nm1006-1133] [PMID: 17024208]
[35]
Harley CB, Liu W, Blasco M, et al. A natural product telomerase activator as part of a health maintenance program. Rejuvenation Res 2011; 14(1): 45-56.
[http://dx.doi.org/10.1089/rej.2010.1085] [PMID: 20822369]
[36]
Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in tetrahymena extracts. Cell 1985; 43(2): 405-13.
[http://dx.doi.org/10.1016/0092-8674(85)90170-9] [PMID: 3907856]
[37]
Quazi S. Telomerase gene therapy: A remission toward cancer. Med Oncol 2022; 39(6): 105.
[http://dx.doi.org/10.1007/s12032-022-01702-2] [PMID: 35429243]
[38]
Nagpal N, Wang J, Zeng J, et al. Small-molecule PAPD5 inhibitors restore telomerase activity in patient stem cells. Cell Stem Cell 2020; 26(6): 896-909.e8.
[http://dx.doi.org/10.1016/j.stem.2020.03.016] [PMID: 32320679]
[39]
Rammelt C, Bilen B, Zavolan M, Keller W. PAPD5, a noncanonical poly(A) polymerase with an unusual RNA-binding motif. RNA 2011; 17(9): 1737-46.
[http://dx.doi.org/10.1261/rna.2787011] [PMID: 21788334]
[40]
Xia L, Wang XX, Hu XS, et al. Resveratrol reduces endothelial progenitor cells senescence through augmentation of telomerase activity by Akt-dependent mechanisms. Br J Pharmacol 2008; 155(3): 387-94.
[http://dx.doi.org/10.1038/bjp.2008.272] [PMID: 18587418]
[41]
Wang XB, Zhu L, Huang J, et al. Resveratrol-induced augmentation of telomerase activity delays senescence of endothelial progenitor cells. Chin Med J 2011; 124(24): 4310-5.
[PMID: 22340406]
[42]
Wolf SA, Melnik A, Kempermann G. Physical exercise increases adult neurogenesis and telomerase activity, and improves behavioral deficits in a mouse model of schizophrenia. Brain Behav Immun 2011; 25(5): 971-80.
[http://dx.doi.org/10.1016/j.bbi.2010.10.014] [PMID: 20970493]
[43]
Zietzer A, Buschmann EE, Janke D, et al. Acute physical exercise and long-term individual shear rate therapy increase telomerase activity in human peripheral blood mononuclear cells. Acta Physiol 2017; 220(2): 251-62.
[http://dx.doi.org/10.1111/apha.12820] [PMID: 27770498]
[44]
Denham J, Sellami M. Exercise training increases telomerase reverse transcriptase gene expression and telomerase activity: A systematic review and meta-analysis. Ageing Res Rev 2021; 70: 101411.
[http://dx.doi.org/10.1016/j.arr.2021.101411] [PMID: 34284150]
[45]
Wan T, Weir EJ, Johnson M, Korolchuk VI, Saretzki GC. Increased telomerase improves motor function and alpha-synuclein pathology in a transgenic mouse model of Parkinson’s disease associated with enhanced autophagy. Prog Neurobiol 2021; 199: 101953.
[http://dx.doi.org/10.1016/j.pneurobio.2020.101953] [PMID: 33188884]
[46]
Kaiser J. Gene therapy beats premature-aging syndrome in mice. Science 2021; 371(6525): 114.
[http://dx.doi.org/10.1126/science.371.6525.114] [PMID: 33414202]
[47]
Chung SA, Wei AQ, Connor DE, et al. Nucleus pulposus cellular longevity by telomerase gene therapy. Spine 2007; 32(11): 1188-96.
[http://dx.doi.org/10.1097/BRS.0b013e31805471a3]
[48]
Boccardi V, Herbig U. Telomerase gene therapy: A novel approach to combat aging. EMBO Mol Med 2012; 4(8): 685-7.
[http://dx.doi.org/10.1002/emmm.201200246] [PMID: 22585424]
[49]
Bär C, Povedano JM, Serrano R, et al. Telomerase gene therapy rescues telomere length, bone marrow aplasia, and survival in mice with aplastic anemia. Blood 2016; 127(14): 1770-9.
[http://dx.doi.org/10.1182/blood-2015-08-667485] [PMID: 26903545]
[50]
Whittemore K, Derevyanko A, Martinez P, et al. Telomerase gene therapy ameliorates the effects of neurodegeneration associated to short telomeres in mice. Aging 2019; 11(10): 2916-48.
[http://dx.doi.org/10.18632/aging.101982] [PMID: 31140977]
[51]
Vaziri H, Benchimol S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol 1998; 8(5): 279-82.
[http://dx.doi.org/10.1016/S0960-9822(98)70109-5] [PMID: 9501072]
[52]
Yang J, Chang E, Cherry AM, et al. Human endothelial cell life extension by telomerase expression. J Biol Chem 1999; 274(37): 26141-8.
[http://dx.doi.org/10.1074/jbc.274.37.26141] [PMID: 10473565]
[53]
Dickson MA, Hahn WC, Ino Y, et al. Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol Cell Biol 2000; 20(4): 1436-47.
[http://dx.doi.org/10.1128/MCB.20.4.1436-1447.2000] [PMID: 10648628]
[54]
Shimokata H, Tobin JD, Muller DC, Elahi D, Coon PJ, Andres R. Studies in the distribution of body fat: I. Effects of age, sex, and obesity. J Gerontol 1989; 44(2): M66-73.
[http://dx.doi.org/10.1093/geronj/44.2.M66] [PMID: 2921472]
[55]
Tomás-Loba A, Flores I, Fernández-Marcos PJ, et al. Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell 2008; 135(4): 609-22.
[http://dx.doi.org/10.1016/j.cell.2008.09.034] [PMID: 19013273]
[56]
Murasawa S, Llevadot J, Silver M, Isner JM, Losordo DW, Asahara T. Constitutive human telomerase reverse transcriptase expression enhances regenerative properties of endothelial progenitor cells. Circulation 2002; 106(9): 1133-9.
[http://dx.doi.org/10.1161/01.CIR.0000027584.85865.B4] [PMID: 12196341]
[57]
Yamada O, Akiyama M, Kawauchi K, et al. Overexpression of telomerase confers a survival advantage through suppression of TRF1 gene expression while maintaining differentiation characteristics in K562 cells. Cell Transplant 2003; 12(4): 365-77.
[http://dx.doi.org/10.3727/000000003108746911] [PMID: 12911124]
[58]
Povedano JM, Martinez P, Serrano R, et al. Therapeutic effects of telomerase in mice with pulmonary fibrosis induced by damage to the lungs and short telomeres. eLife 2018; 7: e31299.
[http://dx.doi.org/10.7554/eLife.31299] [PMID: 29378675]
[59]
Derevyanko A, Whittemore K, Schneider RP, Jiménez V, Bosch F, Blasco MA. Gene therapy with the TRF 1 telomere gene rescues decreased TRF 1 levels with aging and prolongs mouse health span. Aging Cell 2017; 16(6): 1353-68.
[http://dx.doi.org/10.1111/acel.12677] [PMID: 28944611]
[60]
Chatterjee S, Hofer T, Costa A, et al. Telomerase therapy attenuates cardiotoxic effects of doxorubicin. Mol Ther 2021; 29(4): 1395-410.
[http://dx.doi.org/10.1016/j.ymthe.2020.12.035] [PMID: 33388418]
[61]
Gu J, Hu W, Zhang D. Resveratrol, a polyphenol phytoalexin, protects against doxorubicin-induced cardiotoxicity. J Cell Mol Med 2015; 19(10): 2324-8.
[http://dx.doi.org/10.1111/jcmm.12633] [PMID: 26177159]
[62]
Nishida F, Morel GR, Hereñú CB, Schwerdt JI, Goya RG, Portiansky EL. Restorative effect of intracerebroventricular insulin-like growth factor-I gene therapy on motor performance in aging rats. Neuroscience 2011; 177(177): 195-206.
[http://dx.doi.org/10.1016/j.neuroscience.2011.01.013] [PMID: 21241779]
[63]
Pardo J, Uriarte M, Cónsole GM, et al. Insulin-like growth factor-I gene therapy increases hippocampal neurogenesis, astrocyte branching and improves spatial memory in female aging rats. Eur J Neurosci 2016; 44(4): 2120-8.
[http://dx.doi.org/10.1111/ejn.13278] [PMID: 27188415]
[64]
Pardo J, Abba MC, Lacunza E, et al. IGF-I gene therapy in aging rats modulates hippocampal genes relevant to memory function. J Gerontol A Biol Sci Med Sci 2018; 73(4): 459-67.
[http://dx.doi.org/10.1093/gerona/glx125] [PMID: 28645186]
[65]
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.
[http://dx.doi.org/10.1016/j.cell.2007.11.019] [PMID: 18035408]
[66]
Campbell KHS, McWhir J, Ritchie WA, Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line. Nature 1996; 380(6569): 64-6.
[http://dx.doi.org/10.1038/380064a0] [PMID: 8598906]
[67]
Ashapkin VV, Kutueva LI, Vanyushin BF. Aging epigenetics: Accumulation of errors or realization of a specific program? Biochemistry 2015; 80(11): 1406-17.
[http://dx.doi.org/10.1134/S0006297915110024] [PMID: 26615432]
[68]
Ashapkin VV, Kutueva LI, Vanyushin BF. Aging as an epigenetic phenomenon. Curr Genomics 2017; 18(5): 385-407.
[http://dx.doi.org/10.2174/1389202918666170412112130] [PMID: 29081695]
[69]
Kim JB, Zaehres H, Wu G, et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 2008; 454(7204): 646-50.
[http://dx.doi.org/10.1038/nature07061] [PMID: 18594515]
[70]
Hou P, Li Y, Zhang X, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 2013; 341(6146): 651-4.
[http://dx.doi.org/10.1126/science.1239278] [PMID: 23868920]
[71]
Lu Y, Brommer B, Tian X, et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 2020; 588(7836): 124-9.
[http://dx.doi.org/10.1038/s41586-020-2975-4] [PMID: 33268865]
[72]
Muñoz-Lorente MA, Martínez P, Tejera Á, et al. AAV9-mediated telomerase activation does not accelerate tumorigenesis in the context of oncogenic K-Ras-induced lung cancer. PLoS Genet 2018; 14(8): e1007562.
[http://dx.doi.org/10.1371/journal.pgen.1007562] [PMID: 30114189]
[73]
Jaskelioff M, Muller FL, Paik JH, et al. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 2011; 469(7328): 102-6.
[http://dx.doi.org/10.1038/nature09603] [PMID: 21113150]
[74]
Sahin F, Avci CB, Gunduz C, Sezgin C, Simsir IY, Saydam G. Gossypol exerts its cytotoxic effect on HL-60 leukemic cell line via decreasing activity of protein phosphatase 2A and interacting with human telomerase reverse transcriptase activity. Hematology 2010; 15(3): 144-50.
[http://dx.doi.org/10.1179/102453309X12583347113771] [PMID: 20557672]
[75]
Pemmari T, Ivanova L, May U, et al. Exposed CendR domain in homing peptide yields skin-targeted therapeutic in epidermolysis bullosa. Mol Ther 2020; 28(8): 1833-45.
[http://dx.doi.org/10.1016/j.ymthe.2020.05.017] [PMID: 32497513]
[76]
Wilkinson HN, Hardman MJ. A role for estrogen in skin ageing and dermal biomechanics. Mech Ageing Dev 2021; 197: 111513.
[http://dx.doi.org/10.1016/j.mad.2021.111513] [PMID: 34044023]
[77]
Saad FA. Novel insights into the complex architecture of osteoporosis molecular genetics. Ann N Y Acad Sci 2020; 1462(1): 37-52.
[http://dx.doi.org/10.1111/nyas.14231] [PMID: 31556133]
[78]
Shimizu ME, Ishizaki F, Nakamura S. Results of a home exercise program for patients with osteoporosis resulting from neurological disorders. Hiroshima J Med Sci 2002; 51(1): 15-22.
[PMID: 11999456]
[79]
Nascimento C, Pereira J, Andrade L, et al. Physical exercise in MCI elderly promotes reduction of pro-inflammatory cytokines and improvements on cognition and BDNF peripheral levels. Curr Alzheimer Res 2014; 11(8): 799-805.
[http://dx.doi.org/10.2174/156720501108140910122849] [PMID: 25212919]
[80]
Puente-González AS, Sánchez-Sánchez MC, Fernández-Rodríguez EJ, Hernández-Xumet JE, Barbero-Iglesias FJ, Méndez-Sánchez R. Effects of 6-month multimodal physical exercise program on bone mineral density, fall risk, balance, and gait in patients with alzheimer’s disease: A controlled clinical trial. Brain Sci 2021; 11(1): 63.
[http://dx.doi.org/10.3390/brainsci11010063] [PMID: 33419016]
[81]
Arsenis NC, You T, Ogawa EF, Tinsley GM, Zuo L. Physical activity and telomere length: Impact of aging and potential mechanisms of action. Oncotarget 2017; 8(27): 45008-19.
[http://dx.doi.org/10.18632/oncotarget.16726] [PMID: 28410238]
[82]
Sellami M, Bragazzi N, Prince MS, Denham J, Elrayess M. Regular, intense exercise training as a healthy aging lifestyle strategy: Preventing DNA damage, telomere shortening and adverse DNA methylation changes over a lifetime. Front Genet 2021; 12: 652497.
[http://dx.doi.org/10.3389/fgene.2021.652497] [PMID: 34421981]
[83]
Haupt S, Niedrist T, Sourij H, Schwarzinger S, Moser O. The impact of exercise on telomere length, DNA methylation and metabolic footprints. Cells 2022; 11(1): 153.
[http://dx.doi.org/10.3390/cells11010153] [PMID: 35011715]
[84]
Elrick H. Exercise the best prescription. Phys Sportsmed 1996; 24(2): 79-80.
[http://dx.doi.org/10.1080/00913847.1996.11947915] [PMID: 20086972]
[85]
Birmingham K. Exercise is the best medicine. Nurs Older People 2008; 20(7): 3.
[http://dx.doi.org/10.7748/nop.20.7.3.s1] [PMID: 18853538]
[86]
Saad JF, Saad FA. Gene Therapy for Alzheimer and Parkinson Diseases. Curr Gene Ther 2023; 23(3): 163-9.
[http://dx.doi.org/10.2174/1566523223666230419101023] [PMID: 37114789]
[87]
Fu W, Begley JG, Killen MW, Mattson MP. Anti-apoptotic role of telomerase in pheochromocytoma cells. J Biol Chem 1999; 274(11): 7264-71.
[http://dx.doi.org/10.1074/jbc.274.11.7264] [PMID: 10066788]
[88]
Zhu J, Wang H, Bishop JM, Blackburn EH. Telomerase extends the lifespan of virus-transformed human cells without net telomere lengthening. Proc Natl Acad Sci 1999; 96(7): 3723-8.
[http://dx.doi.org/10.1073/pnas.96.7.3723] [PMID: 10097104]
[89]
Yang JH, Petty CA, Dixon-McDougall T, et al. Chemically induced reprogramming to reverse cellular aging. Aging 2023; 15(13): 5966-89.
[http://dx.doi.org/10.18632/aging.204896] [PMID: 37437248]
[90]
Jiang H, Couto LB, Patarroyo-White S, et al. Effects of transient immunosuppression on adenoassociated, virus-mediated, liver-directed gene transfer in rhesus macaques and implications for human gene therapy. Blood 2006; 108(10): 3321-8.
[http://dx.doi.org/10.1182/blood-2006-04-017913] [PMID: 16868252]
[91]
Manno CS, Pierce GF, Arruda VR, et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12(3): 342-7.
[http://dx.doi.org/10.1038/nm1358] [PMID: 16474400]
[92]
Nathwani AC, Tuddenham EGD, Rangarajan S, et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 2011; 365(25): 2357-65.
[http://dx.doi.org/10.1056/NEJMoa1108046] [PMID: 22149959]
[93]
Assaf BT, Whiteley LO. Considerations for preclinical safety assessment of adeno-associated virus gene therapy products. Toxicol Pathol 2018; 46(8): 1020-7.
[http://dx.doi.org/10.1177/0192623318803867] [PMID: 30295175]
[94]
Guggino WB, Cebotaru L. Adeno-associated virus (AAV) gene therapy for cystic fibrosis: Current barriers and recent developments. Expert Opin Biol Ther 2017; 17(10): 1265-73.
[http://dx.doi.org/10.1080/14712598.2017.1347630] [PMID: 28657358]
[95]
Sanlioglu S, Monick M, Luleci G, Hunninghake G, Engelhardt J. Rate limiting steps of AAV transduction and implications for human gene therapy. Curr Gene Ther 2001; 1(2): 137-47.
[http://dx.doi.org/10.2174/1566523013348788] [PMID: 12108951]
[96]
Liu Q, Huang W, Zhang H, et al. Neutralizing antibodies against AAV2, AAV5 and AAV8 in healthy and HIV-1-infected subjects in China: implications for gene therapy using AAV vectors. Gene Ther 2014; 21(8): 732-8.
[http://dx.doi.org/10.1038/gt.2014.47] [PMID: 24849042]
[97]
Kasprzyk T, Triffault S, Long BR, Zoog SJ, Vettermann C. Confirmatory detection of neutralizing antibodies to AAV gene therapy using a cell-based transduction inhibition assay. Mol Ther Methods Clin Dev 2022; 24: 222-9.
[http://dx.doi.org/10.1016/j.omtm.2022.01.004] [PMID: 35141351]
[98]
Chandler RJ, LaFave MC, Varshney GK, Burgess SM, Venditti CP. Genotoxicity in mice following AAV gene delivery: A safety concern for human gene therapy? Mol Ther 2016; 24(2): 198-201.
[http://dx.doi.org/10.1038/mt.2016.17] [PMID: 26906613]
[99]
Humphrey S, Manson Brown S, Cross SJ, Mehta R. Defining skin quality: Clinical relevance, terminology, and assessment. Dermatol Surg 2021; 47(7): 974-81.
[http://dx.doi.org/10.1097/DSS.0000000000003079] [PMID: 34148998]
[100]
Carney RG, Zopf LC. Management of aging skin with cosmetics. Arch Dermatol 1962; 86(4): 404-6.
[http://dx.doi.org/10.1001/archderm.1962.01590100018005] [PMID: 14018762]
[101]
Zouboulis CC, Makrantonaki E, Nikolakis G. When the skin is in the center of interest: An aging issue. Clin Dermatol 2019; 37(4): 296-305.
[http://dx.doi.org/10.1016/j.clindermatol.2019.04.004] [PMID: 31345316]
[102]
Zouboulis CC, Makrantonaki E, Hossini AM. Skin mirrors brain: A chance for alzheimer’s disease research. Adv Exp Med Biol 2021; 1339: 371-80.
[http://dx.doi.org/10.1007/978-3-030-78787-5_45] [PMID: 35023127]
[103]
Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279(5349): 349-52.
[http://dx.doi.org/10.1126/science.279.5349.349] [PMID: 9454332]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy