Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Research Article

Microwave Assisted Groebke-Blackburn-Bienayme Multicomponent Reaction to Synthesis of Imidazo[1,2-a]pyridine-furan Hybrids as Possible Therapeutic Option for Leukemia, Colon Cancer and Prostate Cancer

Author(s): Parth Manvar, Dharmesh Katariya, Amita Vyas, Pooja Bhanderi and Ranjan Khunt*

Volume 11, Issue 1, 2024

Published on: 22 March, 2024

Page: [37 - 50] Pages: 14

DOI: 10.2174/0122133356294226240228103251

Abstract

Aims: Microwave assisted Groebke-Blackburn-Bienayme multicomponent reaction to synthesis imidazo[1,2-a]pyridine-furan hybrids as anticancer agents.

Background: Microwave synthesis has emerged as a potent tool for the more economical and environmental friendly synthesis of organic compounds, such as derivatives of imidazo[1,2- a]pyridine. Compared to traditional synthesis, microwave radiation causes molecules to be excited and distributes thermal energy evenly in a shorter amount of time.

Objective: The primary objective of the work presented in this article was to prepare imidazo[1,2- a]pyridine-furan hybrids via Groebke-Blackburn-Bienayme multicomponent reaction using PEG 400 in microwave irradiation as green approach. Characterized it and evaluated their anticancer activities.

Methods: In a sealed microwave glass vial, 5-methylfuran-2-carbaldehyde 1, 2-aminoazines 2ag, isocyanides 3a-c in presence of 20mol% acetic acid were dissolved in PEG 400 (polyethylene glycol 400) reaction solvent. The glass vial was sealed and irradiate in microwave with stirring at temperature of 75°C for 10 min. This method is an efficient alternative approach to synthesizing imidazo[1,2-a]pyridine-furan hybrids via Groebke-Blackburn-Bienayme multicomponent reaction.

Results: We have successfully synthesised the imidazo[1,2-a]pyridine-furan hybrids via Groebke-Blackburn-Bienayme multicomponent reaction using PEG 400 in microwave irradiation as green approach. The structures of the compounds were confirmed through various spectroscopic techniques and evaluated their anticancer activities.

Conclusion: The reported protocol is advantageous over conventional methods of imidazo[1,2- a]pyridine derivatives. The time required for the reaction is much less as compared to the usual requirements of reflux. Compound 4e, 4f, 4n and 4o shows the most increased activity against cell line RPMI-8226, HCT-116 and PC-3 of Leukemia, Colon cancer and Prostate cancer respectively. By using the potential of imidazo[1,2-a]pyridine-furan based compounds via sustainable green approach, more effective and accurate cancer treatments can be designed in future.

Keywords: Medicinal chemistry, heterocyclic chemistry, imidazo[1, 2-a]pyridine-furan hybrids, peg 400, microwave irradiation, green approach, leukemia, colon cancer and prostate cancer.

Graphical Abstract
[1]
Arbyn, M.; Weiderpass, E.; Bruni, L.; de Sanjosé, S.; Saraiya, M.; Ferlay, J.; Bray, F. Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis. Lancet Glob. Health, 2020, 8(2), e191-e203.
[http://dx.doi.org/10.1016/S2214-109X(19)30482-6] [PMID: 31812369]
[2]
Arbyn, M. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int., 2019, 43(6), 582-592.
[http://dx.doi.org/10.1002/cbin.11137 ] [PMID: 30958602]
[3]
Morse, M.A.; Gwin, W.R.; Mitchell, D.A. Vaccine therapies for cancer: Then and now. Targ Oncol, 2021, 16, 121-152.
[4]
Orji, P.; Sun, H.; Isali, I. Female sexual function evaluation and intraoperative vaginal reconstruction in bladder cancer. World J Urol, 2023, 41, 1741-1762.
[5]
Sahlol, A.T.; Kollmannsberger, P.; Ewees, A.A. Efficient classification of white blood cell leukemia with improved swarm optimization of deep features. Sci. Rep., 2020, 10(1), 2536.
[http://dx.doi.org/10.1038/s41598-020-59215-9 ] [PMID: 32054876]
[6]
Harmer, D.; Falank, C.; Reagan, M.R. Interleukin-6 interweaves the bone marrow microenvironment, bone loss, and multiple myeloma. Front. Endocrinol., 2019, 9, 788.
[http://dx.doi.org/10.3389/fendo.2018.00788 ] [PMID: 30671025]
[7]
Xuan, L.; Liu, Q. Maintenance therapy in acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation. J. Hematol. Oncol., 2021, 14(1), 4.
[http://dx.doi.org/10.1186/s13045-020-01017-7] [PMID: 33407700]
[8]
Sager, O.; Dincoglan, F.; Demiral, S. Breathing adapted radiation therapy for leukemia relapse in the breast: A case report. World J. Clin. Oncol, 2019, 10(11), 369-374.
[9]
Richard-Carpentier, G.; DiNardo, CD. Venetoclax for the treatment of newly diagnosed acute myeloid leukemia in patients who are ineligible for intensive chemotherapy. Ther. Adv. Hematol., 2019, 10.
[10]
Discovery of hybrid purine-quinoline molecules and their cytotoxic evaluation. Lett. Drug Des., 2019, 16(1), 21-28.
[11]
Diakatou, V.; Vassilakou, T. Nutritional status of pediatric cancer patients at diagnosis and correlations with treatment, clinical outcome and the long-term growth and health of survivors. Children , 2020, 7(11), 218.
[http://dx.doi.org/10.3390/children7110218]
[12]
Alzahrani, SM.; Al Doghaither, HA.; Al-Ghafari, AB. General insight into cancer: An overview of colorectal cancer. Mol Clin Oncol., 2021, 15(6), 271.
[13]
Grass, F.; Behm, K.T.; Duchalais, E.; Crippa, J.; Spears, G.M.; Harmsen, W.S.; Hübner, M.; Mathis, K.L.; Kelley, S.R.; Pemberton, J.H.; Dozois, E.J.; Larson, D.W. Impact of delay to surgery on survival in stage I-III colon cancer. Eur. J. Surg. Oncol., 2020, 46(3), 455-461.
[http://dx.doi.org/10.1016/j.ejso.2019.11.513] [PMID: 31806516]
[14]
Gelibter, A.J.; Caponnetto, S.; Urbano, F.; Emiliani, A.; Scagnoli, S.; Sirgiovanni, G.; Napoli, V.M.; Cortesi, E. Adjuvant chemotherapy in resected colon cancer: When, how and how long? Surg. Oncol., 2019, 30, 100-107.
[http://dx.doi.org/10.1016/j.suronc.2019.06.003] [PMID: 31500770]
[15]
Habr-Gama, A.; São Julião, G.P.; Vailati, B.B.; Sabbaga, J.; Aguilar, P.B.; Fernandez, L.M.; Araújo, S.E.A.; Perez, R.O. Organ preservation in cT2N0 rectal cancer after neoadjuvant chemoradiation therapy. Ann. Surg., 2019, 269(1), 102-107.
[http://dx.doi.org/10.1097/SLA.0000000000002447] [PMID: 28742703]
[16]
Burstein, H.J.; Curigliano, G.; Thürlimann, B.; Weber, W.P.; Poortmans, P.; Regan, M.M.; Senn, H.J.; Winer, E.P.; Gnant, M.; Aebi, S.; André, F.; Barrios, C.; Bergh, J.; Bonnefoi, H.; Bretel Morales, D.; Brucker, S.; Burstein, H.; Cameron, D.; Cardoso, F.; Carey, L.; Chua, B.; Ciruelos, E.; Colleoni, M.; Curigliano, G.; Delaloge, S.; Denkert, C.; Dubsky, P.; Ejlertsen, B.; Fitzal, F.; Francis, P.; Galimberti, V.; Gamal El Din Mohamed Mahmoud, H.; Garber, J.; Gnant, M.; Gradishar, W.; Gulluoglu, B.; Harbeck, N.; Huang, C.S.; Huober, J.; Ilbawi, A.; Jiang, Z.; Johnston, S.; Lee, E.S.; Loibl, S.; Morrow, M.; Partridge, A.; Piccart, M.; Poortmans, P.; Prat, A.; Regan, M.; Rubio, I.; Rugo, H.; Rutgers, E.; Sedlmayer, F.; Semiglazov, V.; Senn, H.J.; Shao, Z.; Spanic, T.; Tesarova, P.; Thürlimann, B.; Tjulandin, S.; Toi, M.; Trudeau, M.; Turner, N.; Vaz Luis, I.; Viale, G.; Watanabe, T.; Weber, W.P.; Winer, E.P.; Xu, B. Customizing local and systemic therapies for women with early breast cancer: The St. Gallen International Consensus Guidelines for treatment of early breast cancer 2021. Ann. Oncol., 2021, 32(10), 1216-1235.
[http://dx.doi.org/10.1016/j.annonc.2021.06.023] [PMID: 34242744]
[17]
Gandaglia, G.; Leni, R.; Bray, F.; Fleshner, N.; Freedland, S.J.; Kibel, A.; Stattin, P.; Van Poppel, H.; La Vecchia, C. Epidemiology and prevention of prostate cancer. Eur. Urol. Oncol., 2021, 4(6), 877-892.
[http://dx.doi.org/10.1016/j.euo.2021.09.006] [PMID: 34716119]
[18]
Mottet, N.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; Grivas, N.; Grummet, J.; Henry, A.M.; van der Kwast, T.H.; Lam, T.B.; Lardas, M.; Liew, M.; Mason, M.D.; Moris, L.; Oprea-Lager, D.E.; van der Poel, H.G.; Rouvière, O.; Schoots, I.G.; Tilki, D.; Wiegel, T.; Willemse, P.P.M.; Cornford, P. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer—2020 update. Part 1: Screening, diagnosis, and local treatment with curative intent. Eur. Urol., 2021, 79(2), 243-262.
[http://dx.doi.org/10.1016/j.eururo.2020.09.042] [PMID: 33172724]
[19]
Derks, Y.H.W.; Löwik, D.W.P.M.; Sedelaar, J.P.M.; Gotthardt, M.; Boerman, O.C.; Rijpkema, M.; Lütje, S.; Heskamp, S. PSMA-targeting agents for radio- and fluorescence-guided prostate cancer surgery. Theranostics, 2019, 9(23), 6824-6839.
[http://dx.doi.org/10.7150/thno.36739 ] [PMID: 31660071]
[20]
Panebianco, V.; Villeirs, G.; Weinreb, J.C.; Turkbey, B.I.; Margolis, D.J.; Richenberg, J.; Schoots, I.G.; Moore, C.M.; Futterer, J.; Macura, K.J.; Oto, A.; Bittencourt, L.K.; Haider, M.A.; Salomon, G.; Tempany, C.M.; Padhani, A.R.; Barentsz, J.O. Prostate magnetic resonance imaging for local recurrence reporting (PI-RR): International consensus -based guidelines on multiparametric magnetic resonance imaging for prostate cancer recurrence after radiation therapy and radical prostatectomy. Eur. Urol. Oncol., 2021, 4(6), 868-876.
[http://dx.doi.org/10.1016/j.euo.2021.01.003] [PMID: 33582104]
[21]
Clarke, N.W.; Ali, A.; Ingleby, F.C.; Hoyle, A.; Amos, C.L.; Attard, G.; Brawley, C.D.; Calvert, J.; Chowdhury, S.; Cook, A.; Cross, W.; Dearnaley, D.P.; Douis, H.; Gilbert, D.; Gillessen, S.; Jones, R.J.; Langley, R.E.; MacNair, A.; Malik, Z.; Mason, M.D.; Matheson, D.; Millman, R.; Parker, C.C.; Ritchie, A.W.S.; Rush, H.; Russell, J.M.; Brown, J.; Beesley, S.; Birtle, A.; Capaldi, L.; Gale, J.; Gibbs, S.; Lydon, A.; Nikapota, A.; Omlin, A.; O’Sullivan, J.M.; Parikh, O.; Protheroe, A.; Rudman, S.; Srihari, N.N.; Simms, M.; Tanguay, J.S.; Tolan, S.; Wagstaff, J.; Wallace, J.; Wylie, J.; Zarkar, A.; Sydes, M.R.; Parmar, M.K.B.; James, N.D. Addition of docetaxel to hormonal therapy in low- and high-burden metastatic hormone sensitive prostate cancer: Long-term survival results from the STAMPEDE trial. Ann. Oncol., 2019, 30(12), 1992-2003.
[http://dx.doi.org/10.1093/annonc/mdz396] [PMID: 31560068]
[22]
Armstrong, A.J.; Lin, P.; Tombal, B.; Saad, F.; Higano, C.S.; Joshua, A.M.; Parli, T.; Rosbrook, B.; van Os, S.; Beer, T.M. Five-year survival prediction and safety outcomes with enzalutamide in men with chemotherapy-naïve metastatic castration-resistant prostate cancer from the PREVAIL trial. Eur. Urol., 2020, 78(3), 347-357.
[http://dx.doi.org/10.1016/j.eururo.2020.04.061] [PMID: 32527692]
[23]
Peris, K.; Fargnoli, M.C.; Garbe, C.; Kaufmann, R.; Bastholt, L.; Seguin, N.B.; Bataille, V.; Marmol, V.; Dummer, R.; Harwood, C.A.; Hauschild, A.; Höller, C.; Haedersdal, M.; Malvehy, J.; Middleton, M.R.; Morton, C.A.; Nagore, E.; Stratigos, A.J.; Szeimies, R.M.; Tagliaferri, L.; Trakatelli, M.; Zalaudek, I.; Eggermont, A.; Grob, J.J. Diagnosis and treatment of basal cell carcinoma: European consensus–based interdisciplinary guidelines. Eur. J. Cancer, 2019, 118, 10-34.
[http://dx.doi.org/10.1016/j.ejca.2019.06.003] [PMID: 31288208]
[24]
Nora, P.; Antonis, C.A.; Urska, I. Personalized early detection and prevention of breast cancer: ENVISION consensus statement. Nat. Rev. Clin. Oncol, 2020, 1-19.
[25]
Lang, D.K.; Kaur, R.; Arora, R. Nitrogen-containing heterocycles as anticancer agents: An overview. Anti-Cancer Agents Med. Chem., 2020, 20(18), 2150-2168.
[26]
Joviana, F.; Lara, A.; Mohammad, A. Structure–activity relationship of benzofuran derivatives with potential anticancer activity. Cancers, 2022, 14(9), 2196.
[27]
Dhiman, A.; Sharma, R.; Singh, R.K. Target-based anticancer indole derivatives and insight into structure-activity relationship: A mechanistic review update (2018–2021). Acta Pharm. Sin. B, 2022, 12(7), 3006-3027.
[http://dx.doi.org/10.1016/j.apsb.2022.03.021 ] [PMID: 35865090]
[28]
Sharma, V.; Gupta, M.; Kumar, P. A comprehensive review on fused heterocyclic as DNA intercalators: Promising anticancer agents. Curr. Pharm. Des., 2021, 27(11), 15-42.
[29]
Ravi, C.; Adimurthy, S. Synthesis of imidazo[1,2-a]pyridines: C‐H functionalization in the direction of C-S bond formation. Chem. Rec., 2017, 17(10), 1019-1038.
[http://dx.doi.org/10.1002/tcr.201600146 ] [PMID: 28318093]
[30]
Burchak, O.N.; Mugherli, L.; Ostuni, M.; Lacapère, J.J.; Balakirev, M.Y. Combinatorial discovery of fluorescent pharmacophores by multicomponent reactions in droplet arrays. J. Am. Chem. Soc., 2011, 133(26), 10058-10061.
[http://dx.doi.org/10.1021/ja204016e] [PMID: 21644551]
[31]
Gomes, G.B.; Zubieta, C.S.; Guilhermi, J.S.; Toffoli-Kadri, M.C.; Beatriz, A.; Rafique, J.; Parisotto, E.B.; Saba, S.; Perdomo, R.T. Selenylated imidazo[1,2-a]pyridine induces apoptosis and oxidative stress in 2D and 3D models of colon cancer cells. Pharmaceuticals, 2023, 16(6), 814.
[http://dx.doi.org/10.3390/ph16060814] [PMID: 37375763]
[32]
Rousseau, A.L.; Matlaba, P.; Parkinson, C.J. Multicomponent synthesis of imidazo[1,2-a]pyridines using catalytic zinc chloride. Tetrahedron Lett., 2007, 48(23), 4079-4082.
[http://dx.doi.org/10.1016/j.tetlet.2007.04.008]
[33]
Li, H.; Ouyang, S.; Zhang, Y.; Peng, K.; Fang, W.; Liu, Z.; Wang, C.Y.; Zhang, X.; Wang, Y. Structural optimization of Imidazo[1, 2-a]pyridine derivatives for the treatment of gastric cancer via STAT3 signaling pathway. Eur. J. Med. Chem., 2022, 244, 114858.
[http://dx.doi.org/10.1016/j.ejmech.2022.114858] [PMID: 36283181]
[34]
Muthengi, A.; Wimalasena, V.K.; Yosief, H.O.; Bikowitz, M.J.; Sigua, L.H.; Wang, T.; Li, D.; Gaieb, Z.; Dhawan, G.; Liu, S.; Erickson, J.; Amaro, R.E.; Schönbrunn, E.; Qi, J.; Zhang, W. Development of dimethylisoxazole-attached imidazo[1,2-a]pyridines as potent and selective CBP/P300 inhibitors. J. Med. Chem., 2021, 64(9), 5787-5801.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02232] [PMID: 33872011]
[35]
dos Santos, D.C.; Rafique, J.; Saba, S.; Almeida, G.M.; Siminski, T.; Pádua, C.; Filho, D.W.; Zamoner, A.; Braga, A.L.; Pedrosa, R.C.; Ourique, F. Apoptosis oxidative damage-mediated and antiproliferative effect of selenylated imidazo[1,2-a]pyridines on hepatocellular carcinoma HepG2 cells and in vivo. J. Biochem. Mol. Toxicol., 2021, 35(3), e22663.
[http://dx.doi.org/10.1002/jbt.22663] [PMID: 33125183]
[36]
Asgharian, P.; Tazekand, A.P.; Hosseini, K.; Forouhandeh, H.; Ghasemnejad, T.; Ranjbar, M.; Hasan, M.; Kumar, M.; Beirami, S.M.; Tarhriz, V.; Soofiyani, S.R.; Kozhamzharova, L.; Sharifi-Rad, J.; Calina, D.; Cho, W.C. Potential mechanisms of quercetin in cancer prevention: focus on cellular and molecular targets. Cancer Cell Int., 2022, 22(1), 257.
[http://dx.doi.org/10.1186/s12935-022-02677-w] [PMID: 35971151]
[37]
Vasiliy, M.M.; Zoia, A.S.; Alexey, V.S. Metal-free approach to zolpidem, alpidem and their analogues via amination of dibromoalkenes derived from imidazopyridine and imidazothiazole. EurJOC, 2019, 25, 4034-4042.
[38]
Sharma, M.; Prasher, P. C2-functionalized imidazo[1,2-a]pyridine: Synthesis and medicinal relevance. Synth. Commun., 2022, 52(11-12), 1337-1356.
[http://dx.doi.org/10.1080/00397911.2022.2079091]
[39]
Konwar, D.; Bora, U. Recent developments in transition-metal-catalyzed regioselective functionalization of imidazo[1,2-a]pyridine. ChemistrySelect, 2021, 6(11), 2716-2744.
[http://dx.doi.org/10.1002/slct.202100144]
[40]
Dobashi, S.; Watanabe, I.; Nakanishi, R. Comparing the effects of milrinone and olprinone in patients with congestive heart failure. Heart Vessels, 2020, 35, 773-785.
[41]
Fanghua, J.; Shoucai, W.; Siyu, Z. Palladium-catalyzed C3-selective C–H oxidative carbonylation of imidazo[1,2-a]pyridines with CO and alcohols: A way to access esters. Org. Chem. Front., 2020, 7(4)
[42]
Ujwaldev, S.M.; Rohit, K.R.; Harry, N.A.; Anilkumar, G. Novel one step synthesis of imidazo[1,2-a]pyridines and Zolimidine via iron/iodine-catalyzed Ortoleva-King type protocol. Tetrahedron Lett., 2019, 60(33), 150950.
[http://dx.doi.org/10.1016/j.tetlet.2019.150950]
[43]
Desai, N.C.; Pandya, M.R.; Rajpara, K.M.; Joshi, V.V.; Vaghani, H.V.; Satodiya, H.M. Synthesis and antimicrobial screening of novel series of imidazo-[1,2-a]pyridine derivatives. Med. Chem. Res., 2012, 21(12), 4437-4446.
[http://dx.doi.org/10.1007/s00044-012-9988-y]
[44]
Liu, J.; Zuo, D.; Jing, T.; Guo, M.; Xing, L.; Zhang, W.; Zhao, J.; Shen, J.; Gong, P.; Zhang, D.; Zhai, X. Synthesis, biological evaluation and molecular modeling of imidazo[1,2-a]pyridine derivatives as potent antitubulin agents. Bioorg. Med. Chem., 2017, 25(15), 4088-4099.
[http://dx.doi.org/10.1016/j.bmc.2017.05.057] [PMID: 28622907]
[45]
Li, C.; Ai, J.; Zhang, D.; Peng, X.; Chen, X.; Gao, Z.; Su, Y.; Zhu, W. Design, synthesis, and biological evaluation of novel imidazo[1,2-a]pyridine derivatives as potent c-met inhibitors. ACS Med. Chem. Lett., 2015, 6(5), 507-512.
[http://dx.doi.org/10.1021/ml5004876]
[46]
Xi, J.B.; Fang, Y.F.; Frett, B.; Zhu, M.L.; Zhu, T.; Kong, Y.N.; Guan, F.J.; Zhao, Y.; Zhang, X.W.; Li, H.; Ma, M.L.; Hu, W. Structure-based design and synthesis of imidazo[1,2-a]pyridine derivatives as novel and potent Nek2 inhibitors with in vitro and in vivo antitumor activities. Eur. J. Med. Chem., 2017, 126, 1083-1106.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.026] [PMID: 28039836]
[47]
de la Sovera, V.; López, G.V.; Porcal, W. Synthetic study of 5-hydroxymethylfurfural in groebke-blackburn-bienaymé reaction. Eur. J. Org. Chem., 2022, 2022(10), e202101369.
[http://dx.doi.org/10.1002/ejoc.202101369]
[48]
Alqarni, S.; Cooper, L.; Galvan Achi, J.; Bott, R.; Sali, V.K.; Brown, A.; Santarsiero, B.D.; Krunic, A.; Manicassamy, B.; Peet, N.P.; Zhang, P.; Thatcher, G.R.J.; Gaisina, I.N.; Rong, L.; Moore, T.W. Synthesis, optimization, and structure–activity relationships of imidazo[1,2-a]pyrimidines as inhibitors of group 2 influenza a viruses. J. Med. Chem., 2022, 65(20), 14104-14120.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01329 ] [PMID: 36260129]
[49]
Yadav, U.P.; Ansari, A.J.; Arora, S.; Joshi, G.; Singh, T.; Kaur, H.; Dogra, N.; Kumar, R.; Kumar, S.; Sawant, D.M.; Singh, S. Design, synthesis and anticancer activity of 2-arylimidazo[1,2-a]pyridinyl-3-amines. Bioorg. Chem., 2022, 118, 105464.
[http://dx.doi.org/10.1016/j.bioorg.2021.105464 ] [PMID: 34785441]
[50]
Mackwitz, M.K.W.; Hamacher, A.; Osko, J.D.; Held, J.; Schöler, A.; Christianson, D.W.; Kassack, M.U.; Hansen, F.K. Multicomponent synthesis and binding mode of imidazo[1,2-a]pyridine-capped selective HDAC6 inhibitors. Org. Lett., 2018, 20(11), 3255-3258.
[http://dx.doi.org/10.1021/acs.orglett.8b01118 ] [PMID: 29790770]

© 2024 Bentham Science Publishers | Privacy Policy