Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Research Article

Microwave-assisted Green Synthetic Approach towards Water Dispersible Luminescent PVP-coated Tb3+ and Ce3+/Tb3+-doped KZnF3 Nanocrystals

Author(s): Shyam Sarkar*

Volume 11, Issue 1, 2024

Published on: 20 March, 2024

Page: [30 - 36] Pages: 7

DOI: 10.2174/0122133356290796240307104427

Abstract

Background: Perovskite fluoride nanomaterials are an interesting research topic in material science due to their exciting properties like high-temperature superconductivity, magnetic behaviour, piezoelectric behaviour, etc. Doping of lanthanide ions into the perovskite fluoride nanomaterials makes them more promising as they have applications from biological labelling to multicolor optical devices.

Objective: This study aimed to carry out the synthesis of perovskite KZnF3 nanocrystals in an ecofriendly environment with the help of a microwave-assisted route in a shorter reaction time and at low temperatures. Moreover, it aimed to make the nanocrystals water dispersible, illuminating brighter photoluminescence, which was achieved by coating nanocrystals surface with poly(N-vinyl- 2-pyrrolidone) and doping of different lanthanide ions (Ln= Tb3+ and Ce3+/Tb3+) respectively, into the KZnF3 nanocrystals matrix.

Methods: The synthesis of nanocrystals was performed in an environment-friendly microwave-assisted way and under green conditions. For example, in the preparation of Tb3+(5mol%)-doped KZnF3 nanocrystals, 0.95 mmol of Zn(NO3)2 and 0.05 mmol of Tb(NO3)3 were dissolved in 8 mL of distilled water. Then, an 8 mL aqueous solution of KF (3 mmol) was added to it. The entire mixture was stirred well for 15 minutes. About 60 mg of PVP was added to the mixture and stirred for another 15 minutes. Then, a microwave reaction vessel was made by transferring the final reaction mixture into it and kept under microwave irradiation at 90°C temperature for 15 minutes. Finally, the product was cooled to room temperature and collected by centrifugation.

Results: Both Tb3+(5mol%)-doped and Ce3+(15mol%)/Tb3+(5mol%) co-doped KZnF3 nanocrystals exhibit very strong green photoluminescence. The structural and optical properties of as-obtained nanocrystals were characterized by PXRD, field emission scanning electron microscopy, Fourier infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, and photoluminescence spectra.

Conclusion: The nanocrystals with uniform cubical morphology having ~60 nm sizes were successfully synthesized. The high photoluminescence efficiency, together with the water dispersibility of the nanocrystals, makes the material useful in many fields of optical devices and offers several biological applications. Moreover, this method could be used to make other lanthanide-doped perovskite fluoride nanocrystals.

Keywords: Nanocrystals, luminescence, lanthanides, fluorides, microwave, optical properties.

Graphical Abstract
[1]
Hirakawa, K.; Hirakawa, K.; Hashimoto, T. Magnetic properties of potassium iron group fluorides KMF 3. J. Phys. Soc. Jpn., 1960, 15(11), 2063-2068.
[http://dx.doi.org/10.1143/JPSJ.15.2063]
[2]
Cooke, A.H.; Jones, D.A.; Silva, J F A.; Wells, M.R. Ferromagnetism in lithium holmium fluoride-LiHoF 4. I. Magnetic measurements. J. Phys. C Solid State Phys., 1975, 8(23), 4083-4088.
[http://dx.doi.org/10.1088/0022-3719/8/23/021]
[3]
Eibschütz, M.; Guggenheim, H.J. Antiferromagnetic-piezoelectric crystals: BaMe4 (M = Mn, Fe, Co and Ni). Solid State Commun., 1968, 6(10), 737-739.
[http://dx.doi.org/10.1016/0038-1098(68)90576-0]
[4]
Blasse, G.; Grabmaier, B.C. Luminescent Materials; Springer: Berlin, 1994.
[http://dx.doi.org/10.1007/978-3-642-79017-1]
[5]
Bünzli, J.C.G.; Piguet, C. Lanthanide-containing molecular and supramolecular polymetallic functional assemblies. Chem. Rev., 2002, 102(6), 1897-1928.
[http://dx.doi.org/10.1021/cr010299j ] [PMID: 12059257]
[6]
Ronda, C.R.; Jüstel, T.; Nikol, H. Rare earth phosphors: Fundamentals and applications. J. Alloys Compd., 1998, 275-277, 669-676.
[http://dx.doi.org/10.1016/S0925-8388(98)00416-2]
[7]
Wang, F.; Deng, R.; Wang, J.; Wang, Q.; Han, Y.; Zhu, H.; Chen, X.; Liu, X. Tuning upconversion through energy migration in core–shell nanoparticles. Nat. Mater., 2011, 10(12), 968-973.
[http://dx.doi.org/10.1038/nmat3149] [PMID: 22019945]
[8]
Wang, F.; Liu, X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev., 2009, 38(4), 976-989.
[http://dx.doi.org/10.1039/b809132n] [PMID: 19421576]
[9]
Wang, F.; Wang, J.; Liu, X. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem. Int. Ed., 2010, 49(41), 7456-7460.
[http://dx.doi.org/10.1002/anie.201003959] [PMID: 20809558]
[10]
Chen, F.; Zhu, Y.J.; Wang, K.W.; Pan, Y.B. A simple strategy for preparation of a series of one-dimensional rare earth oxides using rare earth precursors as templates. Curr. Nanosci., 2009, 5(3), 266-272.
[http://dx.doi.org/10.2174/157341309788921507]
[11]
Nakajima, T.; Zˇemva, B.; Tressaud, A. Advanced Inorganic Fluorides: Synthesis, Characterization and Applications; Elsevier: Amsterdam, 2000.
[12]
Cao, M.; Hu, C.; Wang, E. The first fluoride one-dimensional nanostructures: Microemulsion-mediated hydrothermal synthesis of BaF2 whiskers. J. Am. Chem. Soc., 2003, 125(37), 11196-11197.
[http://dx.doi.org/10.1021/ja036939c] [PMID: 16220931]
[13]
Li, S.; Xie, T.; Peng, Q.; Li, Y. Nucleation and growth of CeF(3) and NaCeF(4) nanocrystals. Chemistry, 2009, 15(11), 2512-2517.
[http://dx.doi.org/10.1002/chem.200802201] [PMID: 19156811]
[14]
Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. A general strategy for nanocrystal synthesis. Nature, 2005, 437(7055), 121-124.
[http://dx.doi.org/10.1038/nature03968] [PMID: 16136139]
[15]
Sarkar, S.; Hazra, C.; Chatti, M.; Sudarsan, V.; Mahalingam, V. Enhanced quantum efficiency for Dy3+ Emissions in water dispersible PbF2 nanocrystals. RSC Advances, 2012, 2(22), 8269-8272.
[http://dx.doi.org/10.1039/c2ra21113k]
[16]
Sarkar, S.; Hazra, C.; Mahalingam, V. Scaling down the size of BaLnF 5 nanocrystals (Ln = La, Gd, and Lu) with the Ln 3+ size. Dalton Trans., 2013, 42(1), 63-66.
[http://dx.doi.org/10.1039/C2DT31915B] [PMID: 23143383]
[17]
Pichaandi, J.; Boyer, J.C.; Delaney, K.R.; van Veggel, F.C.J.M. Two-photon upconversion laser (scanning and wide-field) microscopy using Ln3+-doped NaYF4 upconverting nanocrystals: A critical evaluation of their performance and potential in bioimaging. J. Phys. Chem. C, 2011, 115(39), 19054-19064.
[http://dx.doi.org/10.1021/jp206345j]
[18]
Sarkar, S.; Hazra, C.; Mahalingam, V. Bright luminescence from colloidal Ln(3+)-doped Ca(0.72)Y(0.28)F(2.28) (Ln=Eu, Tm/Yb) nanocrystals via both high and low energy radiations. Chemistry, 2012, 18(23), 7050-7054.
[http://dx.doi.org/10.1002/chem.201103157 ] [PMID: 22573499]
[19]
Sivakumar, S.; Diamente, P.R.; van Veggel, F.C.J.M. Silica-coated Ln3+-Doped LaF3 nanoparticles as robust down- and upconverting biolabels. Chemistry, 2006, 12(22), 5878-5884.
[http://dx.doi.org/10.1002/chem.200600224] [PMID: 16741910]
[20]
Zhao, S.; Hou, Y.; Pei, X.; Xu, Z.; Xu, X. Upconversion luminescence of KZnF3:Er3+,Yb3+ synthesized by hydrothermal method. J. Alloys Compd., 2004, 368(1-2), 298-303.
[http://dx.doi.org/10.1016/S0925-8388(03)00678-9]
[21]
Huang, B.; Hong, J.M.; Chen, X.T.; Yu, Z.; You, X.Z. Mild solvothermal synthesis of KZnF3 and KCdF3 nanocrystals. Mater. Lett., 2005, 59(4), 430-433.
[http://dx.doi.org/10.1016/j.matlet.2004.09.039]
[22]
Zeng, J.H.; Xie, T.; Li, Z.H.; Li, Y. Monodispersed nanocrystalline fluoroperovskite up-conversion phosphors. Cryst. Growth Des., 2007, 7(12), 2774-2777.
[http://dx.doi.org/10.1021/cg070477n]
[23]
Hua, R.; Yu, J.; Jiang, H.; Shi, C. Mild solvothermal synthesis and luminescent properties of the complex fluorides KMgF3:Eu and KZnF3:RE (RE=Eu, Ce). J. Alloys Compd., 2007, 432(1-2), 253-257.
[http://dx.doi.org/10.1016/j.jallcom.2006.05.108]
[24]
Di, K.; Li, X.; Jing, X.; Yao, S.; Yan, J. Energy transfer and luminescence properties of KZnF3: Ln3+ (Ln3+ = Eu3+, Tb3+, Eu3+/Tb3+, Eu3+/Tb3+/Tm3+) phosphors. J. Alloys Compd., 2016, 661, 435-440.
[http://dx.doi.org/10.1016/j.jallcom.2015.11.197]
[25]
Song, E.H.; Ding, S.; Wu, M.; Ye, S.; Xiao, F.; Dong, G.P.; Zhang, Q.Y. Temperature-tunable upconversion luminescence of perovskite nanocrystals KZnF3:Yb3+,Mn2+. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2013, 1(27), 4209-4215.
[http://dx.doi.org/10.1039/c3tc30450g]
[26]
Ding, S.; Yang, X.F.; Deng, T.T.; Song, E.H.; Ma, Z.J.; Ye, S.; Wu, M.M.; Zhang, Q.Y.K. (Mn,Zn)F 3 mesoporous microspheres: One-pot synthesis via the nanoscale Kirkendall effect. CrystEngComm, 2016, 18(8), 1384-1392.
[http://dx.doi.org/10.1039/C5CE02202A]
[27]
Wu, M.; Jiang, X.F.; Song, E.H.; Su, J.; Chen, Z.T.; Dai, W.B.; Ye, S.; Zhang, Q.Y. Tailoring the upconversion of ABF 3:Yb 3+/Er 3+ through Mn 2+ doping. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2016, 4(40), 9598-9607.
[http://dx.doi.org/10.1039/C6TC02982E]
[28]
Hu, T.; Lin, H.; Lin, F.; Gao, Y.; Cheng, Y.; Xu, J.; Wang, Y. Narrow-band red-emitting KZnF 3:Mn 4+ fluoroperovskites: Insights into electronic/vibronic transition and thermal quenching behavior. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2018, 6(40), 10845-10854.
[http://dx.doi.org/10.1039/C8TC04398A]
[29]
Yuan, L.; Ge, L.; Sun, X.; Zhang, J.; Yu, J.; Zhang, C.; Li, H. Hydrothermal growth of facet-tunable fluoride perovskite crystals KMF 3 (M = Mg, Mn, Co, Ni and Zn). CrystEngComm, 2020, 22(37), 6216-6227.
[http://dx.doi.org/10.1039/D0CE00807A]
[30]
Parhi, P.; Manivannan, V. Novel microwave assisted solid state metathesis synthesis of KMF3 (MZn, Mn, Mg, and Co). Mater. Lett., 2008, 62(19), 3468-3470.
[http://dx.doi.org/10.1016/j.matlet.2008.02.078]
[31]
Parhi, P.; Kramer, J.; Manivannan, V. Microwave initiated hydrothermal synthesis of nano-sized complex fluorides, KMF3 (K = Zn, Mn, Co, and Fe). J. Mater. Sci., 2008, 43(16), 5540-5545.
[http://dx.doi.org/10.1007/s10853-008-2833-5]
[32]
Zhu, Y.J.; Chen, F. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem. Rev., 2014, 114(12), 6462-6555.
[http://dx.doi.org/10.1021/cr400366s ] [PMID: 24897552]
[33]
Wang, W.W.; Zhu, Y.J. Microwave-assisted synthesis of magnetite nanosheets in mixed solvents of ethylene glycol and water. Curr. Nanosci., 2007, 3(2), 171-176.
[http://dx.doi.org/10.2174/157341307780619233]
[34]
Hayes, B.L. Microwave Synthesis: Chemistry at the Speed of Light CEM Publishing: Matthews, 2002.
[35]
Bilecka, I.; Niederberger, M. Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale, 2010, 2(8), 1358-1374.
[http://dx.doi.org/10.1039/b9nr00377k] [PMID: 20845524]
[36]
Birch, R. Influence of polyvinylpyrrolidone (PVP) in the synthesis of luminescent NaYF4:Yb,Er upconversion nanoparticles. Methods Appl. Fluoresc., 2023, 11, 034001.
[37]
Koczkur, K.M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S.E. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans., 2015, 44(41), 17883-17905.
[http://dx.doi.org/10.1039/C5DT02964C] [PMID: 26434727]
[38]
Sarkar, S.; Chatti, M.; Adusumalli, V.N.K.B.; Mahalingam, V. Highly selective and sensitive detection of Cu 2+ ions using Ce(III)/Tb(III)-Doped SrF 2 nanocrystals as fluorescent probe. ACS Appl. Mater. Interfaces, 2015, 7(46), 25702-25708.
[http://dx.doi.org/10.1021/acsami.5b06730] [PMID: 26529286]
[39]
Holzwarth, U.; Gibson, N. The scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol., 2011, 6(9), 534-534.
[http://dx.doi.org/10.1038/nnano.2011.145] [PMID: 21873991]
[40]
Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Cryst., 2008, 41(3), 653-658.
[http://dx.doi.org/10.1107/S0021889808012016]
[41]
Buttner, R.H.; Maslen, E.N. Electron difference density in potassium zinc fluoride perovskite. Acta Crystallogr., 1988, C44, 1707-1709. https://doi.org/10.1107/S0108270188006547
[42]
Silverstein, R.M.; Webster, F.X. Spectroscopic identification of organic compounds, 6th ed; John Wiley & Sons: New York, 1996, p. 109.
[43]
Nakamoto, K. Infrared and Raman spectra of inorganic and coordination compound; John Wiley & Sons: New York, 1986, p. 283.
[44]
Xian, J.; Hua, Q.; Jiang, Z.; Ma, Y.; Huang, W. Size-dependent interaction of the poly(N-vinyl-2-pyrrolidone) capping ligand with Pd nanocrystals. Langmuir, 2012, 28(17), 6736-6741.
[http://dx.doi.org/10.1021/la300786w] [PMID: 22509730]
[45]
Ghosh, P.; Kar, A.; Patra, A. Energy transfer study between Ce3+ and Tb3+ ions in doped and core-shell sodium yttrium fluoride nanocrystals. Nanoscale, 2010, 2(7), 1196-1202.
[http://dx.doi.org/10.1039/c0nr00019a ] [PMID: 20648349]
[46]
Cheng, S.D.; Kam, C.H.; Buddhudu, S. Green phosphorescence of CaAl2O4:Tb3+, Ce3+ through persistence energy transfer. Mater. Res. Bull., 2001, 36, 1131-1137.
[http://dx.doi.org/10.1016/S0025-5408(01)00587-6]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy