Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

The Metabolism of the New Benzodiazepine Remimazolam

Author(s): Wolfgang Schmalix, Karl-Uwe Petersen, Marija Pesic and Thomas Stöhr*

Volume 25, Issue 2, 2024

Published on: 21 March, 2024

Page: [164 - 173] Pages: 10

DOI: 10.2174/0113892002301026240318060307

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Remimazolam (RMZ) is a novel ultrashort-acting benzodiazepine used for sedation by intravenous administration. The pharmacophore of RMZ includes a carboxyl ester group sensitive to esterase- mediated hydrolysis, which is the primary path of metabolic elimination. However, for the sake of drug safety, a deeper and broader knowledge of the involved metabolic pathways and the evolving metabolites is required. Information is needed on both humans and experimental animals to evaluate the possibility that humans form harmful metabolites not encountered in animal toxicity studies.

Objective: The current study aimed at identifying the mechanisms of remimazolam's metabolism and any potential clinically significant metabolites.

Methods: Using tissue homogenates from various animals and humans, the liver was identified as the tissue primarily responsible for the elimination of RMZ. CNS7054, the hydrolysis product of remimazolam, was identified as the only clinically relevant metabolite. Using bacterial or eukaryotic over-expression systems, carboxylesterase 1 (CES1) was identified as the iso-enzyme predominantly involved in RMZ metabolism, with no role for carboxylesterase 2. Using a variety of inhibitors of other esterases, the contribution to elimination mediated by esterases other than CES1 was excluded.

Results: Besides tissue carboxylesterases, rodents expressed an RMZ esterase in plasma, which was not present in this compartment in other laboratory animals and humans, hampering direct comparisons. Other pathways of metabolic elimination, such as oxidation and glucuronidation, also occurred, but their contribution to overall elimination was minimal.

Conclusion: Besides the pharmacologically non-active metabolite CNS7054, no other clinically significant metabolite of remimazolam could be identified.

Keywords: Remimazolam, metabolism, CNS7054, carboxylesterases, sedation, anaesthesia.

Graphical Abstract
[1]
Kilpatrick, G.J. Remimazolam: Non-clinical and clinical profile of a new sedative/anesthetic agent. Front. Pharmacol., 2021, 12690875
[http://dx.doi.org/10.3389/fphar.2021.690875] [PMID: 34354587]
[2]
Kilpatrick, G.J.; McIntyre, M.S.; Cox, R.F.; Stafford, J.A.; Pacofsky, G.J.; Lovell, G.G.; Wiard, R.P.; Feldman, P.L.; Collins, H.; Waszczak, B.L.; Tilbrook, G.S. CNS 7056: A novel ultra-short-acting Benzodiazepine. Anesthesiology, 2007, 107(1), 60-66.
[http://dx.doi.org/10.1097/01.anes.0000267503.85085.c0] [PMID: 17585216]
[3]
Freyer, N.; Knöspel, F.; Damm, G.; Greuel, S.; Schneider, C.; Seehofer, D.; Stöhr, T.; Petersen, K.U.; Zeilinger, K. Metabolism of remimazolam in primary human hepatocytes during continuous long-term infusion in a 3-D bioreactor system. Drug Des. Devel. Ther., 2019, 13, 1033-1047.
[http://dx.doi.org/10.2147/DDDT.S186759] [PMID: 31037028]
[4]
Antonik, L.J.; Goldwater, D.R.; Kilpatrick, G.J.; Tilbrook, G.S.; Borkett, K.M. A placebo- and midazolam-controlled phase I single ascending-dose study evaluating the safety, pharmacokinetics, and pharmacodynamics of remimazolam (CNS 7056): Part I. Safety, efficacy, and basic pharmacokinetics. Anesth. Analg., 2012, 115(2), 274-283.
[http://dx.doi.org/10.1213/ANE.0b013e31823f0c28] [PMID: 22190555]
[5]
Borkett, K.M.; Riff, D.S.; Schwartz, H.I.; Winkle, P.J.; Pambianco, D.J.; Lees, J.P.; Wilhelm-Ogunbiyi, K. A Phase IIa, randomized, double-blind study of remimazolam (CNS 7056) versus midazolam for sedation in upper gastrointestinal endoscopy. Anesth. Analg., 2015, 120(4), 771-780.
[http://dx.doi.org/10.1213/ANE.0000000000000548] [PMID: 25502841]
[6]
Pastis, N.J.; Yarmus, L.B.; Schippers, F.; Ostroff, R.; Chen, A.; Akulian, J.; Wahidi, M.; Shojaee, S.; Tanner, N.T.; Callahan, S.P.; Feldman, G.; Lorch, D.G., Jr; Ndukwu, I.; Pritchett, M.A.; Silvestri, G.A. Safety and efficacy of remimazolam compared with placebo and midazolam for moderate sedation during bronchoscopy. Chest, 2019, 155(1), 137-146.
[http://dx.doi.org/10.1016/j.chest.2018.09.015] [PMID: 30292760]
[7]
Lee, J.; Kim, D.H.; Ju, J.W.; Nam, K.; Cho, Y.J.; Jeon, Y.; Lee, S. Comparison of recovery profiles between total intravenous anaesthesia with propofol or remimazolam reversed with flumazenil in patients undergoing breast surgery. Eur. J. Anaesthesiol., 2024, 41(3), 199-207.
[http://dx.doi.org/10.1097/EJA.0000000000001951] [PMID: 38205822]
[8]
Collins, J.M. Inter-species differences in drug properties. Chem. Biol. Interact., 2001, 134(3), 237-242.
[http://dx.doi.org/10.1016/S0009-2797(01)00158-2] [PMID: 11336972]
[9]
Zhou, Y.; Hu, P.; Jiang, J. Metabolite characterization of a novel sedative drug, remimazolam in human plasma and urine using ultra high-performance liquid chromatography coupled with synapt high-definition mass spectrometry. J. Pharm. Biomed. Anal., 2017, 137, 78-83.
[http://dx.doi.org/10.1016/j.jpba.2017.01.016] [PMID: 28104560]
[10]
Fechner, J.; El-Boghdadly, K.; Spahn, D.R.; Motsch, J.; Struys, M.M.R.F.; Duranteau, O.; Ganter, M.T.; Richter, T.; Hollmann, M.W.; Rossaint, R.; Bercker, S.; Rex, S.; Drexler, B.; Schippers, F.; Morley, A.; Ihmsen, H.; Kochs, E. Anaesthetic efficacy and postinduction hypotension with remimazolam compared with propofol: A multicentre randomised controlled trial. Anaesthesia, 2024, 79(4), 410-422. Epub ahead of print
[http://dx.doi.org/10.1111/anae.16205] [PMID: 38221513]
[11]
Hop, C.E.C.A.; Wang, Z.; Chen, Q.; Kwei, G. Plasma-pooling methods to increase throughput for in vivo pharmacokinetic screening. J. Pharm. Sci., 1998, 87(7), 901-903.
[http://dx.doi.org/10.1021/js970486q] [PMID: 9649361]
[12]
Zou, L.W.; Jin, Q.; Wang, D.D.; Qian, Q.K.; Hao, D.C.; Ge, G.B.; Yang, L. Carboxylesterase inhibitors: An update. Curr. Med. Chem., 2018, 25(14), 1627-1649.
[http://dx.doi.org/10.2174/0929867325666171204155558] [PMID: 29210644]
[13]
Sneyd, J.R.; Rigby-Jones, A.E. Remimazolam for anaesthesia or sedation. Curr. Opin. Anaesthesiol., 2020, 33(4), 506-511.
[http://dx.doi.org/10.1097/ACO.0000000000000877] [PMID: 32530890]
[14]
Lee, A.; Shirley, M. Remimazolam: A review in procedural sedation. Drugs, 2021, 81(10), 1193-1201.
[http://dx.doi.org/10.1007/s40265-021-01544-8] [PMID: 34196946]
[15]
Nordt, S.P.; Clark, R.F. Midazolam: A review of therapeutic uses and toxicity. J. Emerg. Med., 1997, 15(3), 357-365.
[http://dx.doi.org/10.1016/S0736-4679(97)00022-X] [PMID: 9258787]
[16]
Stöhr, T.; Colin, P.J.; Ossig, J.; Pesic, M.; Borkett, K.; Winkle, P.; Struys, M.M.R.F.; Schippers, F. Pharmacokinetic properties of remimazolam in subjects with hepatic or renal impairment. Br. J. Anaesth., 2021, 127(3), 415-423.
[http://dx.doi.org/10.1016/j.bja.2021.05.027] [PMID: 34246461]
[17]
FDA. Safety testing of drug metabolites. Guidance for industry. 2020. Available from : https://www.fda.gov/media/72279/download
[18]
Satoh, T.; Hosokawa, M. The mammalian carboxylesterases: From molecules to functions. Annu. Rev. Pharmacol. Toxicol., 1998, 38(1), 257-288.
[http://dx.doi.org/10.1146/annurev.pharmtox.38.1.257] [PMID: 9597156]
[19]
McCracken, N.W.; Blain, P.G.; Williams, F.M. Human xenobiotic metabolizing esterases in liver and blood. Biochem. Pharmacol., 1993, 46(7), 1125-1129.
[http://dx.doi.org/10.1016/0006-2952(93)90459-A] [PMID: 8216361]
[20]
Brandt, E.; Heymann, E.; Mentlein, R. Selective inhibition of rat liver carboxylesterases by various organophosphorus diesters in vivo and in vitro. Biochem. Pharmacol., 1980, 29(13), 1927-1931.
[http://dx.doi.org/10.1016/0006-2952(80)90105-7] [PMID: 7397000]
[21]
Bahar, F.G.; Ohura, K.; Ogihara, T.; Imai, T. Species difference of esterase expression and hydrolase activity in plasma. J. Pharm. Sci., 2012, 101(10), 3979-3988.
[http://dx.doi.org/10.1002/jps.23258] [PMID: 22833171]
[22]
Hosokawa, M. Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs. Molecules, 2008, 13(2), 412-431.
[http://dx.doi.org/10.3390/molecules13020412] [PMID: 18305428]
[23]
Ovnic, M.; Swank, R.T.; Fletcher, C.; Zhen, L.; Novak, E.K.; Baumann, H.; Heintz, N.; Ganschow, R.E. Characterization and functional expression of a cDNA encoding egasyn (esterase-22): The endoplasmic reticulum-targeting protein of β-glucuronidase. Genomics, 1991, 11(4), 956-967.
[http://dx.doi.org/10.1016/0888-7543(91)90020-F] [PMID: 1783403]
[24]
Fukami, T.; Yokoi, T. The emerging role of human esterases. Drug Metab. Pharmacokinet., 2012, 27(5), 466-477.
[http://dx.doi.org/10.2133/dmpk.DMPK-12-RV-042] [PMID: 22813719]
[25]
Wang, D.; Zou, L.; Jin, Q.; Hou, J.; Ge, G.; Yang, L. Human carboxylesterases: A comprehensive review. Acta Pharm. Sin. B, 2018, 8(5), 699-712.
[http://dx.doi.org/10.1016/j.apsb.2018.05.005] [PMID: 30245959]
[26]
Petersen, KU; Schmalix, W; Pesic, M; Stöhr, T Carboxylesterase 1-based drug-drug interactions potential of remimazolam: In-vitro studies and systematic review.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy