Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Mini-Review Article

Fluoropyrimidine Toxicity: the Hidden Secrets of DPYD

Author(s): Vangelis G. Manolopoulos and Georgia Ragia*

Volume 25, Issue 2, 2024

Published on: 19 March, 2024

Page: [91 - 95] Pages: 5

DOI: 10.2174/0113892002296707240311105527

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Fluoropyrimidine-induced toxicity is a main limitation of therapy. Currently, polymorphisms in the DPYD gene, which encodes the 5-FU activation enzyme dihydropyrimidine dehydrogenase (DPD), are used to adjust the dosage and prevent toxicity. Despite the predictive value of DPYD genotyping, a great proportion of fluoropyrimidine toxicity cannot be solely explained by DPYD variations.

Objective: We herein summarize additional sources of DPD enzyme activity variability, spanning from epigenetic regulation of DPYD expression, factors potentially inducing protein modifications, as well as drug-enzyme interactions that contribute to fluoropyrimidine toxicity.

Results: While seminal in vitro studies provided evidence that DPYD promoter methylation downregulates DPD expression, the association of DPYD methylation with fluoropyrimidine toxicity was not replicated in clinical studies. Different non-coding RNA molecules, such as microRNA, piwi-RNAs, circular-RNAs and long non-coding RNAs, are involved in post-transcriptional DPYD regulation. DPD protein modifications and environmental factors affecting enzyme activity may also add a proportion to the pooled variability of DPD enzyme activity. Lastly, DPD-drug interactions are common in therapeutics, with the most well-characterized paradigm the withdrawal of sorivudine due to fluoropyrimidine toxicity deaths in 5-FU treated cancer patients; a mechanism involving DPD severe inhibition.

Conclusions: DPYD polymorphisms are the main source of DPD variability. A study on DPYD epigenetics (both transcriptionally and post-transcriptionally) holds promise to provide insights into molecular pathways of fluoropyrimidine toxicity. Additional post-translational DPD modifications, as well as DPD inhibition by other drugs, may explain a proportion of enzyme activity variability. Therefore, there is still a lot we can learn about the DPYD/DPD fluoropyrimidine-induced toxicity machinery.

Keywords: Dihydropyrimidine dehydrogenase, DPYD, fluoropyrimidines, 5-FU, capecitabine, toxicity, genetics, epigenetics.

« Previous
Graphical Abstract
[1]
Maslarinou, A.; Manolopoulos, V.G.; Ragia, G. Pharmacogenomic-guided dosing of fluoropyrimidines beyond DPYD: Time for a polygenic algorithm? Front. Pharmacol., 2023, 14, 1184523.
[http://dx.doi.org/10.3389/fphar.2023.1184523] [PMID: 37256234]
[2]
Ema. EMA recommendations on DPD testing prior to treatment with fluorouracil, capecitabine, tegafur and flucytosine. In: Europ. Med. Agency's Logo; , 2020.
[3]
Hishinuma, E.; Narita, Y.; Obuchi, K.; Ueda, A.; Saito, S.; Tadaka, S.; Kinoshita, K.; Maekawa, M.; Mano, N.; Hirasawa, N.; Hiratsuka, M. Importance of Rare DPYD genetic polymorphisms for 5-fluorouracil therapy in the japanese population. Front. Pharmacol., 2022, 13, 930470.
[http://dx.doi.org/10.3389/fphar.2022.930470] [PMID: 35784703]
[4]
Amstutz, U.; Henricks, L.M.; Offer, S.M.; Barbarino, J.; Schellens, J.H.M.; Swen, J.J.; Klein, T.E.; McLeod, H.L.; Caudle, K.E.; Diasio, R.B.; Schwab, M. Clinical pharmacogenetics implementation consortium (cpic) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin. Pharmacol. Ther., 2018, 103(2), 210-216.
[http://dx.doi.org/10.1002/cpt.911] [PMID: 29152729]
[5]
Ragia, G.; Maslarinou, A.; Atzemian, N.; Biziota, E.; Koukaki, T.; Ioannou, C.; Balgkouranidou, I.; Kolios, G.; Kakolyris, S.; Xenidis, N.; Amarantidis, K.; Manolopoulos, V.G. Implementing pharmacogenetic testing in fluoropyrimidine-treated cancer patients: DPYD genotyping to guide chemotherapy dosing in greece. Front. Pharmacol., 2023, 14, 1248898.
[http://dx.doi.org/10.3389/fphar.2023.1248898] [PMID: 37781702]
[6]
Saarenheimo, J.; Wahid, N.; Eigeliene, N.; Ravi, R.; Salomons, G.S.; Ojeda, M.F.; Vijzelaar, R.; Jekunen, A.; van Kuilenburg, A.B.P. Preemptive screening of DPYD as part of clinical practice: High prevalence of a novel exon 4 deletion in the Finnish population. Cancer Chemother. Pharmacol., 2021, 87(5), 657-663.
[http://dx.doi.org/10.1007/s00280-021-04236-y] [PMID: 33544210]
[7]
García-González, X.; Kaczmarczyk, B.; Abarca-Zabalía, J.; Thomas, F.; García-Alfonso, P.; Robles, L.; Pachón, V.; Vaz, Á.; Salvador-Martín, S.; Sanjurjo-Sáez, M.; López-Fernández, L.A. New DPYD variants causing DPD deficiency in patients treated with fluoropyrimidine. Cancer Chemother. Pharmacol., 2020, 86(1), 45-54.
[http://dx.doi.org/10.1007/s00280-020-04093-1] [PMID: 32529295]
[8]
Hishinuma, E.; Narita, Y.; Saito, S.; Maekawa, M.; Akai, F.; Nakanishi, Y.; Yasuda, J.; Nagasaki, M.; Yamamoto, M.; Yamaguchi, H.; Mano, N.; Hirasawa, N.; Hiratsuka, M. Functional characterization of 21 allelic variants of dihydropyrimidine dehydrogenase identified in 1070 japanese individuals. Drug Metab. Dispos., 2018, 46(8), 1083-1090.
[http://dx.doi.org/10.1124/dmd.118.081737] [PMID: 29769267]
[9]
van Kuilenburg, A.B.P.; Meijer, J.; Maurer, D.; Dobritzsch, D.; Meinsma, R.; Los, M.; Knegt, L.C.; Zoetekouw, L.; Jansen, R.L.H.; Dezentjé, V.; van Huis-Tanja, L.H.; van Kampen, R.J.W.; Hertz, J.M.; Hennekam, R.C.M. Severe fluoropyrimidine toxicity due to novel and rare DPYD missense mutations, deletion and genomic amplification affecting DPD activity and mRNA splicing. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(3), 721-730.
[http://dx.doi.org/10.1016/j.bbadis.2016.12.010] [PMID: 28024938]
[10]
Ragia, G.; Manolopoulos, V.G. The revolution of pharmaco-omics: Ready to open new avenues in materializing precision medicine? Pharmacogenomics, 2022, 23(16), 869-872.
[http://dx.doi.org/10.2217/pgs-2022-0145] [PMID: 36285650]
[11]
Amstutz, U.; Froehlich, T.K.; Largiadèr, C.R. Dihydropyrimidine dehydrogenase gene as a major predictor of severe 5-fluorouracil toxicity. Pharmacogenomics, 2011, 12(9), 1321-1336.
[http://dx.doi.org/10.2217/pgs.11.72] [PMID: 21919607]
[12]
Noguchi, T.; Tanimoto, K.; Shimokuni, T.; Ukon, K.; Tsujimoto, H.; Fukushima, M.; Noguchi, T.; Kawahara, K.; Hiyama, K.; Nishiyama, M. Aberrant methylation of DPYD promoter, DPYD expression, and cellular sensitivity to 5-fluorouracil in cancer cells. Clin. Cancer Res., 2004, 10(20), 7100-7107.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0337] [PMID: 15501990]
[13]
Zhang, X.; Soong, R.; Wang, K.; Li, L.; Davie, J.R.; Guarcello, V.; Diasio, R.B. Suppression of DPYD expression in RKO Cells via DNA methylation in the regulatory region of the DPYD promoter: A potentially important epigenetic mechanism regulating DPYD expression. Biochem. Cell Biol., 2007, 85(3), 337-346.
[http://dx.doi.org/10.1139/O07-009] [PMID: 17612628]
[14]
Ezzeldin, H.H.; Lee, A.M.; Mattison, L.K.; Diasio, R.B. Methylation of the DPYD promoter: An alternative mechanism for dihydropyrimidine dehydrogenase deficiency in cancer patients. Clin. Cancer Res., 2005, 11(24), 8699-8705.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1520] [PMID: 16361556]
[15]
Yu, J.; McLeod, H.L.; Ezzeldin, H.H.; Diasio, R.B. Methylation of the DPYD promoter and dihydropyrimidine dehydrogenase deficiency. Clin. Cancer Res., 2006, 12(12), 3864.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0549] [PMID: 16778115]
[16]
Amstutz, U.; Farese, S.; Aebi, S.; Largiadèr, C.R. Hypermethylation of the DPYD promoter region is not a major predictor of severe toxicity in 5-fluorouracil based chemotherapy. J. Exp. Clin. Cancer Res., 2008, 27(1), 54.
[http://dx.doi.org/10.1186/1756-9966-27-54] [PMID: 18937829]
[17]
Savva-Bordalo, J.; Ramalho-Carvalho, J.; Pinheiro, M.; Costa, V.L.; Rodrigues, Â.; Dias, P.C.; Veiga, I.; Machado, M.; Teixeira, M.R.; Henrique, R.; Jerónimo, C. Promoter methylation and large intragenic rearrangements of DPYD are not implicated in severe toxicity to 5-fluorouracil-based chemotherapy in gastrointestinal cancer patients. BMC Cancer, 2010, 10(1), 470.
[http://dx.doi.org/10.1186/1471-2407-10-470] [PMID: 20809970]
[18]
Esa, J.S.B.; Carvalho, J.; Pinheiro, M. Epigenetic and genetic alterations of DYPD in severe toxicity to 5-fluorouracil-based chemotherapy in gastrointestinal cancer. J. Clin. Oncol., 2010, 28(15), e12005-e12005.
[19]
Lin, K.; Jiang, H.; Zhuang, S.S.; Qin, Y.S.; Qiu, G.D.; She, Y.Q.; Zheng, J.T.; Chen, C.; Fang, L.; Zhang, S.Y. Long noncoding RNA LINC00261 induces chemosensitization to 5-fluorouracil by mediating methylation-dependent repression of DPYD in human esophageal cancer. FASEB J., 2019, 33(2), 1972-1988.
[http://dx.doi.org/10.1096/fj.201800759R] [PMID: 30226808]
[20]
Wu, R.; Nie, Q.; Tapper, E.E.; Jerde, C.R.; Dunlap, G.S.; Shrestha, S.; Elraiyah, T.A.; Offer, S.M.; Diasio, R.B. Histone H3K27 trimethylation modulates 5-fluorouracil resistance by inhibiting pu.1 binding to the dpyd promoter. Cancer Res., 2016, 76(21), 6362-6373.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1306] [PMID: 27578004]
[21]
Hirota, T.; Date, Y.; Nishibatake, Y.; Takane, H.; Fukuoka, Y.; Taniguchi, Y.; Burioka, N.; Shimizu, E.; Nakamura, H.; Otsubo, K.; Ieiri, I. Dihydropyrimidine dehydrogenase (DPD) expression is negatively regulated by certain microRNAs in human lung tissues. Lung Cancer, 2012, 77(1), 16-23.
[http://dx.doi.org/10.1016/j.lungcan.2011.12.018] [PMID: 22306127]
[22]
Cai, D.; He, K.; Chang, S.; Tong, D.; Huang, C. MicroRNA-302b enhances the sensitivity of hepatocellular carcinoma cell lines to 5-fu via targeting Mcl-1 and DPYD. Int. J. Mol. Sci., 2015, 16(10), 23668-23682.
[http://dx.doi.org/10.3390/ijms161023668] [PMID: 26457704]
[23]
Chai, J.; Dong, W.; Xie, C.; Wang, L.; Han, D.L.; Wang, S.; Guo, H.L.; Zhang, Z.L. Micro RNA-494 sensitizes colon cancer cells to fluorouracil through regulation of DPYD. IUBMB Life, 2015, 67(3), 191-201.
[http://dx.doi.org/10.1002/iub.1361] [PMID: 25873402]
[24]
Offer, S.M.; Butterfield, G.L.; Jerde, C.R.; Fossum, C.C.; Wegner, N.J.; Diasio, R.B. microRNAs miR-27a and miR-27b directly regulate liver dihydropyrimidine dehydrogenase expression through two conserved binding sites. Mol. Cancer Ther., 2014, 13(3), 742-751.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0878] [PMID: 24401318]
[25]
Deac, A.L.; Burz, C.C.; Militaru, C.; Bocșan, I.C.; Pop, R.M.; Achimaș-Cadariu, P.; Buzoianu, A.D. Role of microRNAs in fluoropyrimidine-related toxicity: What we know. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(8), 3306-3315.
[PMID: 33928618]
[26]
Taverna, S.; Masucci, A.; Cammarata, G. PIWI-RNAs small noncoding rnas with smart functions: Potential theranostic applications in cancer. Cancers, 2023, 15(15), 3912.
[http://dx.doi.org/10.3390/cancers15153912] [PMID: 37568728]
[27]
Cai, A.; Hu, Y.; Zhou, Z.; Qi, Q.; Wu, Y.; Dong, P.; Chen, L.; Wang, F. PIwi-interacting RNAs (piRNAs): Promising applications as emerging biomarkers for digestive system cancer. Front. Mol. Biosci., 2022, 9, 848105.
[http://dx.doi.org/10.3389/fmolb.2022.848105] [PMID: 35155584]
[28]
Mai, D.; Ding, P.; Tan, L.; Zhang, J.; Pan, Z.; Bai, R.; Li, C.; Li, M.; Zhou, Y.; Tan, W.; Zhou, Z.; Li, Y.; Zhou, A.; Ye, Y.; Pan, L.; Zheng, Y.; Su, J.; Zuo, Z.; Liu, Z.; Zhao, Q.; Li, X.; Huang, X.; Li, W.; Wu, S.; Jia, W.; Zou, S.; Wu, C.; Xu, R.; Zheng, J.; Lin, D. PIWI-interacting RNA-54265 is oncogenic and a potential therapeutic target in colorectal adenocarcinoma. Theranostics, 2018, 8(19), 5213-5230.
[http://dx.doi.org/10.7150/thno.28001] [PMID: 30555542]
[29]
Cheng, P.Q.; Liu, Y.J.; Zhang, S.A.; Lu, L.; Zhou, W.J.; Hu, D.; Xu, H.C.; Ji, G. RNA-Seq profiling of circular RNAs in human colorectal cancer 5-fluorouracil resistance and potential biomarkers. World J. Gastrointest. Oncol., 2022, 14(3), 678-689.
[http://dx.doi.org/10.4251/wjgo.v14.i3.678] [PMID: 35321280]
[30]
Wang, M.; Hu, H.; Wang, Y.; Huang, Q.; Huang, R.; Chen, Y.; Ma, T.; Qiao, T.; Zhang, Q.; Wu, H.; Chen, Q.; Han, D.; Wang, G.; Wang, X. Long non-coding RNA TUG1 mediates 5-fluorouracil resistance by acting as a ceRNA of miR-197-3p in colorectal cancer. J. Cancer, 2019, 10(19), 4603-4613.
[http://dx.doi.org/10.7150/jca.32065] [PMID: 31528224]
[31]
Dobritzsch, D.; Schneider, G.; Schnackerz, K.D.; Lindqvist, Y. Crystal structure of dihydropyrimidine dehydrogenase, a major determinant of the pharmacokinetics of the anti-cancer drug 5-fluorouracil. EMBO J., 2001, 20(4), 650-660.
[http://dx.doi.org/10.1093/emboj/20.4.650] [PMID: 11179210]
[32]
Schnackerz, K.D.; Dobritzsch, D.; Lindqvist, Y.; Cook, P.F. Dihydropyrimidine dehydrogenase: A flavoprotein with four iron–sulfur clusters. Biochim. Biophys. Acta. Proteins Proteom., 2004, 1701(1-2), 61-74.
[http://dx.doi.org/10.1016/j.bbapap.2004.06.009] [PMID: 15450176]
[33]
Rydz, L.; Wróbel, M.; Jurkowska, H. Sulfur administration in fe–s cluster homeostasis. Antioxidants, 2021, 10(11), 1738.
[http://dx.doi.org/10.3390/antiox10111738] [PMID: 34829609]
[34]
Vernis, L.; El Banna, N.; Baïlle, D.; Hatem, E.; Heneman, A.; Huang, M.E. Fe-S clusters emerging as targets of therapeutic drugs. Oxid. Med. Cell. Longev., 2017, 2017, 1-12.
[http://dx.doi.org/10.1155/2017/3647657] [PMID: 29445445]
[35]
Nirojini, P.S.; Fathumuthu, A.A. A detailed review on dihydropyrimidine dehydrogenase enzyme deficiency-autosomal recessive condition. Indian J. Pharm. Pract., 2023, 16(2), 70-82.
[http://dx.doi.org/10.5530/ijopp.16.2.13]
[36]
Kaneko, M.; Fujimoto, S.; Kikugawa, M.; Kontani, Y.; Tamaki, N. Effect of dietary protein on pyrimidine-metabolizing enzymes in rats. J. Nutr. Sci. Vitaminol., 1991, 37(5), 517-528.
[http://dx.doi.org/10.3177/jnsv.37.517] [PMID: 1802976]
[37]
Fujimoto, S.; Matsuda, K.; Kikugawa, M.; Kaneko, M.; Tamaki, N. Effect of vitamin B2 deficiency on rat liver dihydropyrimidine dehydrogenase activity. J. Nutr. Sci. Vitaminol., 1991, 37(1), 89-98.
[http://dx.doi.org/10.3177/jnsv.37.89] [PMID: 1880634]
[38]
Diasio, R.B. Sorivudine and 5-fluorouracil; a clinically significant drug- drug interaction due to inhibition of dihydropyrimidine dehydrogenase. Br. J. Clin. Pharmacol., 1998, 46(1), 1-4.
[http://dx.doi.org/10.1046/j.1365-2125.1998.00050.x] [PMID: 9690942]
[39]
Réti, A.; Pap, É.; Adleff, V.; Jeney, A.; Kralovánszky, J.; Budai, B. Enhanced 5-fluorouracil cytotoxicity in high cyclooxygenase-2 expressing colorectal cancer cells and xenografts induced by non-steroidal anti-inflammatory drugs via downregulation of dihydropyrimidine dehydrogenase. Cancer Chemother. Pharmacol., 2010, 66(2), 219-227.
[http://dx.doi.org/10.1007/s00280-009-1149-8] [PMID: 19830428]
[40]
Camadan, Y.; Özdemir, H.; Gulcin, İ. Purification and characterization of dihydropyrimidine dehydrogenase enzyme from sheep liver and determination of the effects of some anaesthetic and antidepressant drugs on the enzyme activity. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1335-1341.
[http://dx.doi.org/10.3109/14756366.2015.1132710] [PMID: 26758717]
[41]
Diasio, R.B. Oral DPD-inhibitory fluoropyrimidine drugs. Oncology, 2000, 14(10), 19-23.
[PMID: 11098485]
[42]
Rivera, E.; Chang, J.C.; Semiglazov, V.; Burdaeva, O.; Kirby, M.G.; Spector, T. Eniluracil plus 5-fluorouracil and leucovorin: Treatment for metastatic breast cancer patients in whom capecitabine treatment rapidly failed. Clin. Breast Cancer, 2014, 14(1), 26-30.
[http://dx.doi.org/10.1016/j.clbc.2013.08.018] [PMID: 24183612]
[43]
Jeong, S.H.; Kim, R.B.; Oh, S.E.; An, J.Y.; Seo, K.W.; Min, J.S. Efficacy of s-1 or capecitabine plus oxaliplatin adjuvant chemotherapy for stage ii or iii gastric cancer after curative gastrectomy: A systematic review and meta-analysis. Cancers, 2022, 14(16), 3940.
[http://dx.doi.org/10.3390/cancers14163940] [PMID: 36010933]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy