Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

The Role of Emodin in the Treatment of Bladder Cancer Based on Network Pharmacology and Experimental Verification

Author(s): Fule Liu, Jianghao Li, Boruo Zhou, Yang Shen, Jingyuan Tang, Jie Han, Changpeng Chen, Kang Shao, Haojie Chen and Lin Yuan*

Volume 27, Issue 11, 2024

Published on: 19 March, 2024

Page: [1661 - 1675] Pages: 15

DOI: 10.2174/0113862073294990240122140121

Abstract

Background and Purpose: Emodin, a compound derived from rhubarb and various traditional Chinese medicines, exhibits a range of pharmacological actions, including antiinflammatory, antiviral, and anticancer properties. Nevertheless, its pharmacological impact on bladder cancer (BLCA) and the underlying mechanism are still unclear. This research aimed to analyze the pharmacological mechanisms of Emodin against BLCA using network pharmacology analysis and experimental verification.

Methods: Initially, network pharmacology was employed to identify core targets and associated pathways affected by Emodin in bladder cancer. Subsequently, the expression of key targets in normal bladder tissues and BLCA tissues was assessed by searching the GEPIA and HPA databases. The binding energy between Emodin and key targets was predicted using molecular docking. Furthermore, in vitro experiments were carried out to confirm the predictions made with network pharmacology.

Results: Our analysis identified 148 common genes targeted by Emodin and BLCA, with the top ten target genes including TP53, HSP90AA1, EGFR, MYC, CASP3, CDK1, PTPN11, EGF, ESR1, and TNF. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated a significant correlation between Emodin and the PI3KAKT pathway in the context of BLCA. Molecular docking investigations revealed a strong affinity between Emodin and critical target proteins. In vitro experiments demonstrated that Emodin inhibits T24 proliferation, migration, and invasion while inducing cell apoptosis. The findings also indicated that Emodin reduces both PI3K and AKT protein and mRNA expression, suggesting that Emodin may mitigate BLCA by modulating the PI3K-AKT signaling pathway.

Conclusion: This study integrates network pharmacology with in vitro experimentation to elucidate the potential mechanisms underlying the action of Emodin against BLCA. The results of this research enhance our understanding of the pharmacological mechanisms by which Emodin may be employed in treating BLCA.

Keywords: Bladder cancer, emodin, network pharmacology, molecular docking, molecular mechanism, experimental verification.

Graphical Abstract
[1]
Frick, C.; Rumgay, H.; Vignat, J.; Ginsburg, O.; Nolte, E.; Bray, F.; Soerjomataram, I. Quantitative estimates of preventable and treatable deaths from 36 cancers worldwide: A population-based study. Lancet Glob. Health, 2023, 11(11), e1700-e1712.
[http://dx.doi.org/10.1016/S2214-109X(23)00406-0] [PMID: 37774721]
[2]
Zhang, H.; Zhou, C.; Zhang, Z.; Yao, S.; Bian, Y.; Fu, F.; Luo, H.; Li, Y.; Yan, S.; Ge, Y.; Chen, Y.; Zhan, K.; Yue, M.; Du, W.; Tian, K.; Jin, H.; Li, X.; Tong, P.; Ruan, H.; Wu, C. Integration of network pharmacology and experimental validation to explore the pharmacological mechanisms of zhuanggu busui formula against osteoporosis. Front. Endocrinol., 2022, 12, 841668.
[http://dx.doi.org/10.3389/fendo.2021.841668] [PMID: 35154014]
[3]
Dong, X.; Zeng, Y.; Liu, Y.; You, L.; Yin, X.; Fu, J.; Ni, J. Aloe-emodin: A review of its pharmacology, toxicity, and pharmacokinetics. Phytother. Res., 2020, 34(2), 270-281.
[http://dx.doi.org/10.1002/ptr.6532] [PMID: 31680350]
[4]
Chen, S.; Zhang, Z.; Zhang, J. Emodin enhances antitumor effect of paclitaxel on human non-small-cell lung cancer cells in vitro and in vivo. Drug Des. Devel. Ther., 2019, 13, 1145-1153.
[http://dx.doi.org/10.2147/DDDT.S196319] [PMID: 31114158]
[5]
Dai, G.; Ding, K.; Cao, Q.; Xu, T.; He, F.; Liu, S.; Ju, W. Emodin suppresses growth and invasion of colorectal cancer cells by inhibiting VEGFR2. Eur. J. Pharmacol., 2019, 859, 172525.
[http://dx.doi.org/10.1016/j.ejphar.2019.172525] [PMID: 31288005]
[6]
Shi, G.H.; Zhou, L. Emodin suppresses angiogenesis and metastasis in anaplastic thyroid cancer by affecting TRAF6 mediated pathways in-vivo and in-vitro. Mol. Med. Rep., 2018, 18(6), 5191-5197.
[http://dx.doi.org/10.3892/mmr.2018.9510] [PMID: 30272291]
[7]
Hao, D.C.; Xiao, P.G. Network pharmacology: A Rosetta Stone for traditional Chinese medicine. Drug Dev. Res., 2014, 75(5), 299-312.
[http://dx.doi.org/10.1002/ddr.21214] [PMID: 25160070]
[8]
Zheng, J.; Wu, M.; Wang, H.; Li, S.; Wang, X.; Li, Y.; Wang, D.; Li, S. Network pharmacology to unveil the biological basis of health-strengthening herbal medicine in cancer treatment. Cancers, 2018, 10(11), 461.
[http://dx.doi.org/10.3390/cancers10110461] [PMID: 30469422]
[9]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem 2023 update. Nucleic Acids Res., 2023, 51(D1), D1373-D1380.
[http://dx.doi.org/10.1093/nar/gkac956] [PMID: 36305812]
[10]
Gallo, K.; Goede, A.; Preissner, R.; Gohlke, B.O. SuperPred 3.0: Drug classification and target prediction—a machine learning approach. Nucleic Acids Res., 2022, 50(W1), W726-W731.
[http://dx.doi.org/10.1093/nar/gkac297] [PMID: 35524552]
[11]
Daina, A.; Michielin, O.; Zoete, V. Swisstargetprediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[12]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[13]
Bateman, A.; Martin, M-J.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bursteinas, B.; Bye-A-Jee, H.; Coetzee, R.; Cukura, A.; Da Silva, A.; Denny, P.; Dogan, T.; Ebenezer, T.G.; Fan, J.; Castro, L.G.; Garmiri, P.; Georghiou, G.; Gonzales, L.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Jokinen, P.; Joshi, V.; Jyothi, D.; Lock, A.; Lopez, R.; Luciani, A.; Luo, J.; Lussi, Y.; MacDougall, A.; Madeira, F.; Mahmoudy, M.; Menchi, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Oliveira, C.S.; Pundir, S.; Qi, G.; Raj, S.; Rice, D.; Lopez, M.R.; Saidi, R.; Sampson, J.; Sawford, T.; Speretta, E.; Turner, E.; Tyagi, N.; Vasudev, P.; Volynkin, V.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Bridge, A.; Poux, S.; Redaschi, N.; Aimo, L.; Argoud-Puy, G.; Auchincloss, A.; Axelsen, K.; Bansal, P.; Baratin, D.; Blatter, M-C.; Bolleman, J.; Boutet, E.; Breuza, L.; Casals-Casas, C.; de Castro, E.; Echioukh, K.C.; Coudert, E.; Cuche, B.; Doche, M.; Dornevil, D.; Estreicher, A.; Famiglietti, M.L.; Feuermann, M.; Gasteiger, E.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz-Gumowski, N.; Hinz, U.; Hulo, C.; Hyka-Nouspikel, N.; Jungo, F.; Keller, G.; Kerhornou, A.; Lara, V.; Le Mercier, P.; Lieberherr, D.; Lombardot, T.; Martin, X.; Masson, P.; Morgat, A.; Neto, T.B.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pourcel, L.; Pozzato, M.; Pruess, M.; Rivoire, C.; Sigrist, C.; Sonesson, K.; Stutz, A.; Sundaram, S.; Tognolli, M.; Verbregue, L.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Garavelli, J.S.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y.; Yeh, L-S.; Zhang, J.; Ruch, P.; Teodoro, D. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res., 2021, 49(D1), D480-D489.
[http://dx.doi.org/10.1093/nar/gkaa1100] [PMID: 33237286]
[14]
Amberger, J.S.; Bocchini, C.A.; Scott, A.F.; Hamosh, A. OMIM.org: Leveraging knowledge across phenotype–gene relationships. Nucleic Acids Res., 2019, 47(D1), D1038-D1043.
[http://dx.doi.org/10.1093/nar/gky1151] [PMID: 30445645]
[15]
Stelzer, G; Plaschkes, I; Oz-Levi, D; Alkelai, A; Olender, T; Zimmerman, S; Twik, M; Belinky, F; Fishilevich, S; Nudel, R VarElect: The phenotype-based variation prioritizer of the genecards suite. BMC Genomics, 2016, 17(Suppl 2), 444.
[http://dx.doi.org/10.1186/s12864-016-2722-2]
[16]
Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res., 2020, 48(D1), D845-D855.
[PMID: 31680165]
[17]
Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res., 2022, 50(W1), W216-W221.
[http://dx.doi.org/10.1093/nar/gkac194] [PMID: 35325185]
[18]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[19]
Notarte, K.I.R.; Quimque, M.T.J.; Macaranas, I.T.; Khan, A.; Pastrana, A.M.; Villaflores, O.B.; Arturo, H.C.P.; Pilapil, D.Y.H., IV; Tan, S.M.M.; Wei, D.Q.; Wenzel-Storjohann, A.; Tasdemir, D.; Yen, C.H.; Ji, S.Y.; Kim, G.Y.; Choi, Y.H.; Macabeo, A.P.G. Attenuation of lipopolysaccharide-induced inflammatory responses through inhibition of the NF-κB pathway and the increased NRF2 level by a flavonol-enriched n -butanol fraction from uvaria alba. ACS Omega, 2023, 8(6), 5377-5392.
[http://dx.doi.org/10.1021/acsomega.2c06451] [PMID: 36816691]
[20]
Quimque, M.T.; Notarte, K.I.; Letada, A.; Fernandez, R.A.; Pilapil, D.Y., IV; Pueblos, K.R.; Agbay, J.C.; Dahse, H.M.; Wenzel-Storjohann, A.; Tasdemir, D.; Khan, A.; Wei, D.Q.; Gose Macabeo, A.P. Potential cancer- and alzheimer’s disease-targeting phosphodiesterase inhibitors from uvaria alba: Insights from in vitro and consensus virtual screening. ACS Omega, 2021, 6(12), 8403-8417.
[http://dx.doi.org/10.1021/acsomega.1c00137] [PMID: 33817501]
[21]
Carmo Bastos, M.L.; Silva-Silva, J.V.; Neves Cruz, J.; Palheta da Silva, A.R.; Bentaberry-Rosa, A.A.; da Costa Ramos, G.; de Sousa Siqueira, J.E.; Coelho-Ferreira, M.R.; Percário, S.; Santana Barbosa Marinho, P.; Marinho, A.M.R.; de Oliveira Bahia, M.; Dolabela, M.F. Alkaloid from Geissospermum sericeum Benth. & Hook.f. ex Miers (Apocynaceae) Induce apoptosis by caspase pathway in human gastric cancer cells. Pharmaceuticals, 2023, 16(5), 765.
[http://dx.doi.org/10.3390/ph16050765] [PMID: 37242548]
[22]
de Almeida, R.B.M.; Barbosa, D.B.; do Bomfim, M.R.; Amparo, J.A.O.; Andrade, B.S.; Costa, S.L.; Campos, J.M.; Cruz, J.N.; Santos, C.B.R.; Leite, F.H.A.; Botura, M.B. Identification of a novel dual inhibitor of acetylcholinesterase and butyrylcholinesterase: In vitro and in silico studies. Pharmaceuticals, 2023, 16(1), 95.
[http://dx.doi.org/10.3390/ph16010095] [PMID: 36678592]
[23]
Hiebl, V.; Ladurner, A.; Latkolik, S.; Dirsch, V.M. Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnol. Adv., 2018, 36(6), 1657-1698.
[http://dx.doi.org/10.1016/j.biotechadv.2018.03.003] [PMID: 29548878]
[24]
Ramos, INdF.; da Silva, MF.; Lopes, JMS.; Cruz, JN.; Alves, FS.; do Rego, JdAR.; Costa, MLd.; Assumpção, PPd.; Barros Brasil, DdS.; Khayat, AS. Extraction, characterization, and evaluation of the cytotoxic activity of piperine in its isolated form and in combination with chemotherapeutics against gastric cancer. Molecules, 2023, 28(14)
[25]
Shahane, K.; Kshirsagar, M.; Tambe, S.; Jain, D.; Rout, S.; Ferreira, M.K.M.; Mali, S.; Amin, P.; Srivastav, P.P.; Cruz, J.; Lima, R.R. An updated review on the multifaceted therapeutic potential of calendula officinalis L. Pharmaceuticals, 2023, 16(4), 611.
[http://dx.doi.org/10.3390/ph16040611] [PMID: 37111369]
[26]
Berger, S.I.; Iyengar, R. Network analyses in systems pharmacology. Bioinformatics, 2009, 25(19), 2466-2472.
[http://dx.doi.org/10.1093/bioinformatics/btp465] [PMID: 19648136]
[27]
Macabeo, A.P.; Quimque, M.T.; Notarte, K.I.; Adviento, X.A.; Cabunoc, M.H.; de Leon, V.N.; delos Reyes, F.S.L.; Lugtu, E.J.; Manzano, J.A.; Monton, S.N.; Muñoz, J.E.; Ong, K.D.; Pilapil, D.Y.; Roque, V.; Tan, S.M.; Lim, J.A. Polyphenolic natural products active in silico against SARS-CoV-2 spike receptor binding domains and non-structural proteins - A review. Comb. Chem. High Throughput Screen., 2023, 26(3), 459-488.
[http://dx.doi.org/10.2174/1386207325666210917113207] [PMID: 34533442]
[28]
Cui, W.; Aouidate, A.; Wang, S.; Yu, Q.; Li, Y.; Yuan, S. Discovering anti-cancer drugs via computational methods. Front. Pharmacol., 2020, 11, 733.
[http://dx.doi.org/10.3389/fphar.2020.00733] [PMID: 32508653]
[29]
Huang, Z.; Yao, X.J.; Gu, R.X. Editorial: Computational approaches in drug discovery and precision medicine. Front Chem., 2021, 8, 639449.
[http://dx.doi.org/10.3389/fchem.2020.639449] [PMID: 33659236]
[30]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[31]
Fernandez, R.A.; Quimque, M.T.; Notarte, K.I.; Manzano, J.A.; Pilapil, D.Y., IV; de Leon, V.N.; San Jose, J.J.; Villalobos, O.; Muralidharan, N.H.; Gromiha, M.M.; Brogi, S.; Macabeo, A.P.G. Myxobacterial depsipeptide chondramides interrupt SARS-CoV-2 entry by targeting its broad, cell tropic spike protein. J. Biomol. Struct. Dyn., 2022, 40(22), 12209-12220.
[http://dx.doi.org/10.1080/07391102.2021.1969281] [PMID: 34463219]
[32]
Brogi, S.; Quimque, M.T.; Notarte, K.I.; Africa, J.G.; Hernandez, J.B.; Tan, S.M.; Calderone, V.; Macabeo, A.P. Virtual combinatorial library screening of quinadoline B derivatives against SARS-CoV-2 RNA-dependent RNA polymerase. Computation, 2022, 10(1), 7.
[http://dx.doi.org/10.3390/computation10010007]
[33]
Wu, G.; Wang, F.; Li, K.; Li, S.; Zhao, C.; Fan, C.; Wang, J. Significance of TP53 mutation in bladder cancer disease progression and drug selection. PeerJ, 2019, 7, e8261.
[http://dx.doi.org/10.7717/peerj.8261] [PMID: 31871844]
[34]
Li, Q.Q.; Hao, J.J.; Zhang, Z.; Krane, L.S.; Hammerich, K.H.; Sanford, T.; Trepel, J.B.; Neckers, L.; Agarwal, P.K. Proteomic analysis of proteome and histone post-translational modifications in heat shock protein 90 inhibition-mediated bladder cancer therapeutics. Sci. Rep., 2017, 7(1), 201.
[http://dx.doi.org/10.1038/s41598-017-00143-6] [PMID: 28298630]
[35]
Mason, R.A.; Morlock, E.V.; Karagas, M.R.; Kelsey, K.T.; Marsit, C.J.; Schned, A.R.; Andrew, A.S. EGFR pathway polymorphisms and bladder cancer susceptibility and prognosis. Carcinogenesis, 2009, 30(7), 1155-1160.
[http://dx.doi.org/10.1093/carcin/bgp077] [PMID: 19372140]
[36]
Rubio, K.; Romero-Olmedo, A.J.; Sarvari, P.; Swaminathan, G.; Ranvir, V.P.; Rogel-Ayala, D.G.; Cordero, J.; Günther, S.; Mehta, A.; Bassaly, B.; Braubach, P.; Wygrecka, M.; Gattenlöhner, S.; Tresch, A.; Braun, T.; Dobreva, G.; Rivera, M.N.; Singh, I.; Graumann, J.; Barreto, G. Non-canonical integrin signaling activates EGFR and RAS-MAPK-ERK signaling in small cell lung cancer. Theranostics, 2023, 13(8), 2384-2407.
[http://dx.doi.org/10.7150/thno.79493] [PMID: 37215577]
[37]
Hartleben, G.; Müller, C.; Krämer, A.; Schimmel, H.; Zidek, L.M.; Dornblut, C.; Winkler, R.; Eichwald, S.; Kortman, G.; Kosan, C.; Kluiver, J.; Petersen, I.; van den Berg, A.; Wang, Z.Q.; Calkhoven, C.F. Tuberous sclerosis complex is required for tumor maintenance in MYC-driven Burkitt’s lymphoma. EMBO J., 2018, 37(21), e98589.
[http://dx.doi.org/10.15252/embj.201798589] [PMID: 30237309]
[38]
Jiménez-Vidal, L.; Espitia-Pérez, P.; Torres-Ávila, J.; Ricardo-Caldera, D.; Salcedo-Arteaga, S.; Galeano-Páez, C.; Pastor-Sierra, K.; Espitia-Pérez, L. Nuclear factor erythroid 2 – related factor 2 and its relationship with cellular response in nickel exposure: A systems biology analysis. BMC Pharmacol. Toxicol., 2019, 20(S1)(Suppl. 1), 78.
[http://dx.doi.org/10.1186/s40360-019-0360-4] [PMID: 31852525]
[39]
Lin, B.; Zhu, M.; Wang, W.; Li, W.; Dong, X.; Chen, Y.; Lu, Y.; Guo, J.; Li, M. Structural basis for alpha fetoprotein-mediated inhibition of caspase-3 activity in hepatocellular carcinoma cells. Int. J. Cancer, 2017, 141(7), 1413-1421.
[http://dx.doi.org/10.1002/ijc.30850] [PMID: 28653316]
[40]
Lakhani, S.A.; Masud, A.; Kuida, K.; Porter, G.A., Jr; Booth, C.J.; Mehal, W.Z.; Inayat, I.; Flavell, R.A. Caspases 3 and 7: Key mediators of mitochondrial events of apoptosis. Science, 2006, 311(5762), 847-851.
[http://dx.doi.org/10.1126/science.1115035] [PMID: 16469926]
[41]
Yamamura, M.; Sato, Y.; Takahashi, K.; Sasaki, M.; Harada, K. The cyclin-dependent kinase pathway involving CDK1 is a potential therapeutic target for cholangiocarcinoma. Oncol. Rep., 2020, 43(1), 306-317.
[PMID: 31746435]
[42]
Heo, J.; Lee, J.; Nam, Y.J.; Kim, Y.; Yun, H.; Lee, S.; Ju, H.; Ryu, C.M.; Jeong, S.M.; Lee, J.; Lim, J.; Cho, Y.M.; Jeong, E.M.; Hong, B.; Son, J.; Shin, D.M. The CDK1/TFCP2L1/ID2 cascade offers a novel combination therapy strategy in a preclinical model of bladder cancer. Exp. Mol. Med., 2022, 54(6), 801-811.
[http://dx.doi.org/10.1038/s12276-022-00786-0] [PMID: 35729325]
[43]
Rehman, A.U.; Rahman, M.U.; Khan, M.T.; Saud, S.; Liu, H.; Song, D.; Sultana, P.; Wadood, A.; Chen, H.F. The landscape of protein tyrosine phosphatase (Shp2) and cancer. Curr. Pharm. Des., 2019, 24(32), 3767-3777.
[http://dx.doi.org/10.2174/1381612824666181106100837] [PMID: 30398108]
[44]
Su, W.P.; Tu, I.H.; Hu, S.W.; Yeh, H.H.; Shieh, D.B.; Chen, T.Y.; Su, W.C. HER-2/neu raises SHP-2, stops IFN-γ anti-proliferation in bladder cancer. Biochem. Biophys. Res. Commun., 2007, 356(1), 181-186.
[http://dx.doi.org/10.1016/j.bbrc.2007.02.099] [PMID: 17346677]
[45]
Martin-Way, D.; Puche-Sanz, I.; Cozar, J.M.; Zafra-Gomez, A.; Gomez-Regalado, M.D.C.; Morales-Alvarez, C.M.; Hernandez, A.F.; Martinez-Gonzalez, L.J.; Alvarez-Cubero, M.J. Genetic variants of antioxidant enzymes and environmental exposures as molecular biomarkers associated with the risk and aggressiveness of bladder cancer. Sci. Total Environ., 2022, 843, 156965.
[http://dx.doi.org/10.1016/j.scitotenv.2022.156965] [PMID: 35764155]
[46]
Dash, S.; Sahu, A.K.; Srivastava, A.; Chowdhury, R.; Mukherjee, S. Exploring the extensive crosstalk between the antagonistic cytokines- TGF-β and TNF-α in regulating cancer pathogenesis. Cytokine, 2021, 138, 155348.
[http://dx.doi.org/10.1016/j.cyto.2020.155348] [PMID: 33153895]
[47]
Cruceriu, D.; Baldasici, O.; Balacescu, O.; Berindan-Neagoe, I. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: Molecular insights and therapeutic approaches. Cell Oncol., 2020, 43(1), 1-18.
[http://dx.doi.org/10.1007/s13402-019-00489-1] [PMID: 31900901]
[48]
Hao, J.; Zhang, W.; Huang, Z. Bupivacaine modulates the apoptosis and ferroptosis in bladder cancer via phosphatidylinositol 3-kinase (PI3K)/AKT pathway. Bioengineered, 2022, 13(3), 6794-6806.
[http://dx.doi.org/10.1080/21655979.2022.2036909] [PMID: 35246010]
[49]
Yang, G.; Li, Z.; Dong, L.; Zhou, F. lncRNA ADAMTS9-AS1 promotes bladder cancer cell invasion, migration, and inhibits apoptosis and autophagy through PI3K/AKT/mTOR signaling pathway. Int. J. Biochem. Cell Biol., 2021, 140, 106069.
[http://dx.doi.org/10.1016/j.biocel.2021.106069] [PMID: 34428588]
[50]
Chi, M.; Liu, J.; Mei, C.; Shi, Y.; Liu, N.; Jiang, X.; Liu, C.; Xue, N.; Hong, H.; Xie, J.; Sun, X.; Yin, B.; Meng, X.; Wang, B. TEAD4 functions as a prognostic biomarker and triggers EMT via PI3K/AKT pathway in bladder cancer. J. Exp. Clin. Cancer Res., 2022, 41(1), 175.
[http://dx.doi.org/10.1186/s13046-022-02377-3] [PMID: 35581606]
[51]
Gourisankar, S.; Krokhotin, A.; Ji, W.; Liu, X.; Chang, C.Y.; Kim, S.H.; Li, Z.; Wenderski, W.; Simanauskaite, J.M.; Yang, H.; Vogel, H.; Zhang, T.; Green, M.R.; Gray, N.S.; Crabtree, G.R. Rewiring cancer drivers to activate apoptosis. Nature, 2023, 620(7973), 417-425.
[http://dx.doi.org/10.1038/s41586-023-06348-2] [PMID: 37495688]
[52]
Jia, X.; Wen, Z.; Sun, Q.; Zhao, X.; Yang, H.; Shi, X.; Xin, T. Apatinib suppresses the proliferation and apoptosis of gastric cancer cells via the PI3K/Akt signaling pathway. J. BUON, 2019, 24(5), 1985-1991.
[PMID: 31786865]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy