Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Potential Antidiabetic Activity of β-sitosterol from Zingiber roseum Rosc. via Modulation of Peroxisome Proliferator-activated Receptor Gamma (PPARγ)

Author(s): Muhammed Amanat, A. F. M. Shahid Ud Daula and Randhir Singh*

Volume 27, Issue 11, 2024

Published on: 17 January, 2024

Page: [1676 - 1699] Pages: 24

DOI: 10.2174/0113862073260323231120134826

Price: $65

Abstract

Aim: To evaluate the antidiabetic potential of β-sitosterol from Zingiber roseum.

Background: Diabetes mellitus is a cluster of metabolic disorders, and 90% of diabetic patients are affected with Type II diabetes (DM2). For the treatment of DM2, thiazolidinedione drugs (TZDs) were proposed, but recent studies have shown that TZDs have several detrimental effects, such as weight gain, kidney enlargement (hypertrophy), fluid retention, increased risk of bone fractures, and potential harm to the liver (hepatotoxicity). That is why a new molecule is needed to treat DM2.

Objective: The current research aimed to assess the efficacy of β-Sitosterol from methanolic extract of Zingiber roseum in managing diabetes via PPARγ modulation.

Methods: Zingiber roseum was extracted using methanol, and GC-MS was employed to analyze the extract. Through homology modeling, PPARγ structure was predicted. Molecular docking, MD simulation, free binding energies, QSAR, ADMET, and bioactivity and toxicity scores were all used during the in-depth computer-based research.

Results: Clinically, agonists of synthetic thiazolidinedione (TZDs) have been used therapeutically to treat DM2, but these TZDs are associated with significant risks. Hence, GC-MS identified phytochemicals to search for a new PPAR-γ agonist. Based on the in-silico investigation, β-sitosterol was found to have a higher binding affinity (-8.9 kcal/mol) than standard drugs. MD simulations and MMGBSA analysis also demonstrated that β-sitosterol bound to the PPAR-γ active site stably.

Conclusion: It can be concluded that β-sitosterol from Z. roseum attenuates Type-II diabetes by modulating PPARγ activity.

Keywords: ADMET, PPARγ, MMGBSA, thiazolidinedione drugs (TZDs), Zingiber roseum, β-sitosterol.

« Previous
[1]
Bosch, X.; Alfonso, F.; Bermejo, J. 1. Diabetes y enfermedad cardiovascular. Una mirada hacia la nueva epidemia del siglo XXI. Rev. Esp. Cardiol., 2002, 55(5), 525-527.
[http://dx.doi.org/10.1016/S0300-8932(02)76645-1] [PMID: 12015933]
[2]
Bermúdez-Pirela, V.J.; Cano, C.; Medina, M.T.; Souki, A.; Lemus, M.A.; Leal, E.M.; Seyfi, H.A.; Cano, R.; Ciscek, A.; Bermúdez-Arias, F.; Contreras, F.; Israili, Z.H.; Hernández-Hernández, R.; Valasco, M. Metformin plus low-dose glimeperide significantly improves Homeostasis Model Assessment for insulin resistance (HOMA(IR)) and β-cell function (HOMA(β-cell)) without hyperinsulinemia in patients with type 2 diabetes mellitus. Am. J. Ther., 2007, 14(2), 194-202.
[http://dx.doi.org/10.1097/01.pap.0000249909.54047.0e] [PMID: 17414590]
[3]
Ahmed, H. A.; Alkali, I. Y. In silico molecular docking studies of some phytochemicals against peroxisome-proliferator activated receptor gamma (PPAR-γ). GSC Biol. Pharm. Sci., 2018, 5(2), 001-005.
[4]
Tesauro, M.; Mazzotta, F.A. Pathophysiology of diabetes.Transplantation, bioengineering, and regeneration of the endocrine pancreas; Elsevier, 2020, pp. 37-47.
[http://dx.doi.org/10.1016/B978-0-12-814833-4.00003-4]
[5]
Bermúdez, V.; Finol, F.; Parra, N.; Parra, M.; Pérez, A.; Peñaranda, L.; Vílchez, D.; Rojas, J.; Arráiz, N.; Velasco, M. PPAR-γ agonists and their role in type 2 diabetes mellitus management. Am. J. Ther., 2010, 17(3), 274-283.
[http://dx.doi.org/10.1097/MJT.0b013e3181c08081] [PMID: 20216208]
[6]
Copps, K.D.; White, M.F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia, 2012, 55(10), 2565-2582.
[http://dx.doi.org/10.1007/s00125-012-2644-8] [PMID: 22869320]
[7]
Dong, X.; Park, S.; Lin, X.; Copps, K.; Yi, X.; White, M.F. Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth. J. Clin. Invest., 2006, 116(1), 101-114.
[http://dx.doi.org/10.1172/JCI25735] [PMID: 16374520]
[8]
Kim, H.S.; Noh, J.H.; Hong, S.H.; Hwang, Y.C.; Yang, T.Y.; Lee, M.S.; Kim, K.W.; Lee, M.K. Rosiglitazone stimulates the release and synthesis of insulin by enhancing GLUT-2, glucokinase and BETA2/NeuroD expression. Biochem. Biophys. Res. Commun., 2008, 367(3), 623-629.
[http://dx.doi.org/10.1016/j.bbrc.2007.12.192] [PMID: 18191635]
[9]
Chung, M.J.; Cho, S.Y.; Bhuiyan, M.J.H.; Kim, K.H.; Lee, S.J. Anti-diabetic effects of lemon balm (Melissa officinalis) essential oil on glucose- and lipid-regulating enzymes in type 2 diabetic mice. Br. J. Nutr., 2010, 104(2), 180-188.
[http://dx.doi.org/10.1017/S0007114510001765] [PMID: 20487577]
[10]
Hassani-Nezhad-Gashti, F.; Rysä, J.; Kummu, O.; Näpänkangas, J.; Buler, M.; Karpale, M.; Hukkanen, J.; Hakkola, J. Activation of nuclear receptor PXR impairs glucose tolerance and dysregulates GLUT2 expression and subcellular localization in liver. Biochem. Pharmacol., 2018, 148, 253-264.
[http://dx.doi.org/10.1016/j.bcp.2018.01.001] [PMID: 29309761]
[11]
Cho, Y.M.; Kim, T.H.; Lim, S.; Choi, S.H.; Shin, H.D.; Lee, H.K.; Park, K.S.; Jang, H.C. Type 2 diabetes-associated genetic variants discovered in the recent genome-wide association studies are related to gestational diabetes mellitus in the Korean population. Diabetologia, 2009, 52(2), 253-261.
[http://dx.doi.org/10.1007/s00125-008-1196-4] [PMID: 19002430]
[12]
Saadi, H.; Nagelkerke, N.; Carruthers, S.G.; Benedict, S.; Abdulkhalek, S.; Reed, R.; Lukic, M.; Nicholls, M.G. Association of TCF7L2 polymorphism with diabetes mellitus, metabolic syndrome, and markers of beta cell function and insulin resistance in a population-based sample of Emirati subjects. Diabetes Res. Clin. Pract., 2008, 80(3), 392-398.
[http://dx.doi.org/10.1016/j.diabres.2008.01.008] [PMID: 18282631]
[13]
Christodoulides, C.; Vidal-Puig, A. PPARs and adipocyte function. Mol. Cell. Endocrinol., 2010, 318(1-2), 61-68.
[http://dx.doi.org/10.1016/j.mce.2009.09.014] [PMID: 19772894]
[14]
Wafer, R.; Tandon, P.; Minchin, J.E.N. The role of peroxisome proliferator-activated receptor gamma (PPARG) in adipogenesis: Applying knowledge from the fish aquaculture industry to biomedical research. Front. Endocrinol. (Lausanne), 2017, 8, 102.
[http://dx.doi.org/10.3389/fendo.2017.00102] [PMID: 28588550]
[15]
Moller, D.E.; Berger, J.P. Role of PPARs in the regulation of obesity-related insulin sensitivity and inflammation. Int. J. Obes., 2003, 27(S3)(Suppl. 3), S17-S21.
[http://dx.doi.org/10.1038/sj.ijo.0802494] [PMID: 14704738]
[16]
Ferré, P. The biology of peroxisome proliferator-activated receptors: Relationship with lipid metabolism and insulin sensitivity. Diabetes, 2004, 53(1), S43-S50.
[http://dx.doi.org/10.2337/diabetes.53.2007.S43] [PMID: 14749265]
[17]
Małodobra-Mazur, M.; Cierzniak, A.; Ryba, M.; Sozański, T.; Piórecki, N.; Kucharska, A.Z. Cornus mas L. Increases glucose uptake and the expression of PPARG in insulin-resistant adipocytes. Nutrients, 2022, 14(11), 2307.
[http://dx.doi.org/10.3390/nu14112307] [PMID: 35684107]
[18]
Nathan, D.M.; Buse, J.B.; Davidson, M.B.; Ferrannini, E.; Holman, R.R.; Sherwin, R.; Zinman, B. Medical management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy: A consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care, 2009, 32(1), 193-203.
[http://dx.doi.org/10.2337/dc08-9025] [PMID: 18945920]
[19]
Encinar, J.A.; Fernández-Ballester, G.J.; Galiano-Ibarra, V.; Micol-Molina, V. In silico approach for the discovery of new PPARγ modulators among plant-derived polyphenols. Drug Des. Devel. Ther., 2015, 9, 5877-5895.
[http://dx.doi.org/10.2147/DDDT.S93449] [PMID: 26604687]
[20]
Reddy, J.K.; Hashimoto, T. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: An adaptive metabolic system. Annu. Rev. Nutr., 2001, 21(1), 193-230.
[http://dx.doi.org/10.1146/annurev.nutr.21.1.193] [PMID: 11375435]
[21]
Brun, R.P.; Tontonoz, P.; Forman, B.M.; Ellis, R.; Chen, J.; Evans, R.M.; Spiegelman, B.M. Differential activation of adipogenesis by multiple PPAR isoforms. Genes Dev., 1996, 10(8), 974-984.
[http://dx.doi.org/10.1101/gad.10.8.974] [PMID: 8608944]
[22]
Fox, C.S.; Pencina, M.J.; Meigs, J.B.; Vasan, R.S.; Levitzky, Y.S.; D’Agostino, R.B., Sr Trends in the incidence of type 2 diabetes mellitus from the 1970s to the 1990s: The Framingham Heart Study. Circulation, 2006, 113(25), 2914-2918.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.613828] [PMID: 16785337]
[23]
Prabhu, S.; Vijayakumar, S.; Manogar, P.; Maniam, G.P.; Govindan, N. Homology modeling and molecular docking studies on Type II diabetes complications reduced PPARγ receptor with various ligand molecules. Biomed. Pharmacother., 2017, 92, 528-535.
[http://dx.doi.org/10.1016/j.biopha.2017.05.077] [PMID: 28575810]
[24]
Berger, J.; Moller, D.E. The mechanisms of action of PPARs. Annu. Rev. Med., 2002, 53(1), 409-435.
[http://dx.doi.org/10.1146/annurev.med.53.082901.104018] [PMID: 11818483]
[25]
Willson, T.M.; Lambert, M.H.; Kliewer, S.A. Peroxisome proliferator activated receptor gamma and metabolic disease. Annu. Rev. Biochem., 2001, 70(1), 341-367.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.341] [PMID: 11395411]
[26]
Ahmadian, M.; Suh, J.M.; Hah, N.; Liddle, C.; Atkins, A.R.; Downes, M.; Evans, R.M. PPARγ signaling and metabolism: The good, the bad and the future. Nat. Med., 2013, 19(5), 557-566.
[http://dx.doi.org/10.1038/nm.3159] [PMID: 23652116]
[27]
Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 2015, 14(2), 111-129.
[http://dx.doi.org/10.1038/nrd4510] [PMID: 25614221]
[28]
Clardy, J.; Walsh, C. Lessons from natural molecules. Nature, 2004, 432(7019), 829-837.
[http://dx.doi.org/10.1038/nature03194] [PMID: 15602548]
[29]
Amanat, M.; Reza, M.S.; Shuvo, M.S.R.; Ahmed, K.S.; Hossain, H.; Tawhid, M.; Saifuzzaman, M.; Islam, M.S.; Mazumder, T.; Islam, M.A.; Daula, A.F.M.S.U. Zingiber roseum Rosc. rhizome: A rich source of hepatoprotective polyphenols. Biomed. Pharmacother., 2021, 139, 111673.
[http://dx.doi.org/10.1016/j.biopha.2021.111673] [PMID: 33965729]
[30]
Ganesan, S.; Pandi, N.R.; Banumathy, N. Ethnomedicinal survey of Alagarkoil hills (reserved forest), Tamil nadu, India. J. Indian Med, 2007, 1(1), 18-18.
[31]
Padal, S.; Ramakrishna, H.; Devender, R. Ethnomedicinal studies for endemic diseases by the tribes of Munchingiputtu Mandal, Visakhapatnam district, Andhra Pradesh, India. Int. J. Med. Aromat. Plants, 2012, 2(3), 453-459.
[32]
Prakash, O.; Kasana, V.K.; Pant, A.K.; Zafar, A.; Hore, S.K.; Mathela, C.S. Phytochemical composition of essential oil from seeds of Zingiber roseum Rosc. and its antispasmodic activity in rat duodenum. J. Ethnopharmacol., 2006, 106(3), 344-347.
[http://dx.doi.org/10.1016/j.jep.2006.01.016] [PMID: 16510259]
[33]
Williamson, E.M.; Okpako, D.T.; Evans, F.J. Selection. Preparation and Pharmacological Evaluation of Plant Material; John Wiley & Sons, 1996, 1, .
[34]
Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem. Heterocycl. Compd., 2014, 50(3), 444-457.
[http://dx.doi.org/10.1007/s10593-014-1496-1]
[35]
Kiefer, F.; Arnold, K.; Künzli, M.; Bordoli, L.; Schwede, T. The SWISS-MODEL Repository and associated resources. Nucleic Acids Res., 2009, 37(Database)(1), D387-D392.
[http://dx.doi.org/10.1093/nar/gkn750] [PMID: 18931379]
[36]
Dev Sharma, A. Homology modeling and molecular docking of Natural metabolites from eucalyptus essential oil against SARS-CoV-2 spike protein. Arab. J. Med. Aromat. Plants., 2021, 7(3), 282-303.
[37]
Laskowski, R.A.; Jabłońska, J.; Pravda, L.; Vařeková, R.S.; Thornton, J.M. PDBsum: Structural summaries of PDB entries. Protein Sci., 2018, 27(1), 129-134.
[http://dx.doi.org/10.1002/pro.3289] [PMID: 28875543]
[38]
Štekláč, M.; Zajaček, D.; Bučinský, L. 3CLpro and PLpro affinity, a docking study to fight COVID19 based on 900 compounds from PubChem and literature. Are there new drugs to be found? J. Mol. Struct., 2021, 1245, 130968.
[http://dx.doi.org/10.1016/j.molstruc.2021.130968] [PMID: 34219808]
[39]
Xie, X.Q.S. Exploiting PubChem for virtual screening. Expert Opin. Drug Discov., 2010, 5(12), 1205-1220.
[http://dx.doi.org/10.1517/17460441.2010.524924] [PMID: 21691435]
[40]
Vishvakarma, V.K.; Pal, S.; Singh, P.; Bahadur, I. Interactions between main protease of SARS-CoV-2 and testosterone or progesterone using computational approach. J. Mol. Struct., 2022, 1251, 131965.
[http://dx.doi.org/10.1016/j.molstruc.2021.131965] [PMID: 34840349]
[41]
Sahu, A.; Pradhan, D.; Raza, K.; Qazi, S.; Jain, A.; Verma, S. In silico library design, screening and MD simulation of COX-2 inhibitors for anticancer activity Proceedings of the 12th International Conference, 2020, pp. 21-32.
[42]
Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. The missing term in effective pair potentials. J. Phys. Chem., 1987, 91(24), 6269-6271.
[http://dx.doi.org/10.1021/j100308a038]
[43]
Amanat, M.; Daula, A.S.U.; Islam, F. Potential usage of Zerumbone to suppress inflammation: An in silico study. Am. J. Sci. Med. Res., 2022, 8(2), 1-11.
[44]
Yang, J.F.; Wang, F.; Chen, Y.Z.; Hao, G.F.; Yang, G.F. LARMD: integration of bioinformatic resources to profile ligand-driven protein dynamics with a case on the activation of estrogen receptor. Brief. Bioinform., 2020, 21(6), 2206-2218.
[http://dx.doi.org/10.1093/bib/bbz141] [PMID: 31799600]
[45]
Dolinsky, T.J.; Czodrowski, P.; Li, H.; Nielsen, J.E.; Jensen, J.H.; Klebe, G.; Baker, N.A. PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res., 2007, 35(Web Server)(2), W522-W525.
[http://dx.doi.org/10.1093/nar/gkm276] [PMID: 17488841]
[46]
Raha, K.; Merz, K.M., Jr Large-scale validation of a quantum mechanics based scoring function: Predicting the binding affinity and the binding mode of a diverse set of protein-ligand complexes. J. Med. Chem., 2005, 48(14), 4558-4575.
[http://dx.doi.org/10.1021/jm048973n] [PMID: 15999994]
[47]
Bahar, I.; Lezon, T.R.; Bakan, A.; Shrivastava, I.H. Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. Chem. Rev., 2010, 110(3), 1463-1497.
[http://dx.doi.org/10.1021/cr900095e] [PMID: 19785456]
[48]
Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett., 1997, 78(14), 2690-2693.
[http://dx.doi.org/10.1103/PhysRevLett.78.2690]
[49]
Opo, F.A.D.M.; Rahman, M.M.; Ahammad, F.; Ahmed, I.; Bhuiyan, M.A.; Asiri, A.M. Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Sci. Rep., 2021, 11(1), 4049.
[http://dx.doi.org/10.1038/s41598-021-83626-x] [PMID: 33603068]
[50]
Aja, P.M.; Agu, P.C.; Ezeh, E.M.; Awoke, J.N.; Ogwoni, H.A.; Deusdedit, T.; Ekpono, E.U.; Igwenyi, I.O.; Alum, E.U.; Ugwuja, E.I.; Ibiam, A.U.; Afiukwa, C.A.; Adegboyega, A.E. Prospect into therapeutic potentials of Moringa oleifera phytocompounds against cancer upsurge: de novo synthesis of test compounds, molecular docking, and ADMET studies. Bull. Natl. Res. Cent., 2021, 45(1), 99.
[http://dx.doi.org/10.1186/s42269-021-00554-6]
[51]
Chan, K.W.; Yu, K.Y.; Yiu, W.H.; Xue, R.; Lok, S.W.; Li, H.; Zou, Y.; Ma, J.; Lai, K.N.; Tang, S.C. Potential therapeutic targets of rehmannia formulations on diabetic nephropathy: A comparative network pharmacology analysis. Front. Pharmacol., 2022, 13, 794139.
[http://dx.doi.org/10.3389/fphar.2022.794139] [PMID: 35387335]
[52]
Montanari, R.M.; Barbosa, L.C.A.; Demuner, A.J.; Silva, C.J.; Carvalho, L.S.; Andrade, N.J. Chemical composition and antibacterial activity of essential oils from verbenaceae species: alternative sources of (E)-caryophyllene and germacrene-D. Quim. Nova, 2011, 34(9), 1550-1555.
[http://dx.doi.org/10.1590/S0100-40422011000900013]
[53]
Noge, K.; Becerra, J. Germacrene D, a common sesquiterpene in the genus Bursera (Burseraceae). Molecules, 2009, 14(12), 5289-5297.
[http://dx.doi.org/10.3390/molecules14125289] [PMID: 20032892]
[54]
de Moura, D.F.; Rocha, T.A.; de Melo Barros, D.; da Silva, M.M.; dos Santos Santana, M.; Neta, B.M.; Cavalcanti, I.M.F.; Martins, R.D.; da Silva, M.V. Evaluation of the antioxidant, antibacterial, and antibiofilm activity of the sesquiterpene nerolidol. Arch. Microbiol., 2021, 203(7), 4303-4311.
[http://dx.doi.org/10.1007/s00203-021-02377-5] [PMID: 34110480]
[55]
Saito, A.Y.; Marin Rodriguez, A.A.; Menchaca Vega, D.S.; Sussmann, R.A.C.; Kimura, E.A.; Katzin, A.M. Antimalarial activity of the terpene nerolidol. Int. J. Antimicrob. Agents, 2016, 48(6), 641-646.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.08.017] [PMID: 27742206]
[56]
Judzentiene, A.; Budiene, J.; Svediene, J.; Garjonyte, R. Toxic, radical scavenging, and antifungal activity of Rhododendron tomentosum H. essential oils. Molecules, 2020, 25(7), 1676.
[http://dx.doi.org/10.3390/molecules25071676] [PMID: 32260539]
[57]
Collins, T.; Jones, G.; Sadgrove, N. Volatiles from the rare Australian desert plant Prostanthera centralis BJ Conn (Lamiaceae): Chemical composition and antimicrobial activity. Agriculture, 2014, 4(4), 308-316.
[http://dx.doi.org/10.3390/agriculture4040308]
[58]
Abd-ElGawad, A.M.; Elshamy, A.I.; Elgorban, A.M.; Hassan, E.M.; Zaghloul, N.S.; Alamery, S.F.; El Gendy, A.E.N.G.; Elhindi, K.M.; EI-Amier, Y.A. Essential oil of ipomoea carnea: Chemical profile, chemometric analysis, free radical scavenging, and antibacterial activities. Sustainabilit, 2022, 14(15), 9504.
[http://dx.doi.org/10.3390/su14159504]
[59]
Ferreira, M.G.P.R.; Kayano, A.M.; Silva-Jardim, I.; Silva, T.O.; Zuliani, J.P.; Facundo, V.A.; Calderon, L.A.; Almeida-e-Silva, A.; Ciancaglini, P.; Stábeli, R.G. Antileishmanial activity of 3-(3,4,5-trimethoxyphenyl) propanoic acid purified from Amazonian Piper tuberculatum Jacq., Piperaceae, fruits. Rev. Bras. Farmacogn., 2010, 20(6), 1003-1006.
[http://dx.doi.org/10.1590/S0102-695X2010005000033]
[60]
Mokale, S.N.; Shinde, S.S.; Elgire, R.D.; Sangshetti, J.N.; Shinde, D.B. Synthesis and anti-inflammatory activity of some 3-(4,6-disubtituted-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl) propanoic acid derivatives. Bioorg. Med. Chem. Lett., 2010, 20(15), 4424-4426.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.058] [PMID: 20594837]
[61]
Tesfay, D.; Endale, M.; Getaneh, E.; Abdisa, E.; Guta, L.; Melaku, Y. Chemical composition and antibacterial activity of essential oils from various parts of Gladiolus candidus, Ranunculus multifidus, Artemisia abyssinica and Crinum abyscinicum. Bull. Chem. Soc. Ethiop., 2022, 36(4), 865-878.
[http://dx.doi.org/10.4314/bcse.v36i4.12]
[62]
do Nascimento, K.F.; Moreira, F.M.F.; Alencar Santos, J.; Kassuya, C.A.L.; Croda, J.H.R.; Cardoso, C.A.L.; Vieira, M.C.; Góis Ruiz, A.L.T.; Ann Foglio, M.; de Carvalho, J.E.; Formagio, A.S.N. Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. J. Ethnopharmacol., 2018, 210, 351-358.
[http://dx.doi.org/10.1016/j.jep.2017.08.030] [PMID: 28844678]
[63]
Costa, I.F.J.B.; Simão, T.L.B.V.; Calixto, S.D.; Pereira, R.V.; Konno, T.U.P.; Pinto, S.C.; Tinoco, L.W.; Lasunskaia, E.; Leal, I.C.R.; Muzitano, M.F. Anti-mycobacterial and immunomodulatory activity of n-hexane fraction and spathulenol from Ocotea notata leaves. Rodriguésia, 2021, 72, e01162019.
[http://dx.doi.org/10.1590/2175-7860202172041]
[64]
Nirmal, S.A.; Pal, S.C.; Mandal, S.C.; Patil, A.N. Analgesic and anti-inflammatory activity of β-sitosterol isolated from Nyctanthes arbortristis leaves. Inflammopharmacology, 2012, 20(4), 219-224.
[http://dx.doi.org/10.1007/s10787-011-0110-8] [PMID: 22207496]
[65]
Babu, S.; Jayaraman, S. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomed. Pharmacother., 2020, 131, 110702.
[http://dx.doi.org/10.1016/j.biopha.2020.110702] [PMID: 32882583]
[66]
Sen, A.; Dhavan, P.; Shukla, K.K.; Singh, S.; Tejovathi, G. Analysis of IR, NMR and antimicrobial activity of β-sitosterol isolated from Momordica charantia. Sci. Secure J. Biotechnol., 2012, 1(1), 9-13.
[67]
Vivancos, M.; Moreno, J.J. β-Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free Radic. Biol. Med., 2005, 39(1), 91-97.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.02.025] [PMID: 15925281]
[68]
Saeidnia, S.; Manayi, A.; Gohari, A.R.; Abdollahi, M.J.E. The story of beta-sitosterol-a review. European J. Med. Plants, 2014, 4(5), 590-609.
[http://dx.doi.org/10.9734/EJMP/2014/7764]
[69]
Wald, G. Molecular basis of visual excitation. Science, 1968, 162(3850), 230-239.
[http://dx.doi.org/10.1126/science.162.3850.230] [PMID: 4877437]
[70]
Sorg, O.; Didierjean, L.; Saurat, J.H. Metabolism of topical retinaldehyde. Dermatology, 1999, 199(1), 13-17.
[http://dx.doi.org/10.1159/000051372] [PMID: 10473954]
[71]
Sorg, O.; Kasraee, B.; Salomon, D.; Saurat, J.H. The potential depigmenting activity of retinaldehyde. Dermatology, 2013, 227(3), 231-237.
[http://dx.doi.org/10.1159/000354294] [PMID: 24080511]
[72]
Islam, F.; Islam, M.S.; Ahmed, K.; Amanat, M. Unveiling the Anthelminthic Potential of Merremia vitifolia Stem through in Vitro and in Silico Approach. Chem. Biodivers., 2023, 20(10), e202300860.
[http://dx.doi.org/10.1002/cbdv.202300860] [PMID: 37715726]
[73]
Konappa, N.; Udayashankar, A.C.; Krishnamurthy, S.; Pradeep, C.K.; Chowdappa, S.; Jogaiah, S. GC–MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Sci. Rep., 2020, 10(1), 16438.
[http://dx.doi.org/10.1038/s41598-020-73442-0] [PMID: 33009462]
[74]
Vijayakumar, S.; Manogar, P.; Prabhu, S. Potential therapeutic targets and the role of technology in developing novel cannabinoid drugs from cyanobacteria. Biomed. Pharmacother., 2016, 83, 362-371.
[http://dx.doi.org/10.1016/j.biopha.2016.06.052] [PMID: 27416557]
[75]
Jamroz, M.; Kolinski, A.; Kmiecik, S. CABS-flex predictions of protein flexibility compared with NMR ensembles. Bioinformatics, 2014, 30(15), 2150-2154.
[http://dx.doi.org/10.1093/bioinformatics/btu184] [PMID: 24735558]
[76]
Gorai, S.; Junghare, V.; Kundu, K.; Gharui, S.; Kumar, M.; Patro, B.S.; Nayak, S.K.; Hazra, S.; Mula, S. Synthesis of Dihydrobenzofuro[3,2‐b]chromenes as Potential 3CLpro Inhibitors of SARS‐CoV‐2: A Molecular Docking and Molecular Dynamics Study. ChemMedChem, 2022, 17(8), e202100782.
[http://dx.doi.org/10.1002/cmdc.202100782] [PMID: 35112482]
[77]
Mazumder, T.; Hasan, T.; Ahmed, K.S.; Hossain, H.; Debnath, T.; Jahan, E.; Rahman, N.; Rahman Shuvo, M.S.; Daula, A.F.M.S.U. Phenolic compounds and extracts from Crotalaria calycina Schrank potentially alleviate pain and inflammation through inhibition of cyclooxygenase-2: An in vivo and molecular dynamics studies. Heliyon, 2022, 8(12), e12368.
[http://dx.doi.org/10.1016/j.heliyon.2022.e12368] [PMID: 36590510]
[78]
Mir, S.; Dash, G.C.; Chopdar, K.S.; Mohanta, P.; Mohapatra, P.K.; Baitharu, I.; Behera, A.K.; Raval, M.K.; Nayak, B. Molecular modeling of novel fluorophoric thiazolo-[2, 3-B] quinazolinones to study epidermal growth factor receptor tyrosine kinase inhibition potency. ChemRxiv, 2021.
[http://dx.doi.org/10.26434/chemrxiv.14174282.v1]
[79]
Mir, S.A.; Dash, G.C.; Meher, R.K.; Mohanta, P.P.; Chopdar, K.S.; Mohapatra, P.K.; Baitharu, I.; Behera, A.K.; Raval, M.K.; Nayak, B. Biotechnology, In Silico and In Vitro evaluations of fluorophoric thiazolo-[2,3-b] quinazolinones as anti-cancer agents targeting EGFR-TKD. Appl. Biochem. Biotechnol., 2022, 1-27.
[80]
Kazius, J.; McGuire, R.; Bursi, R. Derivation and validation of toxicophores for mutagenicity prediction. J. Med. Chem., 2005, 48(1), 312-320.
[http://dx.doi.org/10.1021/jm040835a] [PMID: 15634026]
[81]
El Kerdawy, A.M.; Osman, A.A.; Zaater, M. Receptor based pharmacophore modeling, virtual screening, and molecular docking studies for the discovery of novel GSK-3β inhibitors. J. Med. Chem., 2019, 25, 1-21.
[82]
Sunkara, M.S.; Kuchana, V.; Sree, J.P.; Prabugari, R.; Pilli, A.; Irum, F.; Tangeda, S.J.; Bhowmik, D. Pharmacophore based virtual screening & molecular docking studies on selected plant constituents of Plantago major. J. Appl. Pharm. Sci., 2023, 13(4), 157-167.
[83]
Nisha, C. M.; Kumar, A.; Nair, P.; Gupta, N.; Silakari, C.; Tripathi, T.; Kumar, A. Molecular docking and in silico ADMET study reveals acylguanidine 7a as a potential inhibitor of β-secretase. Adv. Bioinform., 2016, 2016

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy