Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

A Snapshot of Biomarkers in Psoriasis

Author(s): Krushna Abhale*, Addepalli Veeranjaneyulu and Shivani Desai

Volume 22, Issue 1, 2025

Published on: 18 March, 2024

Article ID: e180324228068 Pages: 10

DOI: 10.2174/0115701638278470240312075112

Price: $65

Open Access Journals Promotions 2
Abstract

A persistent long-standing, inflammatory skin condition that is brought on by a variety of factors is psoriasis. It is distinguished by itchy, scaly, reddish plaques, particularly on areas of the body that are frequently chafed, including the extensor sites of the limbs. Recent developments in molecular-targeted therapy that use biologics or small-molecule inhibitors can effectively cure even the worst psoriatic indications. The outstanding clinical outcomes of treatment help to clarify the disease's detrimental consequences on quality of life. Biomarkers that identify deep remission are essential for developing uniform treatment plans. Blood protein markers such as AMPs that are consistently quantifiable can be very helpful in routine clinical practice. The metabolic pathways involve biomarkers that can not only help diagnose psoriasis in a clinical setting but also indicate its severity based on the levels present in the body. Machine learning and AI have made a diagnosis of the expression of genes as biomarkers more accessible. In this article, biomarkers, as well as their key role in psoriasis, are discussed.

Keywords: Inflammatory skin disease, biomarkers, psoriasis, metabolic pathways, machine learning, blood protein.

Graphical Abstract
[1]
Armstrong AW, Mehta MD, Schupp CW, Gondo GC, Bell SJ, Griffiths CEM. Psoriasis prevalence in adults in the United States. JAMA Dermatol 2021; 157(8): 940-6.
[http://dx.doi.org/10.1001/jamadermatol.2021.2007] [PMID: 34190957]
[2]
Mease PJ, Gladman DD, Papp KA, et al. Prevalence of rheumatologist-diagnosed psoriatic arthritis in patients with psoriasis in European/North American dermatology clinics. J Am Acad Dermatol 2013; 69(5): 729-35.
[http://dx.doi.org/10.1016/j.jaad.2013.07.023] [PMID: 23981683]
[3]
Griffiths CEM, Barker JNWN. Pathogenesis and clinical features of psoriasis. Lancet 2007; 370(9583): 263-71.
[http://dx.doi.org/10.1016/S0140-6736(07)61128-3] [PMID: 17658397]
[4]
Yang E, Beck K, Sanchez I, Koo J, Liao W. The impact of genital psoriasis on quality of life: A systematic review. Psoriasis Targets Ther 2018; 8: 41-7.
[http://dx.doi.org/10.2147/PTT.S169389]
[5]
Caiazzo G, Fabbrocini G, Di Caprio R, et al. Psoriasis, cardiovascular events, and biologics: Lights and shadows. Front Immunol 2018; 9: 1668.
[http://dx.doi.org/10.3389/fimmu.2018.01668] [PMID: 30150978]
[6]
Boehncke WH, Boehncke S, Tobin AM, Kirby B. The ‘psoriatic march’: A concept of how severe psoriasis may drive cardiovascular comorbidity. Exp Dermatol 2011; 20(4): 303-7.
[http://dx.doi.org/10.1111/j.1600-0625.2011.01261.x] [PMID: 21410760]
[7]
Boechat JL. Psoriatic march, skin inflammation and cardiovascular events – two plaques for one syndrome. Int J Cardiovasc Sci 2020; 33(2): 109-11.
[http://dx.doi.org/10.36660/ijcs.20200021]
[8]
Tang L, Yang X, Liang Y, Xie H, Dai Z, Zheng G. Transcription factor retinoid-related orphan receptor γt: A promising target for the treatment of psoriasis. Front Immunol 2018; 9: 1210.
[http://dx.doi.org/10.3389/fimmu.2018.01210] [PMID: 29899748]
[9]
Lai Y, Gallo RL. AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends Immunol 2009; 30(3): 131-41.
[http://dx.doi.org/10.1016/j.it.2008.12.003] [PMID: 19217824]
[10]
Ogawa E, Sato Y, Minagawa A, Okuyama R. Pathogenesis of psoriasis and development of treatment. J Dermatol 2018; 45(3): 264-72.
[http://dx.doi.org/10.1111/1346-8138.14139] [PMID: 29226422]
[11]
Morizane S, Gallo RL. Antimicrobial peptides in the pathogenesis of psoriasis. J Dermatol 2012; 39(3): 225-30.
[http://dx.doi.org/10.1111/j.1346-8138.2011.01483.x] [PMID: 22352846]
[12]
Takahashi T, Yamasaki K. Psoriasis and antimicrobial peptides. Int J Mol Sci 2020; 21(18): 6791.
[http://dx.doi.org/10.3390/ijms21186791] [PMID: 32947991]
[13]
Arakawa A, Siewert K, Stöhr J, et al. Melanocyte antigen triggers autoimmunity in human psoriasis. J Exp Med 2015; 212(13): 2203-12.
[http://dx.doi.org/10.1084/jem.20151093] [PMID: 26621454]
[14]
Nishimoto S, Kotani H, Tsuruta S, et al. Th17 cells carrying TCR recognizing epidermal autoantigen induce psoriasis-like skin inflammation. J Immunol 2013; 191(6): 3065-72.
[http://dx.doi.org/10.4049/jimmunol.1300348] [PMID: 23956432]
[15]
Kim TG, Kim DS, Kim HP, Lee MG. The pathophysiological role of dendritic cell subsets in psoriasis. BMB Rep 2014; 47(2): 60-8.
[http://dx.doi.org/10.5483/BMBRep.2014.47.2.014] [PMID: 24411465]
[16]
Wang A, Bai Y. Dendritic cells: The driver of psoriasis. J Dermatol 2020; 47(2): 104-13.
[http://dx.doi.org/10.1111/1346-8138.15184] [PMID: 31833093]
[17]
Takagi H, Arimura K, Uto T, et al. Plasmacytoid dendritic cells orchestrate TLR7-mediated innate and adaptive immunity for the initiation of autoimmune inflammation. Sci Rep 2016; 6(1): 24477.
[http://dx.doi.org/10.1038/srep24477] [PMID: 27075414]
[18]
Kopfnagel V, Wagenknecht S, Harder J, et al. RNase 7 strongly promotes TLR9-mediated DNA sensing by human plasmacytoid dendritic cells. J Invest Dermatol 2018; 138(4): 872-81.
[http://dx.doi.org/10.1016/j.jid.2017.09.052] [PMID: 29157732]
[19]
Vecellio M, Hake VX, Davidson C, Carena MC, Wordsworth BP, Selmi C. The IL-17/IL-23 axis and its genetic contribution to psoriatic arthritis. Front Immunol 2021; 11: 596086.
[http://dx.doi.org/10.3389/fimmu.2020.596086] [PMID: 33574815]
[20]
Suzuki E, Mellins ED, Gershwin ME, Nestle FO, Adamopoulos IE. The IL-23/IL-17 axis in psoriatic arthritis. Autoimmun Rev 2014; 13(4-5): 496-502.
[http://dx.doi.org/10.1016/j.autrev.2014.01.050] [PMID: 24424175]
[21]
Fragoulis GE, Siebert S. The role of IL-23 and the use of IL-23 inhibitors in psoriatic arthritis. Musculoskelet Care 2022; 20(S1): S12-21.
[http://dx.doi.org/10.1002/msc.1694] [PMID: 36069174]
[22]
Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol 2009; 27(1): 485-517.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132710] [PMID: 19132915]
[23]
Kim J, Krueger JG. Highly effective new treatments for psoriasis target the IL-23/type 17 T cell autoimmune axis. Annu Rev Med 2017; 68(1): 255-69.
[http://dx.doi.org/10.1146/annurev-med-042915-103905] [PMID: 27686018]
[24]
Hawkes JE, Chan TC, Krueger JG. Psoriasis pathogenesis and the development of novel targeted immune therapies. J Allergy Clin Immunol 2017; 140(3): 645-53.
[http://dx.doi.org/10.1016/j.jaci.2017.07.004] [PMID: 28887948]
[25]
Harper EG, Guo C, Rizzo H, et al. Th17 cytokines stimulate CCL20 expression in keratinocytes in vitro and in vivo: Implications for psoriasis pathogenesis. J Invest Dermatol 2009; 129(9): 2175-83.
[http://dx.doi.org/10.1038/jid.2009.65] [PMID: 19295614]
[26]
Heidenreich R, Röcken M, Ghoreschi K. Angiogenesis drives psoriasis pathogenesis. Int J Exp Pathol 2009; 90(3): 232-48.
[http://dx.doi.org/10.1111/j.1365-2613.2009.00669.x] [PMID: 19563608]
[27]
Kim HR, Kang SY, Kim HO, Park CW, Chung BY. Role of aryl hydrocarbon receptor activation and autophagy in psoriasis-related inflammation. Int J Mol Sci 2020; 21(6): 2195.
[http://dx.doi.org/10.3390/ijms21062195] [PMID: 32235789]
[28]
Denison MS, Nagy SR. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 2003; 43(1): 309-34.
[http://dx.doi.org/10.1146/annurev.pharmtox.43.100901.135828] [PMID: 12540743]
[29]
Stockinger B, Meglio PD, Gialitakis M, Duarte JH. The aryl hydrocarbon receptor: Multitasking in the immune system. Annu Rev Immunol 2014; 32(1): 403-32.
[http://dx.doi.org/10.1146/annurev-immunol-032713-120245] [PMID: 24655296]
[30]
Furue M, Hachiya HA, Tsuji G. Aryl hydrocarbon receptor in atopic dermatitis and psoriasis. Int J Mol Sci 2019; 20(21): 5424.
[http://dx.doi.org/10.3390/ijms20215424] [PMID: 31683543]
[31]
Zhu Z, Chen J, Lin Y, et al. Aryl hydrocarbon receptor in cutaneous vascular endothelial cells restricts psoriasis development by negatively regulating neutrophil recruitment. J Invest Dermatol 2020; 140(6): 1233-1243.e9.
[http://dx.doi.org/10.1016/j.jid.2019.11.022] [PMID: 31899186]
[32]
Aronson JK, Ferner RE. Biomarkers—A general review. Curr Protocols Pharmacol 2017; 76(1): 23.1-, 17.
[http://dx.doi.org/10.1002/cpph.19] [PMID: 28306150]
[33]
Yilmaz SB, Cicek N, Coskun M, Yegin O, Alpsoy E. Serum and tissue levels of IL-17 in different clinical subtypes of psoriasis. Arch Dermatol Res 2012; 304(6): 465-9.
[http://dx.doi.org/10.1007/s00403-012-1229-1] [PMID: 22426986]
[34]
Kolbinger F, Loesche C, Valentin MA, et al. β-Defensin 2 is a responsive biomarker of IL-17A–driven skin pathology in patients with psoriasis. J Allergy Clin Immunol 2017; 139(3): 923-932.e8.
[http://dx.doi.org/10.1016/j.jaci.2016.06.038] [PMID: 27502297]
[35]
Gordon KB, Armstrong AW, Foley P, et al. Guselkumab efficacy after withdrawal is associated with suppression of serum IL-23-regulated IL-17 and IL-22 in psoriasis: VOYAGE 2 study. J Invest Dermatol 2019; 139(12): 2437-2446.e1.
[http://dx.doi.org/10.1016/j.jid.2019.05.016] [PMID: 31207232]
[36]
Konrad RJ, Higgs RE, Rodgers GH, et al. Assessment and clinical relevance of serum IL-19 levels in psoriasis and atopic dermatitis using a sensitive and specific novel immunoassay. Sci Rep 2019; 9(1): 5211.
[http://dx.doi.org/10.1038/s41598-019-41609-z] [PMID: 30914699]
[37]
Honma M, Minami-Hori M, Takahashi H, Iizuka H. Podoplanin expression in wound and hyperproliferative psoriatic epidermis: Regulation by TGF-β and STAT-3 activating cytokines, IFN-γ, IL-6, and IL-22. J Dermatol Sci 2012; 65(2): 134-40.
[http://dx.doi.org/10.1016/j.jdermsci.2011.11.011] [PMID: 22189341]
[38]
Yassky GE, Krueger JG. Atopic dermatitis and psoriasis: Two different immune diseases or one spectrum? Curr Opin Immunol 2017; 48: 68-73.
[http://dx.doi.org/10.1016/j.coi.2017.08.008] [PMID: 28869867]
[39]
Shimauchi T, Hirakawa S, Suzuki T, et al. Serum interleukin-22 and vascular endothelial growth factor serve as sensitive biomarkers but not as predictors of therapeutic response to biologics in patients with psoriasis. J Dermatol 2013; 40(10): 805-12.
[http://dx.doi.org/10.1111/1346-8138.12248] [PMID: 23915382]
[40]
Walsh PT, Fallon PG. The emergence of the IL-36 cytokine family as novel targets for inflammatory diseases. Ann N Y Acad Sci 2018; 1417(1): 23-34.
[http://dx.doi.org/10.1111/nyas.13280] [PMID: 27783881]
[41]
Furue K, Yamamura K, Tsuji G, et al. Highlighting interleukin-36 signalling in plaque psoriasis and pustular psoriasis. Acta Derm Venereol 2018; 98(1): 5-13.
[http://dx.doi.org/10.2340/00015555-2808] [PMID: 28967976]
[42]
Buhl AL, Wenzel J. Interleukin-36 in infectious and inflammatory skin diseases. Front Immunol 2019; 10: 1162.
[http://dx.doi.org/10.3389/fimmu.2019.01162] [PMID: 31191535]
[43]
Madonna S, Girolomoni G, Dinarello CA, Albanesi C. The significance of IL-36 hyperactivation and IL-36R targeting in psoriasis. Int J Mol Sci 2019; 20(13): 3318.
[http://dx.doi.org/10.3390/ijms20133318] [PMID: 31284527]
[44]
D’Erme AM, Wilsmann-Theis D, Wagenpfeil J, et al. IL-36γ (IL-1F9) is a biomarker for psoriasis skin lesions. J Invest Dermatol 2015; 135(4): 1025-32.
[http://dx.doi.org/10.1038/jid.2014.532] [PMID: 25525775]
[45]
Braegelmann J, D´Erme A, Akmal S, Maier J, Braegelmann C, Wenzel J. Interleukin-36γ (IL-1F9) identifies psoriasis among patients with erythroderma. Acta Derm Venereol 2016; 96(3): 386-7.
[http://dx.doi.org/10.2340/00015555-2265] [PMID: 26524325]
[46]
Raychaudhuri SP, Jiang W-Y, Farber EM. Cellular localization of fractalkine at sites of inflammation: antigen-presenting cells in psoriasis express high levels of fractalkine. Br J Dermatol 2001; 144(6): 1105-13.
[http://dx.doi.org/10.1046/j.1365-2133.2001.04219.x] [PMID: 11422028]
[47]
Fraticelli P, Sironi M, Bianchi G, et al. Fractalkine (CX3CL1) as an amplification circuit of polarized Th1 responses. J Clin Invest 2001; 107(9): 1173-81.
[http://dx.doi.org/10.1172/JCI11517] [PMID: 11342581]
[48]
Sugaya M, Nakamura K, Mitsui H, Takekoshi T, Saeki H, Tamaki K. Human keratinocytes express fractalkine/CX3CL1. J Dermatol Sci 2003; 31(3): 179-87.
[http://dx.doi.org/10.1016/S0923-1811(03)00031-8] [PMID: 12727021]
[49]
Hedrick MN, Lonsdorf AS, Hwang ST, Farber JM. CCR6 as a possible therapeutic target in psoriasis. Expert Opin Ther Targets 2010; 14(9): 911-22.
[http://dx.doi.org/10.1517/14728222.2010.504716] [PMID: 20629596]
[50]
Congjun J, Yanmei Z, Huiling J, Zhen Y, Shuo L. Elevated local and serum CX3CL1(Fractalkine) expression and its association with disease severity in patients with psoriasis. Ann Clin Lab Sci 2015; 45(5): 556-61.
[51]
Echigo T, Hasegawa M, Shimada Y, Takehara K, Sato S. Expression of fractalkine and its receptor, CX3CR1, in atopic dermatitis: Possible contribution to skin inflammation. J Allergy Clin Immunol 2004; 113(5): 940-8.
[http://dx.doi.org/10.1016/j.jaci.2004.02.030] [PMID: 15131578]
[52]
Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J 2018; 285(16): 2944-71.
[http://dx.doi.org/10.1111/febs.14466] [PMID: 29637711]
[53]
Rottman JB, Smith TL, Ganley KG, Kikuchi T, Krueger JG. Potential role of the chemokine receptors CXCR3, CCR4, and the integrin alphaEbeta7 in the pathogenesis of psoriasis vulgaris. Lab Invest 2001; 81(3): 335-47.
[http://dx.doi.org/10.1038/labinvest.3780242] [PMID: 11310827]
[54]
Shibuya T, Honma M, Iinuma S, Iwasaki T, Takahashi H, Yamamoto IA. Alteration of serum thymus and activation-regulated chemokine level during biologic therapy for psoriasis: Possibility as a marker reflecting favorable response to anti-interleukin-17A agents. J Dermatol 2018; 45(6): 710-4.
[http://dx.doi.org/10.1111/1346-8138.14308] [PMID: 29655215]
[55]
Zijtregtop EAM, van der Strate I, Beishuizen A, et al. Biology and clinical applicability of plasma thymus and activation-regulated chemokine (TARC) in classical hodgkin lymphoma. Cancers 2021; 13(4): 884.
[http://dx.doi.org/10.3390/cancers13040884] [PMID: 33672548]
[56]
Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol 2011; 11(2): 85-97.
[http://dx.doi.org/10.1038/nri2921] [PMID: 21252989]
[57]
Coimbra S, Catarino C, Silva AS. The triad psoriasis-obesity-adipokine profile. J Eur Acad Dermatol Venereol 2016; 30(11): 1876-85.
[http://dx.doi.org/10.1111/jdv.13701]
[58]
Wong Y, Nakamizo S, Tan KJ, Kabashima K. An update on the role of adipose tissues in psoriasis. Front Immunol 2019; 10: 1507.
[http://dx.doi.org/10.3389/fimmu.2019.01507] [PMID: 31316526]
[59]
Versini M, Jeandel PY, Rosenthal E, Shoenfeld Y. Obesity in autoimmune diseases: Not a passive bystander. Autoimmun Rev 2014; 13(9): 981-1000.
[http://dx.doi.org/10.1016/j.autrev.2014.07.001] [PMID: 25092612]
[60]
Takahashi H, Tsuji H, Honma M, Yamamoto IA, Iizuka H. Increased plasma resistin and decreased omentin levels in Japanese patients with psoriasis. Arch Dermatol Res 2013; 305(2): 113-6.
[http://dx.doi.org/10.1007/s00403-012-1310-9] [PMID: 23291856]
[61]
Kyriakou A, Patsatsi A, Sotiriadis D, Goulis DG. Effects of treatment for psoriasis on circulating levels of leptin, adiponectin and resistin: A systematic review and meta-analysis. Br J Dermatol 2018; 179(2): 273-81.
[http://dx.doi.org/10.1111/bjd.16437] [PMID: 29432655]
[62]
Bai F, Zheng W, Dong Y, et al. Serum levels of adipokines and cytokines in psoriasis patients: A systematic review and meta-analysis. Oncotarget 2018; 9(1): 1266-78.
[http://dx.doi.org/10.18632/oncotarget.22260] [PMID: 29416693]
[63]
Coimbra S, Oliveira H, Reis F, et al. Circulating adipokine levels in Portuguese patients with psoriasis vulgaris according to body mass index, severity and therapy. J Eur Acad Dermatol Venereol 2010; 24(12): 1386-94.
[http://dx.doi.org/10.1111/j.1468-3083.2010.03647.x] [PMID: 20337818]
[64]
Boehncke S, Salgo R, Garbaraviciene J, et al. Effective continuous systemic therapy of severe plaque-type psoriasis is accompanied by amelioration of biomarkers of cardiovascular risk: Results of a prospective longitudinal observational study. J Eur Acad Dermatol Venereol 2011; 25(10): 1187-93.
[http://dx.doi.org/10.1111/j.1468-3083.2010.03947.x] [PMID: 21241371]
[65]
Gerdes S, Pinter A, Biermann M, Papavassilis C, Reinhardt M. Adiponectin levels in a large pooled plaque psoriasis study population. J Dermatolog Treat 2020; 31(5): 531-4.
[http://dx.doi.org/10.1080/09546634.2019.1621979] [PMID: 31179792]
[66]
Falconer A, Ikram M, Bissett CE, Cerio R, Quinn AG, Ali RS. Expression of the peptide antibiotics human β defensin-1 and human β defensin-2 in normal human skin. J Invest Dermatol 2001; 117(1): 106-11.
[http://dx.doi.org/10.1046/j.0022-202x.2001.01401.x] [PMID: 11442756]
[67]
Chiricozzi A, Yassky GE, Fariñas SM, et al. Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J Invest Dermatol 2011; 131(3): 677-87.
[http://dx.doi.org/10.1038/jid.2010.340] [PMID: 21085185]
[68]
Gonzalez LL, Garrie K, Turner MD. Role of S100 proteins in health and disease. Biochim Biophys Acta Mol Cell Res 2020; 1867(6): 118677.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118677] [PMID: 32057918]
[69]
Büchau AS, Gallo RL. Innate immunity and antimicrobial defense systems in psoriasis. Clin Dermatol 2007; 25(6): 616-24.
[http://dx.doi.org/10.1016/j.clindermatol.2007.08.016] [PMID: 18021900]
[70]
D’Amico F, Skarmoutsou E, Granata M, Trovato C, Rossi GA, Mazzarino MC. S100A7: A rAMPing up AMP molecule in psoriasis. Cytokine Growth Factor Rev 2016; 32: 97-104.
[http://dx.doi.org/10.1016/j.cytogfr.2016.01.002] [PMID: 26872860]
[71]
Maurelli M, Gisondi P, Danese E, et al. Psoriasin (S100A7) is increased in the serum of patients with moderate-to-severe psoriasis. Br J Dermatol 2020; 182(6): 1502-3.
[http://dx.doi.org/10.1111/bjd.18807] [PMID: 31853957]
[72]
Watanabe Y, Yamaguchi Y, Komitsu N, et al. Elevation of serum squamous cell carcinoma antigen 2 in patients with psoriasis: associations with disease severity and response to the treatment. Br J Dermatol 2016; 174(6): 1327-36.
[http://dx.doi.org/10.1111/bjd.14426] [PMID: 26822223]
[73]
Iizuka H, Takahashi H, Honma M, Yamamoto IA. Unique keratinization process in psoriasis: Late differentiation markers are abolished because of the premature cell death. J Dermatol 2004; 31(4): 271-6.
[http://dx.doi.org/10.1111/j.1346-8138.2004.tb00672.x] [PMID: 15187321]
[74]
Nakane H, Ishida-Yamamoto A, Takahashi H, Iizuka H. Elafin, a secretory protein, is cross-linked into the cornified cell envelopes from the inside of psoriatic keratinocytes. J Invest Dermatol 2002; 119(1): 50-5.
[http://dx.doi.org/10.1046/j.1523-1747.2002.01803.x] [PMID: 12164924]
[75]
Nonomura K, Yamanishi K, Yasuno H, Nara K, Hirose S. Up-regulation of elafin/SKALP gene expression in psoriatic epidermis. J Invest Dermatol 1994; 103(1): 88-91.
[http://dx.doi.org/10.1111/1523-1747.ep12391802] [PMID: 8027586]
[76]
Sallenave JM. Secretory leukocyte protease inhibitor and elafin/trappin-2: versatile mucosal antimicrobials and regulators of immunity. Am J Respir Cell Mol Biol 2010; 42(6): 635-43.
[http://dx.doi.org/10.1165/rcmb.2010-0095RT] [PMID: 20395631]
[77]
Kuijpers AL, Bergers M, Siegenthaler G, Zeeuwen PL, Van de Kerkhof PC, Schalkwijk J. Skin-derived antileukoproteinase (SKALP) and epidermal fatty acid-binding protein (E-FABP): Two novel markers of the psoriatic phenotype that respond differentially to topical steroid. Acta Derm Venereol 1997; 77(1): 14-9.
[http://dx.doi.org/10.2340/0001555577014019] [PMID: 9059669]
[78]
Madsen P, Rasmussen HH, Leffers H, Honoré B, Celis JE. Molecular cloning and expression of a novel keratinocyte protein (psoriasis-associated fatty acid-binding protein [PA-FABP]) that is highly up-regulated in psoriatic skin and that shares similarity to fatty acid-binding proteins. J Invest Dermatol 1992; 99(3): 299-305.
[http://dx.doi.org/10.1111/1523-1747.ep12616641] [PMID: 1512466]
[79]
Ogawa E, Owada Y, Ikawa S, et al. Epidermal FABP (FABP5) regulates keratinocyte differentiation by 13(S)-HODE-mediated activation of the NF-κB signaling pathway. J Invest Dermatol 2011; 131(3): 604-12.
[http://dx.doi.org/10.1038/jid.2010.342] [PMID: 21068754]
[80]
Nakajima H, Serada S, Fujimoto M, Naka T, Sano S. Leucine-rich α-2 glycoprotein is an innovative biomarker for psoriasis. J Dermatol Sci 2017; 86(2): 170-4.
[http://dx.doi.org/10.1016/j.jdermsci.2017.01.008]
[81]
Deng Y, Li G, Chang D, Su X. YKL-40 as a novel biomarker in cardio-metabolic disorders and inflammatory diseases. Clin Chim Acta 2020; 511: 40-6.
[http://dx.doi.org/10.1016/j.cca.2020.09.035] [PMID: 33002471]
[82]
Alonso A, Julià A, Vinaixa M, et al. Urine metabolome profiling of immune-mediated inflammatory diseases. BMC Med 2016; 14(1): 133.
[http://dx.doi.org/10.1186/s12916-016-0681-8] [PMID: 27609333]
[83]
Myśliwiec H, Baran A, Harasim-Symbor E, et al. Serum fatty acid profile in psoriasis and its comorbidity. Arch Dermatol Res 2017; 309(5): 371-80.
[http://dx.doi.org/10.1007/s00403-017-1748-x] [PMID: 28585093]
[84]
Yu N, Peng C, Chen W, et al. Circulating metabolomic signature in generalized pustular psoriasis blunts monocyte hyperinflammation by triggering amino acid response. Front Immunol 2021; 12: 739514.
[http://dx.doi.org/10.3389/fimmu.2021.739514] [PMID: 34567002]
[85]
Shapiro J, Cohen NA, Shalev V, Uzan A, Koren O, Maharshak N. Psoriatic patients have a distinct structural and functional fecal microbiota compared with controls. J Dermatol 2019; 46(7): 595-603.
[http://dx.doi.org/10.1111/1346-8138.14933] [PMID: 31141234]
[86]
Le NQK, Do DT, Nguyen TTD, Nguyen NTK, Hung TNK, Trang NTT. Identification of gene expression signatures for psoriasis classification using machine learning techniques. Medicine in Omics 2021; 1: 100001.
[http://dx.doi.org/10.1016/j.meomic.2020.100001]
[87]
Yao P, Jia Y, Kan X, et al. Identification of ADAM23 as a potential signature for psoriasis using integrative machine-learning and experimental verification. Int J Gen Med 2023; 16: 6051-64.
[http://dx.doi.org/10.2147/IJGM.S441262]
[88]
Khashaba SA, Attwa E, Said N, Ahmed S, Khattab F. Serum YKL-40 and IL 17 in psoriasis: Reliability as prognostic markers for disease severity and responsiveness to treatment. Dermatol Ther 2021; 34(1): e14606.
[http://dx.doi.org/10.1111/dth.14606] [PMID: 33249724]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy